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ABSTRACT

We introduce a new approach to correct geometric and in-
tensity distortion of Echo Planar Images (EPI) from images
acquired with opposite phase encoding directions. A new
symmetric block-matching registration algorithm has been
developed for this purpose relying on new adapted transfor-
mations between blocks and a symmetric optimization scheme
to ensure an opposite symmetric transformation. We present
results of our algorithm showing its ability to robustly re-
cover EPI distortion while obtaining sharper results than the
popular TOPUP algorithm.

1. INTRODUCTION

Single-shot Echo Planar Imaging (EPI) is a very fast imag-
ing method. Its low acquisition time allows us to acquire a
large number of images in a reasonable time for a clinical us-
age. Diffusion Weighted Imaging (DWI) allows, through the
acquisitions of many gradient weighted images with several b-
values, to model the underlying tissue microstructure of the
brain. As many images are required to estimate water diffu-
sion models, DWI needs many acquisitions. For this reason,
EPI is the most common sequence used for DWI [1].

The major problem of EPI acquisitions resides in the
large distortion that may affect the images. This distortion is
caused by the magnetic field inhomogeneity at the tissue/air
interfaces. Affected areas are contracted or dilated in the
phase encoding direction (PED). To correct for this, several
methods have been devised in the literature. One of the ear-
liest techniques involves the acquisition of a B0 field map [2],
which is in turn used to estimate the B0 inhomogeneities and
correct for them. However, this method loses accuracy on
strongly warped areas. Other techniques have considered the
design of new sequences based on point spread functions [3]
to obtain fast acquisitions with less distortion. Unfortunately
such techniques, although very promising, are not available
and ready to use in clinical routine on all scanners.

Another class of methods is based on the acquisition of
an additional EPI where the PED is reversed. From those
two images, a distortion field may be computed to correct
the EPI. For example, Voss et al. [4] introduced a method to
estimate from two images the correction displacement field
based on cumulative intensity distributions along each line
in the PED. Andersson et al. [5] followed the same kind of
idea, which implementation is available in the popular FSL
package (TOPUP). Other methods in this category include

the one proposed by Holland et al. [6] performing a line in-
tensity registration on each line independently. However, this
method may be unstable when high noise or large displace-
ments are present. Assuming that the subject did not move
during a series of EPI acquisitions such as DWI, this class of
algorithm allows us to correct for the distortion of the entire
EPI series using only one supplemental B0 image acquisition
with reversed PED. Therefore, it allows for EPI distortion
correction of DWI at almost no additional acquisition time
cost.

We propose a new approach towards distortion correction
of EPI based on a block-matching registration specifically de-
signed to register two images acquired with opposite PEDs.
To do so, we introduce a new symmetric block-matching reg-
istration algorithm, optimizing local affine transformations
constrained in the PED for the expected distortions in EPI.
In addition, the transformation is computed as opposite sym-
metric to match the distortion model in EPI [2]. We first
present our distortion correction method in Section 2. Then,
we apply it on real acquisition of five subjects where im-
ages with four different PED (anterior-posterior, posterior-
anterior, left-right, right-left) were acquired. We present re-
sults of our method in Section 4, demonstrating its ability
to robustly recover EPI distortion while obtaining sharper
results than TOPUP.

2. METHODS

2.1. Distortion Model

We assume that two images have been acquired: IF is the EPI
acquired with a classical PED (e.g. anterior - posterior), and
IB is the EPI acquired with a reversed PED (e.g. posterior -
anterior). The goal of EPI distortion correction is to recover a
corrected image C from these two images. Based on previous
literature [2], we assume that IF and IB are generated from
C using a displacement field U parallel to the PED:

C(x) = JT+(x)IF (T+(x)) (1)

C(x) = JT−(x)IB (T−(x)) (2)

where T+(x) = x + U(x), T−(x) = x − U(x), J denotes the
Jacobian operator. U corresponds to the distortion displace-
ment field, it is assumed that T+ and T− are opposite sym-
metric, i.e. that they share the same U up to a minus sign.
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2.2. Correction Initialization

Distortion correction involves finding very large and local dis-
placements between the images, displacements that may be
extremely difficult to recover for registration approaches. We
tackle this problem using a coarse-to-fine approach to recover
EPI distortion. We have therefore used a coarse initialization
to estimate an initial transformation, which is then further
improved with our block-matching strategy. This initializa-
tion is based on the method introduced by Voss et al. [4].
Their approach amounts to the following. For each line in
the PED, for both images do:

• Compute normalized cumulated intensities.

Ni(y) =
1

αi

∫ y

0

Li(x)dx for i = 1, 2 (3)

where L1 and L2 are line intensities of images IF and
IB , α1 and α2 are normalization constants.

• For a large number n of values xn between 0 and 1,
find by cubic interpolation y1,n and y2,n such that
N1(y1,n) = N2(y2,n) = xn

• At each position yn = (y1,n + y2,n)/2, the transforma-
tion map is computed as

U(yn) = y1,n − yn = yn − y2,n (4)

This algorithm has the advantage of being very fast and
simple. However, it is highly sensitive to noise and lines regis-
trations are purely independent which may lead to unrealistic
transitions between lines. Therefore, Gaussian smoothing is
performed on the obtained transformation T , which leads to
a trade-off between transformation precision (small Gaussian
σ) and transformation regularity (high Gaussian σ).

2.3. Block-Matching for Distortion Correction

In the distortion model, the corrected image C is unknown
and can at best be estimated. We have therefore chosen a
registration approach that does not rely on C. Avants et al.
[7] have introduced a registration algorithm where, instead of

looking for T between two images, the transformation T 1/2 is
sought so that R ◦T−1/2 and F ◦T 1/2 match. We follow this
idea, adapting it to a block-matching algorithm [8, 9] and to
match the requirements of EPI distortion correction. Taking
U0(x) = 0, the following steps are repeated at each iteration l
until convergence (for each pyramid level of a multi-resolution
scheme):

• Resample: IF,l−1(x) = JT+,l−1(x)IF (T+,l−1(x)) and
IB,l−1(x) = JT−,l−1(x)IB (T−,l−1(x))

• Estimate local transformations for each block on IB,l−1:
A+ ← block-matching(IB,l−1, IF,l−1)

• Estimate local transformations for each block on IF,l−1:
A− ← block-matching(IF,l−1, IB,l−1)

• Extrapolate asymmetric dense stationary velocity field
(SVF) corrections from A+ and A−:

δS+ ← extrapolate(A+), δS− ← extrapolate(A−)

• Compute symmetric SVF correction: δS = 1
4
(δS+ −

δS−), and compose it with current transformations:
T+,l = T+,l−1 ◦ exp(δS) and T−,l = T−,l−1 ◦ exp(−δS)

• Ensure T+,l and T−,l are opposite symmetric

• Regularize (elastic-like) T+,l and T−,l

In the following, we will detail the block-matching, ex-
trapolation and composition steps of this algorithm and their
specificities for distortion correction of EPI.

2.4. Block-Matching of Distorted EPI

At each iteration, we define blocks B+,i regularly placed on
image IB,l−1, and B−,i on IF,l−1. On each of those blocks, we
look for an adapted transformation best matching IB,l−1 and
IF,l−1. Such a transformation A.,i can be constrained a priori
to match the expected features of distortion correction. First,
A.,i is defined as being collinear to the PED. Then, it should
allow local contraction or dilation (si) inside a block to ac-
count for local intensity changes in distorted images. Finally,
we define skew components ki,mi to the transformation so
that it accounts for different translations parallel to the PED
inside a block. Assuming the PED is the y-axis, A.,i can be
expressed as a 4× 4 matrix of the following form:

A.,i =

 1 0 0 0
ki si mi ti
0 0 1 0
0 0 0 1

 (5)

Such a transformation has several interesting properties: 1)
its Jacobian is easily computed as the scaling component si
and can be used to approximate the local modification of in-
tensities in the deformed images, 2) its matrix logarithm is
analytically computed from its parameters which is important
for the extrapolation step. With this transformation defined,
we estimate A+,i and A−,i as the transformations (depend-
ing only on 4 parameters) optimizing a similarity measure S
between IF,l−1 and IB,l−1 respectively over the blocks B+,i

and B−,i:

Â+,i = arg max
A+,i

S
(
JA+,iIF,l−1 ◦A+,i, IB,l−1

)
(6)

Â−,i = arg max
A−,i

S
(
IF,l−1, JA−,iIB,l−1 ◦A−,i

)
(7)

A linear relationship can be assumed locally between the in-
tensities of the blocks after correction and we therefore uti-
lized a squared correlation coefficient as the similarity mea-
sure. This optimization is performed using the BOBYQA al-
gorithm for bounded optimization without gradient [10]. This
algorithm proceeds by successively computing quadratic ap-
proximations to the cost function to find its local maximum.

After this matching step, a confidence weight is assigned
to each transformation. It is defined from two terms: a simi-
larity based term, the optimal value of the similarity measure
Ŝ, and a directional weight wd. The first term accounts for
the quality of the best match. The second accounts for the
image structure of the reference block. If the block image
structure is parallel to the PED, registration in that direc-
tion is indeed undetermined, which is known as the aperture
problem in image registration. We therefore define wd as a
function of the structure tensor inside the reference block:
wd (B(., i)) = cl

(
DB(.,i)

)
< v̂DB(.,i)

, g >, where < ., . > de-
notes the scalar product, DB(.,i) the average structure ten-
sor of block B(., i), cl is the linear coefficient [11], v̂DB(.,i)
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is the principal eigenvector of DB(.,i), and g is the PED.
This weight will be 0 if the structure tensor is perpendicu-
lar to the PED (image structure parallel to g) or spherical,
giving a structure based confidence to the matches. In the
end, the weight for the match of block B(., i) is defined as

wB(.,i) =
√
ŜB(.,i)wd (B(., i)).

2.5. Transformation Extrapolation and Composition

We have constituted two sets of block pairings (one for the
IF and one for IB): A+ = (A+,1, . . . , A+,m) and A− =
(A−,1, . . . , A−,n), each pairing being positioned at the cen-
ter of its corresponding block, and given a weight wB(.,i). We
then use the method proposed in [9] to extrapolate two update
SVFs from the sparse weighted log-transformations: δS+ =
extrapolate(A+) and δS− = extrapolate(A−). A symmetric
δS is computed as a quarter of the subtraction of asymmet-
ric incremental updates δS+ and δS−: δS = 1

4
(δS+ − δS−),

taking into account symmetry and the fact that only half of
the SVF is required to make the images move towards the
image C. This symmetrization is necessary to ensure equiva-
lent roles to IF and IB in the registration process. Then, the
transformation corrections δT+ and δT− are computed as the
exponential of these SVFs [12].

Such an extrapolation has the advantage of incorporating
an outlier rejection framework, able to remove from the up-
date SVF log-transformations that are erroneous due to noise
or artifacts in the images. In addition, it guarantees that the
extrapolated transformations are diffeomorphic and therefore
invertible. Once δT+ and δT− are computed, they are com-
posed with the current transformations: T+,l = T+,l−1 ◦ δT+

and T−,l = T−,l−1 ◦ δT−. Such an operation however does
not guarantee that T+,l and T−,l still have opposite roles,
as required in the EPI distortion model, i.e. that T+,l(x) =
x + Ul(x), T−,l(x) = x − Ul(x). We therefore compute U at
the l − th iteration as Ul(x) = 1

2
(T+,l(x)− T−,l(x)), thereby

ensuring an opposite symmetric transformation.

3. EXPERIMENTAL DESIGN

We have scanned 5 healthy volunteers to evaluate our distor-
tion correction algorithm. For each volunteer, two pairs of B0

EPI with opposite PED were acquired: AP/PA and LR/RL.
Each image has a size of 128×128×60 and an isotropic res-
olution of 2×2×2 mm3. We then corrected the AP/PA and
the LR/RL images separately using one of the algorithms to
evaluate: initial transformation as described in Section 2.2
(Initial), our algorithm initialized by the previous transfor-
mation (BM), and the TOPUP algorithm [5]. The two pairs
of images AP/PA and LR/RL are subject to different dis-
tortion but are images of the same anatomy. We therefore
measure the quality of an algorithm as a comparison between
the two images after distortion correction.

To compare images after correction, we define two com-
plementary measures. First, we specify a global measure Sim
on images as an average of the local correlation coefficients
between the images. However, intensities out of the brain are
pure noise. We therefore masked those background areas by
first computing a mask of the relevant areas for each corrected
image. Then, a global mask was computed as the union of
all these individual masks to ensure that quality metrics are
comparable between the methods. Sim is then defined as:

Sim(I, J) =
1

Card({I, J}N )

∑
p∈{I,J}N

C(INp , JNp) (8)

where C is the local correlation of INp , JNp (neighborhoods of

p in I and J), {I, J}N the image domain. Sim characterizes
well if the images match after correction, however it is sensi-
tive to image smoothing which may make a method appear
better than it really is. In fact, the resulting correction also
needs to keep the structural information: the sharpness of the
images. This is evaluated by a sharpness index as follows:

Sharpness(I) =
1

Card(IN )

∑
p∈IM

V (INp)

E2(INp)
(9)

where V is the variance and E the expectation. It computes
the average of ratios between the local variances and means.
In other words, it considers that structures are sharply de-
fined if the variance inside a block is high compared to its
mean. Again, we compute this measure on the same mask
used for correlation.

4. RESULTS

We present in Fig. 1 a representative example of a distortion
correction result for LR/RL images. This figure demonstrates
visually that our algorithm clearly improves results over the
initialization method. The eyes are better defined after apply-
ing BM, and structures in the temporal lobes are also better
defined and more in phase with the anatomical T2 reference.
TOPUP also achieves a good result, however it is more blurry
than the other two methods.

(a) LR (b) RL (c) T2

(d) Initial Correction (e) BM (f) TOPUP

Fig. 1. Distortion correction results. First line: EPI with
opposite PED (LR/RL) and a T2 resampled image. Second
line: correction results with the three compared methods.

To quantitatively validate our observations, we have com-
puted similarity and sharpness metrics to our datasets. Cor-
relation similarity results are presented in Table 1. This table
shows that BM increases systematically the similarity index
as compared to the initialization. However, these results also
show that TOPUP seems to be performing better than our
method that could be due to a visually smoother result.
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Sim Untouched Initial BM TOPUP
Subject 1 0.50 0.56 0.65 0.76
Subject 2 0.48 0.53 0.59 0.71
Subject 3 0.51 0.56 0.62 0.64
Subject 4 0.62 0.68 0.72 0.81
Subject 5 0.64 0.68 0.72 0.80

Table 1. Correlation results (Sim measure) between AP/PA
and LR/RL images. Columns from left to right: no correc-
tion, initial transformation, BM and TOPUP.

To better understand the behavior of TOPUP, we there-
fore computed the sharpness on all images, corrected or not,
on the 5 subjects. Results are presented in Table 2 with im-
ages and correction of the pair AP/PA, (results for the pair
LR/RL are similar). The first three columns (original images,
corrected by initial transformation and by BM) show a stable
sharpness index. However, the sharpness index of TOPUP
decreases significantly, confirming the visual impression that
TOPUP produces smoother images after correction.

Sharpness Untouched Initial BM TOPUP
Subject 1 0.34 0.33 0.36 0.23
Subject 2 0.38 0.36 0.39 0.26
Subject 3 0.35 0.33 0.36 0.25
Subject 4 0.32 0.31 0.33 0.23
Subject 5 0.34 0.33 0.34 0.24

Table 2. Sharpness results of corrected images. From left to
right: no correction, initial transformation, BM and TOPUP.

As a final comparison, we then tested the incidence of
smoothness on the correlation score. We present in Table 3
the correlation results for one representative correction re-
sult obtained by BM, simply adding Gaussian smoothing to
the result images with different σ before computing the lo-
cal correlations. Interestingly, correlation and sharpness are
strongly linked: when increasing smoothness, the correlation
score reaches better values. Moreover, for a specific σ value
(0.6), we even obtain the same sharpness and similarity val-
ues as for TOPUP. This advocates two conclusions : 1) our
method obtains results of similar quality to TOPUP but with
a higher sharpness of structures, which is desirable to avoid
partial volume effects; 2) validation of distortion correction
methods is a complex field that requires several metrics to be
considered for evaluating all desired aspects.

Sigma 0.2 0.3 0.4 0.5 0.6 0.7
Sharpness 0.36 0.35 0.32 0.27 0.23 0.21
Sim 0.65 0.65 0.67 0.72 0.76 0.79

Table 3. Illustration of the link between image smoothness
and correlation results. First line: σ values for Gaussian
smoothing, second and third line: sharpness and correlation
of BM corrected images after smoothing.

5. CONCLUSION

We have developed a new algorithm for the correction of EPI
distortion using two EPI with opposite PED. To do so, we

have developed new linear transformations adapted to local
distortions. We then integrated these transformations into a
symmetric block-matching algorithm, ensuring a robust com-
putation of an opposite symmetric transformation. We have
evaluated this method on 5 subjects with 2 pairs of EPI. We
have shown how the block-matching approach improves quan-
titative and visual results. It also provides results comparable
with TOPUP but with a much improved sharpness, close to
the one of the original images. Computationally, we have run
the two algorithms on a Xeon 2.5 Ghz computer on 20 cores:
our method took 150 s and TOPUP 750 s.
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