

Three-year change in diet quality and associated changes in BMI among schoolchildren living in socio-economically disadvantaged neighbourhoods

Sandrine Lioret, Sarah A Mcnaughton, Adrian J Cameron, David Crawford, Karen J Campbell, Verity J Cleland, Kylie Ball

▶ To cite this version:

Sandrine Lioret, Sarah A Mcnaughton, Adrian J Cameron, David Crawford, Karen J Campbell, et al.. Three-year change in diet quality and associated changes in BMI among schoolchildren living in socio-economically disadvantaged neighbourhoods. British Journal of Nutrition, 2014, 112 (02), pp.260-8. 10.1017/S0007114514000749 . inserm-01124415

HAL Id: inserm-01124415 https://inserm.hal.science/inserm-01124415

Submitted on 6 Mar 2015 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

- 1 Title: Three-year change in diet quality and associated changes in BMIamong schoolchildren living
- 2 in socioeconomically disadvantaged neighbourhoods.
- 3 Authors: Sandrine Lioret¹, Sarah A McNaughton¹, Adrian J Cameron¹, David Crawford¹, Karen J
- 4 Campbell¹, Verity J Cleland², Kylie Ball¹
- 5 Affiliations:
- ⁶ ¹Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences,
- 7 Deakin University, Victoria, Australia.
- 8 ²Menzies Research Institute, Hobart, Tasmania, Australia.
- 9 **Corresponding Author (and requests for reprints)**: Dr Sandrine Lioret
- 10 Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences;
- 11 Deakin University; 221 Burwood Hwy, Burwood Victoria 3125, Australia
- 12 Phone: +61 3 9251 7236 Fax: +61 3 9244 6017
- 13 Email: sandrine.lioretsuteau@deakin.edu.au; sandrine.lioret@inserm.fr (from 01.01.14).
- 14 **Number of tables:** 3; **number of figures:** 1.
- 15 **Running Title:** Diet quality and child obesity.
- 16 Key words: children; longitudinal analysis; moderation; BMI; diet quality index; dietary patterns.
- 17
- 18

1 ABSTRACT

2 Findings from research assessing the influence of dietary factors on child obesity have been equivocal. We aimed to test the hypothesis that a positive change in diet quality is associated with 3 favourable changes in BMI z-scores in schoolchildren from low socio-economic backgrounds; and 4 5 to examine whether this effect is modified by BMI category at baseline. This study utilized data 6 from a subsample (n=216) of the Resilience for Eating and Activity Despite Inequality (READI) 7 study, a longitudinal cohort with data collected in 2007-08 (T1) and 2010-11 (T2) in socio-8 economically disadvantaged women and children (5-12 years at T1). Dietary data was collected 9 using a food frequency questionnaire, and diet quality index (DQI) scores derived at both times. Objective measures of weight, height and physical activity (accelerometers) were included. The 10 other variables were reported in questionnaires. We examined the association between change in 11 12 DQI and change in zBMI, with linear regression analysis adjusted for physical activity, screen sedentary behaviour and maternal education, both in the whole sample, and stratified by overweight 13 14 status at baseline. After accounting for potential covariates, change in diet quality was inversely 15 associated with change in zBMIonly in children who were overweight at baseline (P=0.035), thus supporting the hypothesis that improvement in diet quality is associated with a concurrent 16 17 improvement in zBMI among already overweight children, but not those of normal BMI status. The identification of modifiable behaviours such as diet quality that affect zBMI longitudinally is 18 19 valuable to inform future weight gain prevention interventions in vulnerable groups. 20

20 21

1 INTRODUCTION

2 In many developed countries a large proportion of children and adolescents are overweight or obese(in the USA, more than one third⁽¹⁾), with a higher prevalence frequently observed amongst 3 those from more disadvantaged socio-economic backgrounds^(2,3). Beyond any genetic predisposition 4 5 with regard to weight gain, the rapid increase in obesity prevalence over the past three 6 decades underscores the negative impact of unhealthy eating, low physical activity, and increased sedentariness. Each of these factors is strongly influenced by socio-cultural⁽⁴⁾ and environmental 7 factors⁽⁵⁾. In particular, children's diet -the focus of the current study- has been shown to be of 8 lower quality in population groups experiencing disadvantage, with higher intakes of energy-dense 9 and nutrient-poor foods and beverages (6,7). 10

Research assessing the influence of dietary factors on child obesity has been equivocal^(8,9). 11 12 Differences in study methodsmay partly explain these inconsistencies. For instance, alarge variety 13 of measureshave been used to define dietary intakes, with studies focusing on specific nutrients or 14 specific foods, and others addressing the diet as a whole, through dietary patterns or eating behaviours^(8,9). Differential misreporting of dietary intakes by overweight (OW) statusmay attenuate 15 or even reverse the associations observed⁽¹⁰⁾, and residual confounding may be important where 16 17 analyses have not accounted for major covariates such as physical activity and sedentary behaviour^(8,9). It is also likely that the influence of diet on the development of adiposity is 18 influenced by BMI category^(8,11,12). Mostexisting studies linking dietary intakes and child obesity are 19 limited by their cross-sectional designs^(8,9), while even in prospective studies, a true longitudinal 20 perspective has frequently been lacking with one or other of diet and obesity measured only at a 21 single time point⁽¹³⁻¹⁷⁾. Studies which have examined the dynamic relationship between changing 22 dietary intakes and adiposityin children are scarce⁽¹⁸⁻²¹⁾. Their importance is obvious from the 23 24 substantial dietarychanges that occur across childhood with both physiological development and the 25 growing independence from parents $^{(10,22)}$.

26 Dietary pattern analysis has been increasingly used over the past decade to describe thetotal diet, accounting for the interactions between dietary components^(23,24). The methods most often used 27 include empirical *a posterior* statistical approaches such as cluster and factor analyses, and thea 28 29 priori dietary index approach. The latter ranks various dietary items reflecting current nutrition 30 guidelines, and provides a score of overall diet quality. This construct is useful to assess 31 longitudinal changes in diet quality as it is based upon external criteria. Diet quality indexes (DOI) 32 have been rarely used to assess relationships between diet and obesity in children, with all studies having been cross-sectional, andall showing null or weak inverse associations⁽²⁵⁾. 33

34 This study addressed diet as a whole and aimedto test the hypothesis that a positive change in 35 diet quality is associated withfavourablechanges in BMI z-scoresin schoolchildren from low socioeconomic backgrounds. We also assessed the hypothesis that this effect would be modified by BMI
 category at baseline. These objectives wereinvestigated using longitudinal data and accounting for
 child physical activity, sedentary behaviour and socio-economic status (withmaternal education
 level used as a proxy), the latter being potential covariates as previously described.

5

6 MATERIALS AND METHODS

7 Subjects

8 This study utilized data from the Resilience for Eating and Activity Despite Inequality (READI) 9 study, athree-year longitudinal cohort study with data collected at two time points (T1, 2007-08 / T2, 2010-11) examining resilience to obesity in 4,349 socio-economically disadvantaged women 10 11 (18-45 years at baseline) and 684 children (5-12 years at baseline). Methods -including sample selection-have been described in details elsewhere⁽²⁶⁾. Briefly, 40 urban and 40 rural areas(suburbs) 12 from the bottom third of the Australian Bureau of Statistics' 2001 Socioeconomic Indexes for 13 14 Areas⁽²⁷⁾were randomly selected in Victoria. Within each of these 80 areas, the Australian electoral 15 roll was used to randomly select 150 women aged 18-45. Of the 11,940 women selected, 4,938(41%) responded to a postal invitation to complete written questionnaires. Data were excluded 16 17 for 589 respondents (571 who had moved from the sampled suburb before survey completion, three who completed the survey but were not the intended participants, two who withdrew their data after 18 19 completing the survey, and 13 who were aged under 17 or over 46 years). Of the 4,349 eligible 20 respondents, those with a child aged 5-12 years (n=1,457) were invited to complete a questionnaire 21 about their child, with 771 (53%) agreeing to child participating and 684(89%) de facto completing 22 questionnaires regarding their child in this age group. We excluded 317 (46%) children lost to 23 follow-up and 151 who presented missing data for any of the variables included in the main analysis 24 (BMI, diet, physical activity, sedentary behaviour, and maternal education level), yielding a final 25 sample of 216 children. This flow chart is illustrated in Figure 1. This study was conducted 26 according to the guidelines laid down in the Declaration of Helsinki and all procedures involving 27 human subjects were approved by the Deakin University Human Research Ethics Committee (EC 28 91-2006). Written informed consent was obtained from all subjects.

29

30 Measures

31 Women completed two questionnaires at both baseline (T1) and follow-up (T2), one concerning

32 themother; the other concerning their child. These included questions on children's diet and

33 sedentary behaviour; maternal weight and height; and a range of socio-demographic and socio-

- 34 economic factors.
- 35 BMI status

Children's height (to the nearest 0.1 cm) and weight (to the nearest 0.1 kg) were measured by
trained research assistants at both T1 and T2, without shoes and in light clothing, using a portable
stadiometer and digital scales. Both BMI (kg/m²) and age- and sex-adjusted BMI z-scores (zBMI)
were calculated, the latter based on the Centers for Disease Control reference population⁽²⁸⁾.
Additionally, child BMI category (underweight, healthy weight, overweight or obese) was defined
using cut-off points established by Cole *et al.*⁽²⁹⁾.Mothers' self-reported height and weight were also
used to calculate BMI (kg/m²).

8 A priori derived dietary quality index (DQI)

Children's food intake was measured both at T1 and T2 using a questionnaire based on several 9 validated short questions⁽³⁰⁻³⁵⁾. Mothers reported how often in the past month their child had 10 consumed 17 types of foods/drinks along with 9 answer alternatives, i.e.:"Never or less than 11 once/month", "1-3 times/month", "Once/week", "2-4 times/week", "5-6 times/week", "Once a 12 day", "2-3 times a day", "4-5 times a day" and "6 or more times a day"). The questionnaire also 13 14 included 13 additional questions relating to the type and amount of milk usually consumed (number 15 of serves per day); the type and amount of bread usually consumed (number of slices per day); and the usual frequency of consumption for other items, i.e. vegetables (excluding potatoes, hot chips 16 17 and fried potatoes), hot chips, potatoes, fruit, trimmed fat, flavoured milk, water, and fruit juice. These data were then converted into daily equivalent frequencies. When <10% of these questions 18 19 had missing values (22 children concerned), missing values for consumption frequency were set to zero and missing food type was set to 'unknown', as is standard practice⁽³⁶⁾. 20

21 Children's diet quality was assessed both at baseline (DQI_{T1}) and follow-up (DQI_{T2}) using a diet quality index⁽³⁷⁻³⁹⁾reflecting adherence to the 2003 Australian Dietary Guidelines for Children and 22 Adolescents⁽⁴⁰⁾based on an indexvalidated in Australian children and adolescents⁽³⁷⁻³⁹⁾. The diet 23 24 quality index was slightly modified, as a measure relating to dietary variety could not be assessed 25 with the FFQ used in this study. The impact on the validity is however likely to be minor given the 26 small absolute differences in this component of the score compared to other indicators that was seen in our previous work⁽³⁹⁾. The index included 10 components (Table 1) with age and sex-specific 27 cut-offs based on the Australian Guide to Healthy Eating⁽⁴¹⁾. Points were awarded (0-10) for each 28 29 component met, with 10 indicating the participant was meeting the recommendation or had an 30 optimal intake. Participants with intakes between the minimum and maximum amount were 31 assigned scores proportionately. Points were summed to give an overall dietary score ranging from 32 0-100, with a higher score indicating higher compliance with the dietary guidelines. 33 Change in diet quality between baseline and follow-up was calculated as DQI_{T2-T1}=DQI_{T2}-DQI_{T1},

and this continuous variable was then categorized in three groups. Those participants with a
 negative change in diet quality were split into two categories based on the median, i.e. larger

- 1 negative change (\leq 7.7) and smallernegative change (- 7.7 to 0). Those participants with a positive 2 change in diet quality formed the third group. The categoriesdefined in this variable corresponded 3 approximately to tertiles, with 34.5% of children showing a large negative change in DQI_{T2-T1}, 4 34.5% a smaller negative change; and 31.0% a positive change.
- 5 *Moderate and vigorous physical activity (MVPA) time*

6 Children's physical activity was objectively measured at T1 using uniaxial accelerometers (Actigraph Model AM7164-2.2C, Pensacola, Florida, USA). They were set to record movement 7 8 counts in 1-minute epochs. Children were instructed in the use of the accelerometer at school by 9 trained data collectors; and asked to wear the accelerometer for an eight-day period during waking hours, except during bathing and aquatic activities. This method has been shown to be a valid 10 objective measure of children's physical activity^(42,43). Non-wearing periods (where 20-minutes or 11 more of consecutive zeros were recorded) were removed from the total possible wear time. For 12 children with valid data, i.e. at least eight hours⁽⁴⁴⁾ and no more than 18 hours (to exclude children 13 who wore the device to bed) of wear time for at least three weekdays and one weekend day, average 14 time (min/day) spent in physical activity and sedentary pursuits was calculated. Using an 15 established age-adjusted regression equation⁽⁴⁵⁾, MVPA was calculated as the time during which >4 16 17 metabolic equivalent units was achieved between 6 am and 9 pm. This continuous variable was categorized in tertiles. Therefore three levels were defined (min/day), i.e. 'low'(9.3 to 59.7), 18 19 'intermediate' (59.7 to 95.6), and 'high' (95.6 to 255.6).

20 Screen time

21 In the T1 questionnaire, mothers reported the usual time their child spent watching

22 television/videos/DVD's; Playstation©/Nintendo©/computer games; and computer/Internet

23 (excluding games) on both weekdays and weekend days. Total screen time (a proxy for sedentary

behaviour) was calculated for both weekdays and weekend days and truncated at 40 hrs(5 days X 8

hrs per day) and 32hrs(2 days X 16hrs per day), respectively. Average screen time per day was then

26 calculated and categorized in tertiles. Three levels were therefore defined (h/day), i.e. 'low' (0 to

- 27 1.6), 'intermediate' (1.6 to 2.6), and 'high' (2.6 to 9.3).
- 28 Socio-demographic and socio-economic factors

Socio-demographic variables included children's age and sex; and mothers' age, marital status,
country of birth, employment status and education level. Maternal education level was defined in
three categories: low (no formal qualifications/Year 10 or equivalent), intermediate (Year 12 or
equivalent, trade, apprenticeship, certificate or diploma) or high (university undergraduate or
postgraduate degree), and used as a proxy of socio-economic status.

34

35 Statistical analyses

1 Two-sided Chi square and Fisher's exact tests (categorical variables), and linear regression analyses 2 (continuous variables) were used to compare children's characteristics at T1 according to their BMI 3 category, i.e. non-overweight (non-OW, including underweight) vs. overweight (OW, including 4 obese). Multivariable regression analysis was performed to investigate the longitudinal relationships 5 between change in diet quality (DQI_{T2-T1}) and change in zBMI, adjusting for child's age, gender and 6 DQI_{T1}(Model 1). Change scores for zBMI were not calculated, but rather change in zBMI was assessed in models where $zBMI_{t2}$ was the outcome and $zBMI_{t1}$ was included as a covariate⁽⁴⁶⁾. In 7 8 Model 2, we also controlled for child's MVPA, accelerometer wearing time, screen timeand 9 maternal education (all measured at T1). To assess moderation by zBMI at baseline, an additional 10 multivariable model contained terms for zBMI_{T1}, DQI_{T2-T1} and a term for the interaction between 11 these two variables. For the purpose of hypothesis generation, stratified analyses by OW status (i.e. 12 non-OW_{T1} and OW_{T1}) were conducted regardless of whether interaction tests were significant as such tests are highly sensitive to both sample size and sample distribution⁽⁴⁷⁾. Adjusted parameter 13 estimates and 95% confidence intervals were calculated. Clustering by suburb was accounted for in 14 15 all models. The significance level was set at 0.05. Analyses were computed on Stata software 16 (release 10; StataCorpLP, College Station, TX, USA).

17

18 **RESULTS**

19 Sample characteristics

20 At baseline, none of the children were underweight, 77.3% (72.5; 82.1) were in the healthy BMI 21 category, 16.2% (11.9; 20.5) were overweight (but not obese) and 6.5% (3.3; 9.7) were obese. 22 Further characteristics of the sample are shown in Table 2. Mothers of children OW at baseline had 23 higher BMIs and were more likely to be obese than mothers of children with healthy BMI. The 24 other maternal socio-demographic characteristics did not differ significantly between these two 25 groups. Overweight children at T1 were slightly older; spent more time on screen sedentary 26 behaviours (30 min on average); and devoted less time to MVPA than their non-OW counterparts. Eighty percent of the OW children at T1 were still OW at T2. Mean DQI scores were low at 27 28 baseline and change in DQI between T1 and T2 was overall negative, without significant 29 differences between OW and non-OW children.

Previously, study participants at baseline have been found to be more likely to be Australian born (89 vs. 73%), to be married or living as married (65 vs. 49%), and less likely to be in a fulltime employment (37 vs. 58%), as compared with the general population of women living in the 80 neighbourhoods (2006 census)⁽²⁶⁾. In addition, compared to the children included in the analytic sample, children excluded due to loss to follow-up (n=317) or missing data(n=151) came from families where on average mothers were significantly slightly younger (38.1 years[SD 5.3]

- 1 compared with 39.2 years[SD 4.9]); and less likely to be married/or in a de-facto relationship
- 2 (76.5% compared with 87.4%). Children excluded from the analyses were significantly slightly
- 3 older (9.5 years[SD 2.2] compared with 9.1 years [SD 2.1]); had higher zBMIs at T1 (0.62[SD
- 4 0.92]compared with 0.35 [SD 0.92]); and higher rates of OW at T1 (33.0% compared with 24.1%).
 5 *Relationships between change in z-BMI and change in diet quality*
- 6 In the whole sample (n=216), neither diet quality at baseline (DQI_{T1}) nor change in diet quality
- 7 (DQI_{T2-T1}) wassignificantly associated with change in zBMI after accounting for potential
- 8 confounders (Table 3). In stratified analyses, an inverse relationship between improvement in diet
- 9 quality and zBMI at T2was observed in the group identified as being OW at baseline after
- 10 accounting for zBMI_{T1}(Model 1, P-trend=0.078), while this longitudinal association was not
- 11 observed in non-OW children. This association was stronger after further adjustment for MVPA,
- 12 screen sedentary behaviour and maternal education (Model 2, P-trend=0.035).
- 13

14 **DISCUSSION**

15 This study supports the hypothesis of an association betweenimprovementin diet quality and 16 corresponding decrease in zBMIover three years, but onlyin schoolchildren overweight at baseline. 17 To our knowledge, no previous study in children has considered the effect of change in total diet 18 quality on zBMIchange, accountingfor physical activity, sedentary behaviour and maternal 19 education.

20 While we did not observe an overall relation between change in diet quality and change in zBMI, 21 our findings suggest that thislongitudinal association may differ according to the child's BMI 22 category at baseline. Despite the test for moderation failing to reach statistical significance -which may be due to a relatively low sample size for this type of test⁽⁴⁷⁾, stratified analysis according to 23 24 OW status did suggest that among children overweight at baseline, a relationship between 25 improvement in diet quality and reducedzBMI was evident. Similar conclusions were drawn from two other studies, one performed in women⁽⁴⁸⁾; the other in children⁽²⁰⁾. Both of those studies 26 also investigated the relation between change in diet (assessed using a posterior factor analysis) and 27 change in BMI prospectively. Newby *et al.*⁽⁴⁸⁾observed a stronger association between an 28 29 improvement in diet (i.e. positive changes in the "Healthy pattern" scores) and a reduction in adiposityamongst OW and obese women in comparison with their non-OW counterparts. Likewise, 30 the study by Oellingrathet al.⁽²⁰⁾ suggested that Norwegian schoolchildren scoring high in a "varied 31 32 Norwegian" eating pattern over time had lower risk of remaining overweight than didchildren with 33 declining adherence to this pattern. The latter was characterised by food items typical of a 34 traditional Norwegian diet (such as fish and meat for dinner, brown bread, regular white or brown 35 cheese, lean meat, fish spread, and fruit and vegetables), close to what is recommended by the

health authorities. The moderation of the relationship between diet and zBMIby baseline OW status
observed here may be due to metabolic differences. Excessive adiposity is often associated with
greater insulin resistance and greater vulnerability to weight gain upon exposure to a diet of low
quality (e.g. rich in sugars and fats)^(11,12). In the group of overweight children in particular, it may
be that maintaining or improving diet quality may help to prevent or reduce zBMI.

6 While over the past decade several indices measuring compliance with dietary guidelines have been developed foradults^(49,50), fewer have been developed for children⁽²⁵⁾. Few studies, all of which 7 8 were cross-sectional, examined diet quality and child obesity, showing null or weak inverse associations⁽²⁵⁾. Assessing diet quality according to established guidelines is useful for measuring 9 10 changes over time, and is a technique that leads to greater comparability between studies. In fact, 11 contrary to *a posteriori* statistical approaches that are datadriven, such as cluster and factor 12 analyses, the dietary index approach is an *a priori* technique based upon external nutritional criteria. 13 Provided that variables are available in a given study, the construction of this DQI score is thus 14 transposable to any other dataset. Our prospective findings confirmed thatdiet quality decreases with age, as suggested in previous cross-sectional studiesspanning a range of age groups^(25,39). The 15 DQI used in the current study has the advantage of having been based on Australian dietary 16 guidelines andbased on an index previously validated in a national sample of Australian children⁽³⁹⁾. 17 Higher scores in this index were shown to reflect diets of higher nutrient density and both lower 18 19 energy intake and energy density. This DQI is therefore easily translatable into public health 20 messages relating to the whole diet.

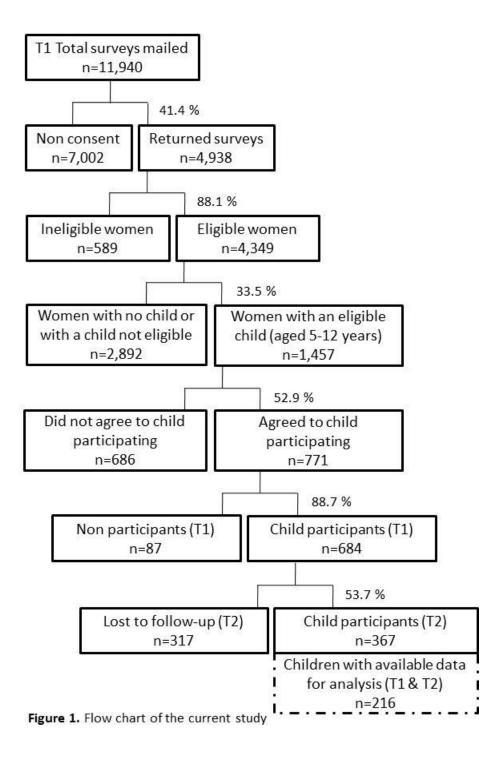
21 It is important to recognize the limitations of this study. The modest participation rate means that 22 the final sample should not be considered representative of children living in the sampled areas, 23 reflecting the difficulty of both reaching and following-up socio-economically disadvantaged 24 groups. We also acknowledge that parents might not be aware of what children eat outside the home 25 and that differential misreporting of dietary intake by OW status is possible⁽¹⁰⁾, both leading to 26 potential over-reporting of healthy products and underreporting of unhealthy foods or beverages due 27 to social desirability. Given that the reported diets are still poor this potential bias is however likely 28 to be limited. In addition, any bias would be expected to affect the same children at both points in 29 time⁽⁵¹⁾, and therefore have little influence on our prospective findings. Longitudinal assessment of screen time and physical activity was not undertaken due to the additional missing values that 30 would have resulted. Although screen time has been shown to track throughout childhood^(52,53), 31 32 residual confounding involving changes in MVPA and changes in screen timecannot be excluded. 33 Objective measurement of anthropometric variables and physical activity isan important strength 34 of our study. From an analytical point of view, showing that change in diet quality is associated with

measurement at only a single point in time. Adjusting for patterns of sedentariness and physical
 activity is a further analytical strength.

A novel aspect of the current study is also the recruitment of women and children living in socioeconomically disadvantaged areas and, as such, more likely to be at high risk of poor diet and obesity. While our findings suggest that a relationship exists between change in diet quality and change in BMI in OW and obese children, further studies among a larger sample of children and incorporating more sensitive measurements of fat mass and body composition would be valuable to address our hypothesis more comprehensively.

9

10 CONCLUSION


Investigation of the dynamic relationship between diet andzBMIthroughout childhood provides a valuable perspective on the way that diet and zBMIchange together over time. Our findings support the hypothesis that improvement in diet quality is associated with a concurrent improvement in zBMI, however only among already OW children. The identification of modifiable behaviours such as diet quality that affect zBMI longitudinally is valuable to inform future weight gain prevention interventions in vulnerable groups.

17

18 Acknowledgments

19 S. L.led the study, conducted the statistical analysis, drafted the manuscript, and had primary 20 responsibility for final content. S.A. M., A.J. C., D. C., K.J. C., V.J. C., and K. B.contributed to the 21 analytical approach, interpretation of results, and revised each draft. D. C., V.J. C. and K. 22 B.designed and led the READI study. All authors have read and approved the final manuscript. 23 Support: READI is funded by a National Health and Medical Research Council Strategic Award, 24 ID 374241. SL was supported by a Deakin University Alfred Deakin Postdoctoral Fellowship. SAM 25 was supported by an Australian Research Council Future Fellowship (FT100100581). AJC, VJC 26 and KB were supported by fellowships from the Australian National Health and Medical Research 27 Council.

28 **Conflicts of interest:** None.

LITERATURE CITED

1. Ogden CL& Carroll MD, Curtin LR, *et al.* (2010) Prevalence of high body mass index in US children and adolescents, 2007-2008. *JAMA***303**, 242-249.

2. McLaren L (2007) Socioeconomic status and obesity. *Epidemiol Rev29*, 29-48.

3. Shrewsbury V & Wardle J (2008) Socioeconomic status and adiposity in childhood: a systematic review of cross-sectional studies 1990-2005. *Obesity***16**, 275-284.

4. Ball K& Crawford D (2010) The role of socio-cultural factors in obesity epidemic. In *Obesity Epidemiology. From Aetiology To Public Health*, 2nd ed.[D Crawford, RW Jeffery, K Ball and J Brug, editors]. New York: Oxford University Press.

5. Linde JA& Jeffery RW (2010) Evolving environmental factors in the obesity epidemic. In *Obesity Epidemiology. From Aetiology To Public Health*, 2nd ed. [D Crawford, RW Jeffery, K Ball and J Brug, editors]. New York: Oxford University Press.

6. Darmon N & Drewnowski A (2008) Does social class predict diet quality? *Am J Clin Nutr***87**, 1107-1117.

7. Cameron AJ, Ball K, Pearson N, Lioret S, Crawford D, Campbell A, Hesketh K, McNaughton SA (2012) Socio-economic variation in diet and activity-related behaviors of Australian children and adolescents aged 2-16 years. *Pediatr Obes.* **7**, 329-42.

8. Newby PK (2007) Are dietary intakes and eating behaviors related to childhood obesity? A comprehensive review of the evidence. *J Law Med Ethics***35**, 35-60.

9. Mesas AE, Munoz-Pareja M, Lopez-Garcia E, *et al.* (2012) Selected eating behaviours and excess body weight: a systematic review. *Obes Rev***13**, 106-135.

10. Livingstone MB& Robson PJ (2000) Measurement of dietary intake in children. *Proc Nutr Soc***59**, 279-293.

11. Leibel RL, Rosenbaum M& Hirsch J (1995) Changes in energy expenditure resulting from altered body weight. *N Engl J Med***332**, 621-628.

12. Flock MR, Green MH & Kris-Etherton PM (2011) Effects of adiposity on plasma lipid response to reductions in dietary saturated fatty acids and cholesterol. *Adv Nutr***2**, 261-274.

13. Maffeis C, Talamini G& Tato L (1998)Influence of diet, physical activity and parents' obesity on children's adiposity: a four-year longitudinal study. *Int J Obes Relat Metab Disord***22**, 758-764.

14. Berkey CS, Rockett HR, Field AE, *et al.* (2000)Activity, dietary intake, and weight changes in a longitudinal study of preadolescent and adolescent boys and girls. *Pediatrics***105**, E56.

15. Newby PK, Peterson KE, Berkey CS, *et al.* (2004) Beverage consumption is not associated with changes in weight and body mass index among low-income preschool children in North Dakota. *J Am Diet Assoc***104**, 1086-1094.

16. Reilly JJ, Armstrong J, Dorosty AR, et al.(2005) Early life risk factors for obesity in childhood: cohort study. *BMJ***330**, 1357. [Epub 2005 May 20]

17. Johnson L, Mander AP, Jones LR, *et al.* (2008) Energy-dense, low-fiber, high-fat dietary pattern is associated with increased fatness in childhood. *Am J Clin Nutr***87**, 846-854.

18. Ludwig DS, Peterson KE& Gortmaker SL (2001) Relation between consumption of sugarsweetened drinks and childhood obesity: a prospective, observational analysis. *Lancet***357**, 505-508.

19. Berkey CS, Rockett HR, Field AE, *et al.* (2004) Sugar-added beverages and adolescent weight change. *Obes Res***12**, 778-788.

20. Oellingrath IM, Svendsen MV& Brantsaeter AL (2011) Tracking of eating patterns and overweight - a follow-up study of Norwegian schoolchildren from middle childhood to early adolescence. *Nutr J*10, 106.

21. Ambrosini GL, Emmett PM, Northstone K, *et al.* (2012) Identification of a dietary pattern prospectively associated with increased adiposity during childhood and adolescence. *Int J Obes* (*Lond*)**36**, 1299-1305.

22. Savage JS, Fisher JO & Birch LL (2007) Parental influence on eating behavior: conception to adolescence. *J Law Med Ethics***35**, 22-34.

23. Newby PK& Tucker KL (2004) Empirically derived eating patterns using factor or cluster analysis: a review. *Nutr Rev***62**, 177-203.

McNaughton SA (2011) Understanding the eating behaviors of adolescents: application of dietary patterns methodology to behavioral nutrition research. *J Am Diet Assoc*111, 226-229.
 Lazarou C & Newby PK (2011) Use of dietary indexes among children in developed

countries. Adv Nutr2, 295-303.

26. Ball K, Cleland V, Salmon J, *et al.* (2012) Cohort Profile: The Resilience for Eating and Activity Despite Inequality (READI) study. *Int J Epidemiol* Dec 18. [Epub ahead of print]

27. Australian Bureau of Statistics (2003)Information paper. Census of population and housing. Socio-Economic Indexes for Areas, Australia, 2001(ABS Catalogue no. 2039.0.). Canberra: ABS.

28. Kuczmarski RJ, Ogden CL, Grummer-Strawn LM, *et al.* (2000) CDC growth charts: United States. Advance data from vital and health statistics, no. 314. Hyattsville (MD): National Center for Health Statistics.

29. Cole TJ, Bellizzi MC, Flegal KM, *et al.* (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. *Br Med J***320**, 1240-1243.

30. Marks GB, Rutishauser IHE, Webb K, *et al.* (2001) Key Food and Nutrition Data for Australia 1990-1999. Canberra: Commonwealth Dept of Health and Age Care.

31. Riley M, Rutishauser IHE& Webb K (2001) Comparison of Short Questions with Weighed Dietary Records. Canberra: Australian Food and Nutrition Monitoring Unit.

32. McLennan W & Podger A. National Nutrition Survey Users' Guide Australian Bureau of Statistics Catalogue No. 4801.0. http://www.abs.gov.au/ausstats/abs@.nsf/mf/4801.0. (Accessed on 16th July 2013)

33. Rutishauser IHE, Webb K, Abraham B, *et al.* (2001). Evaluation of Short Dietary Questions from the 1995 National Nutrition Survey. National Food and Nutrition Monitoring and Surveillance Project. Canberra: Commonwealth Department of Health and Aged Care.

34. Sanigorski AM, Bell AC& Swinburn BA. Association of key foods and beverages with obesity in Australian schoolchildren. *Public Health Nutr***10**, 152-157.

35. Hodge A, Patterson AJ, Brown WJ, *et al.* (2000) The Anti Cancer Council of Victoria FFQ: relative validity of nutrient intakes compared with weighed food records in young to middle-aged women in a study of iron supplementation. *Aust N Z J Public Health***24**, 576-583.

36. Willett W (eds). Nutritional epidemiology. New York, Oxford: Oxford University Press;1998.

37. McNaughton SA, Ball K, Crawford D, *et al.* (2008) An index of diet and eating patterns is a valid measure of diet quality in an Australian population. *J Nutr***138**, 86-93.

38. McNaughton SA, Dunstan DW, Ball K, *et al.* (2009) Dietary quality is associated with diabetes and cardio-metabolic risk factors. *J Nutr***139**, 734-742.

39. Golley RK, Hendrie GA& McNaughton SA (2011) Scores on the dietary guideline index for children and adolescents are associated with nutrient intake and socio-economic position but not adiposity. *J Nutr***141**, 1340-1347.

40. National Health and Medical Research Council (2003) Dietary Guidelines for Children and Adolescents. Canberra: Commonwealth of Australia.

41. Kellett E, Smith AS& Schmerlaib Y (1998) Australian guide to healthy eating. Canberra: Commonwealth Department of Health and Family Services.

42. Gordon-Larsen P, McMurray RG& Popkin BM (2000) Determinants of adolescent physical activity and inactivity patterns. Pediatrics, **105**:E83.

43. Trost SG, Ward DS, Moorehead SM, *et al.* (1998) Validity of the computer science and applications (CSA) activity monitor in children. *Med Sci Sports Exerc***30**, 629-633.

44. Rowlands AV, Pilgrim EL& Eston RG (2008) Patterns of habitual activity across weekdays and weekend days in 9-11-year-old children. *Prev Med***46**, 317-324.

45. Trost SG, Pate RR, Sallis JF, *et al.* (2002) Age and gender differences in objectively measured physical activity in youth. *Med Sci Sports Exerc***34**, 350-355.

46. Twisk JWR (2003) Applied Longitudinal Data Analysis for Epidemiology. A practical Guide. Cambridge: Cambridge University press.

47. Whisman MA & McClelland GH (2005) Designing, testing, and interpreting interactions and moderator effects in family research. *J Fam Psychol***19**, 111-120.

48. Newby PK, Weismayer C, Akesson A, *et al.*(2006) Longitudinal changes in food patterns predict changes in weight and body mass index and the effects are greatest in obese women. *J Nutr***136**, 2580-2587.

49. Kant AK (2004) Dietary patterns and health outcomes. *J Am Diet Assoc***104**, 615-635.

50. Waijers PM, Feskens EJ& Ocke MC (2007) A critical review of predefined diet quality scores. *Br J Nutr***97**, 219-231.

51. Black AE & Cole TJ (2001) Biased over- or under-reporting is characteristic of individuals whether over time or by different assessment methods. *J Am Diet Assoc***101**, 70-80.

52. Biddle SJ, Pearson N, Ross GM, et al. (2010) Tracking of sedentary behaviours of young people: a systematic review. *Prev Med***51**, 345-351.

53. Pearson N, Salmon J, Campbell K, *et al.* (2011) Tracking of children's body-mass index, television viewing and dietary intake over five-years. *Prev Med***53**, 268-270.

Distant Cuidaling Index indicator and	Criteria for maximum score (10) ¹			Criteria for	
Dietary Guideline Index indicator and description	4-7yrs	8—11yrs	12-18yrs	minimum score (0)*	
1. Fruit: Serves of fruit per day.	1	1	3	0	
2. Vegetables: Serves of vegetables and legumes per day.	2	3	4	0	
3. Total Cereals: Frequency of consumption of breads and cereals per day.	5	6	5	0	
4. Wholegrain cereals: Type of bread consumed.	Wholegrain, wholemeal bread			All other bread types	
5. Meat and meat alternatives: Frequency of consumption of lean meats and alternatives per day.	0.5	1	1	0	
6. Total dairy foods: Frequency of consumption of dairy products per day.	2	2	4	0	
7. Low fat dairy: Type of milk usually consumed.	Low fat milk			Whole milk	
8. Fluids: Frequency of consumption of water. †	5	6	5.5	0	
9. Saturated fat intake: Trimming of fat from meat.	Usually			Never or rarely	
10. Extra Foods: Frequency of consumption of "extra foods" per day. ‡	<1	<1	<1	≥1	

Table 1. Components of the dietary guideline index

^{*}Based on recommendations from the Australian Guide to Healthy Eating. Servings unless otherwise indicated. Participants with intakes between the maximum and minimum amount were assigned scores proportionately. The diet quality score was adapted to reflect obesity-risk behaviours and to account for the fact that an indicator of dietary variety could not calculated based on the FFQ used in this study.

†Age groups for recommendation for fluids are as follows: 4-8yrs, 9-13 years, >14 years.

‡Guidelines concerning "extra foods" are presented as an upper limit. Extra foods are defined as potatoes cooked in fat; crisps; confectioneries; cakes and sweet biscuits; savoury pastries; fast-foods; pizzas; meat products; flavoured milks; soft drinks; and fruit juices.

Table 2. Characteristics of the sample

	All	Stratification by a at T1		
Variables		Non-OW	OW	P- value*
n	216	167	49	
MOTHERS (at T1)				
Age, mean (SD)	39.2 (4.9)	39.1 (4.7)	39.3 (5.4)	0.86
Country of birth, % (CI 95%)				
Australia	92.6 (88.6; 96.6)	92.2 (88.3; 96.2)	93.9 (86.9; 100.0)	
Other	7.4 (3.4; 11.4)	7.8 (3.8; 11.7)	6.1 (0; 13.1)	1.00
Education level, % (CI 95%)				
Low	24.5 (18.3; 30.7)	22.2 (15.8; 28.5)	32.7 (15.6; 49.7)	
Intermediate	44.9 (39.1; 50.7)	43.7 (36.2; 51.2)	49.0 (33.8; 64.1)	
High	30.6 (23.3; 37.9)	34.1 (26.2; 42.1)	18.4 (7.8; 28.9)	0.08
Employment status, % (CI 95%)				
Working full-time	21.0 (15.1; 27.0)	20.0 (13.5; 26.5)	24.5 (12.2; 36.7)	
Working part-time	44.9 (38.8; 50.9)	46.1 (39.1; 53.0)	40.8 (27.0; 54.6)	
Not currently employed	34.1 (28.5; 39.7)	33.9 (27.2; 40.7)	34.7 (22.1; 47.3)	0.74
Marital status, % (CI 95%)				
Married/de facto relationship	87.4 (83.0; 91.8)	89.2 (85.2; 93.1)	81.6 (70.7; 92.6)	
Separated/divorced/widowed	8.8 (5.1; 12.6)	7.8 (4.3; 11.4)	12.2 (3.7; 20.8)	
Never married	3.7 (1.0; 6.5)	3.0 (0.4; 5.6)	6.1 (0; 12.6)	0.32
Number of siblings, % (CI 95%)				
None	10.3 (5.9; 14.7)	9.1 (4.8; 13.4)	14.3 (4.8; 23.7)	
One	47.2 (41.1; 53.3)	50.3 (43.4; 57.2)	36.7 (23.5; 50.0)	
Two or more	42.5 (36.9; 48.2)	40.6 (34.1; 47.1)	49.0 (34.9; 63.0)	0.21
BMI (kg/m2), mean (SD)	26.3 (6.0)	25.1 (5.0)	30.3 (7.4)	< 0.0001
Categorical BMI, % (CI 95%)				
Non-OW	52.4 (46.4; 58.3)	59.9 (53.2; 66.6)	27.1 (15.8; 38.4)	
OW	27.1 (20.1; 34.2)	27.2 (19.7; 34.6)	27.1 (14.2; 40.0)	
Obese	20.5 (14.3; 26.6)	13.0 (7.2; 18.7)	45.8 (31.6; 60.1)	< 0.0001
CHILDREN				
Age at T1, mean (SD)	9.1 (2.1)	8.9 (2.2)	9.8 (1.8)	0.002
Sex, % (CI 95%)				
Boys	44.0 (37.3; 50.6)	44.9 (37.4; 52.4)	40.8 (26.5; 55.1)	
Girls	56.0 (49.4; 62.7)	55.1 (47.6; 62.6)	59.2 (44.9; 73.5)	0.61
Screen time (h/day) at T1, mean (SD)	2.3 (1.4)	2.2 (1.4)	2.7 (1.3)	0.049
Average time (min/d) devoted to MVPA at T1, mean (SD)	81.6 (39.7)	85.5 (41.7)	68.2 (28.4)	< 0.0001
Accelerometer wearing time (min/d) at T1, mean (SD)	727.6 (74.3)	719.3 (70.2)	755.8 (81.5)	0.004
zBMI at T1, mean (SD)	0.35 (0.92)	-0.02 (0.69)	1.59 (0.34)	< 0.0001

	All	Stratification by o at T1	child OW status	
Variables		Non-OW	OW	P- value*
Categorical BMI at T1, % (CI 95%)				
Healthy weight (including underweight)	77.3 (72.5; 82.1)			
OW (including obesity)	22.7 (17.9; 27.5)			
Obese	6.5 (3.3; 9.7)			
zBMI at T2, mean (SD)	0.33 (0.94)	-0.001 (0.78)	1.46 (0.46)	< 0.0001
Categorical BMI at T2, % (CI 95%)				
Healthy weight (including underweight)	75.9 (70.1; 81.7)	92.2 (87.6; 96.8)	20.4 (10.0; 30.8)	
OW (including obese)	24.1 (18.3; 29.9)	7.8 (3.2; 12.4)	79.6 (69.2; 90.0)	< 0.0001
Obese	5.6 (2.6; 8.5)	0	24.5 (12.9; 36.0)	
Diet quality at T1 (DQI _{T1}), mean (SD) †	64.2 (10.3)	64.7 (10.6)	62.5 (9.0)	0.16
Diet quality at T2 (DQI _{T2}), mean (SD):	59.7 (12.4)	59.8 (12.5)	59.4 (12.0)	0.84
Change in diet quality (DQI _{T2-T1}), mean (SD)§	-4.5 (9.2)	-4.9 (8.7)	-3.1 (10.9)	0.35

^{*}Two-sided Chi square and Fisher's exact tests (categorical variables), and linear regression analyses (continuous variables) were used to compare children's characteristics at T1 and T2 according to their weight status, i.e. non-overweight (non-OW, including underweight) *vs.* overweight (OW, including obese). †min=36.9, max=92.6.

‡min=31.0, max=94.0.

. §min=-33.1, max=25.6.

BMI, Body Mass Index; DQI, Diet Quality Index; MVPA, Moderate and Vigorous Physical Activity; OW, Overweight; T1, baseline; T2, follow-up; zBMI, BMI z-scores.

	Model 1			Model 2		
		Stratification by OW status at T1			Stratification by OW status at T1	
	All (n=216)	Non-OW (n=167)	OW (n=49)	All (n=216)	Non-OW (n=167)	OW (n=49)
Change in diet quality						
(DQI _{T2-T1})						
Larger Negative change <- 7.7	0	0	0	0	0	0
Smaller Negative change]- 7.7; 0]	-0.09 (-0.24; 0.07)	-0.07 (-0.27; 0.13)	-0.15 (-0.33; 0.03)	-0.09 (-0.24; 0.07)	-0.03 (-0.23; 0.16)	-0.25 (-0.47; -0.03)
Positive change	-0.09 (-0.27; 0.08)	-0.08 (-0.32; 0.15)	-0.14 (-0.30; 0.02)	-0.10 (-0.27; 0.07)	-0.07 (-0.29; 0.15)	-0.22 (-0.44; -0.01)
P-trend	0.31	0.49	0.078	0.26	0.52	0.035
Diet quality at T1 (DQI _{T1})	-0.0004 (-0.007; 0.006)	-0.0009 (-0.01; 0.007)	0.002 (-0.01; 0.01)	0.004 (-0.003; 0.01)	0.005 (-0.003; 0.01)	0.006 (-0.006; 0.02)
P-value	0.90	0.82	0.78	0.28	0.22	0.31
zBMI at T1 (zBMI _{T1}) P-value	0.91 (0.83; 0.98) <0.0001	0.93 (0.82; 1.04) 0.0001	1.05 (0.82; 1.28) <0.0001	0.88 (0.82; 0.95) <0.0001	0.90 (0.80; 1.01) <0.0001	1.10 (0.86; 1.33) <0.0001
Gender						
Male	0	0	0	0	0	0
Female	0.10 (-0.03; 0.24)	0.10 (-0.07; 0.27)	0.11 (-0.03; 0.25)	0.14 (-0.03; 0.31)	0.14 (-0.07; 0.35)	0.21 (-0.004; 0.41)
P-value	0.12	0.24	0.11	0.11	0.19	0.054
Age at T1	0.02 (-0.02; 0.05)	0.04 (-0.001; 0.07)	-0.04 (-0.10; 0.01)	0.02 (-0.02; 0.05)	0.04 (-0.01; 0.08)	-0.04 (-0.12; 0.03)
P-value	0.28	0.059	0.10	0.42	0.11	0.22
MVPA at T1						
Low				0	0	0
Intermediate				0.13 (-0.01; 0.28)	0.12 (-0.05; 0.29)	0.23 (-0.01; 0.48)
High				0.11 (-0.11; 0.34)	0.11 (-0.14; 0.36)	0.24 (-0.08; 0.56)
P-trend				0.28	0.36	0.10

Table 3. Results from the multivariable linear regression analyses^{*}, i.e. linear regression coefficients and 95% confidence intervals (CI), with $zBMI_{T2}$ as the outcome.

	Model 1			Model 2		
		Stratification by OW status at T1			Stratification by OW status at T1	
	All (n=216)	Non-OW (n=167)	OW (n=49)	All (n=216)	Non-OW (n=167)	OW (n=49)
Accelerometer wearing time at T1				0.0002 (-0.0006; 0.001)	0.0002 (-0.0008; 0.001)	0.00001 (-0.001; 0.001)
P-value				0.56	0.67	0.91
Screen sedentary behaviour at T1						
Low				0	0	0
Intermediate				0.13 (-0.04; 0.29)	0.13 (-0.05; 0.32)	0.15 (-0.06; 0.35)
High				0.22 (0.04; 0.40)	0.28 (0.06; 0.49)	0.20 (-0.0002; 0.40)
P-trend				0.017	0.012	0.091
Maternal education level						
Low				0	0	0
Intermediate				0.01 (-0.16; 0.18)	0.04 (-0.15; 0.24)	-0.13 (-0.31; 0.04)
High				-0.11 (-0.29; 0.07)	-0.09 (-0.32; 0.13)	-0.33 (-0.62; -0.04)
P-trend				0.19	0.36	0.030

^{*} Multivariable regression analyses were performed to investigate the longitudinal relationships between $zBMI_{T2}$ (as the outcome) and change in diet quality between T1 and T2 (DQI_{T2-T1}, categorical variable), adjusting for $zBMI_{T1}$, DQI_{T1}, child's age and gender (Model 1). In Model 2, we also controlled for child's MVPA, accelerometer wearing time, screen time and maternal education (all measured at T1). Both models accounted for clustering by suburb.

DQI, Diet Quality Index; MVPA, Moderate and Vigorous Physical Activity; OW, Overweight; T1, baseline; T2, follow-up; zBMI, BMI z-scores.