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Abstract

Background: Probiotic bacteria have been shown to modulate immune responses and could have therapeutic effects in
allergic and inflammatory disorders. However, the signaling pathways engaged by probiotics are poorly understood. We
have previously reported that a fermentation product from Bifidobacterium breve C50 (BbC50sn) could induce maturation,
high IL-10 production and prolonged survival of DCs via a TLR2 pathway. We therefore studied the roles of mitogen-
activated protein kinases (MAPK), glycogen synthase kinase-3 (GSK3) and phosphatidylinositol 3-kinase (PI3K) pathways on
biological functions of human monocyte-derived DCs treated with BbC50sn.

Methodology/Principal Findings: DCs were differentiated from human monocytes with IL-4 and GM-CSF for 5 days and
cultured with BbC50sn, lipopolysaccharide (LPS) or Zymosan, with or without specific inhibitors of p38MAPK (SB203580),
ERK (PD98059), PI3K (LY294002) and GSK3 (SB216763). We found that 1) the PI3K pathway was positively involved in the
prolonged DC survival induced by BbC50sn, LPS and Zymosan in contrast to p38MAPK and GSK3 which negatively
regulated DC survival; 2) p38MAPK and PI3K were positively involved in DC maturation, in contrast to ERK and GSK3 which
negatively regulated DC maturation; 3) ERK and PI3K were positively involved in DC-IL-10 production, in contrast to GSK3
that was positively involved in DC-IL-12 production whereas p38MAPK was positively involved in both; 4) BbC50sn induced
a PI3K/Akt phosphorylation similar to Zymosan and a p38MAPK phosphorylation similar to LPS.

Conclusion/Significance: We report for the first time that a fermentation product of a bifidobacteria can differentially
activate MAPK, GSK3 and PI3K in order to modulate DC biological functions. These results give new insights on the fine-
tuned balance between the maintenance of normal mucosal homeostasis to commensal and probiotic bacteria and the
specific inflammatory immune responses to pathogen bacteria.
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Introduction

The functional ability of dendritic cells (DCs) to generate specific

immune responses depends on the levels of costimulatory molecule

expression, cytokine production profile and survival of DCs [1,2].

These properties result from the integration of different intracellular

signals induced by the microenvironment, particularly exposure to

bacteria [3]. The immune system differentiates commensal bacteria

(resulting in no inflammatory responses) and pathogen bacteria

(resulting in inflammatory responses). One of the mechanisms

involved could be the integration of the differential signaling

induced by pathogen-recognition receptors (PRRs). Toll-Like

Receptors (TLRs) are PRRs expressed on DCs which recognize

pathogen-associated molecular patterns (PAMPs) from bacteria

corresponding to a broad spectrum of highly conserved microbial

structures [4]. TLRs are members of the IL-1 receptor (IL-1-R)

superfamily characterized by an intracytoplasmic Toll-IL-1 recep-

tor (TIR) domain, which mediates recruitment of the interleukin-1

receptor-associated kinase (IRAK) complex and downstream

signaling, via adapter molecules such as MyD88 [4]. It was initially

suggested that signaling through any of the TLRs instructs DCs to

promote Th1 responses [5]. However, TLR engagement can induce

a wide variety of signal transduction pathways to regulate the

nature, magnitude and duration of immune responses [2,6,7].

Probiotic bacteria have been shown to modulate immune responses,

particularly mucosal immunity, and could have therapeutic effects

in allergic and inflammatory disorders [8–10]. In particular,

probiotic bacteria can interact with monocyte-derived DCs to

modulate their properties [11,12]. However, the signaling pathways

engaged by probiotics are poorly understood, particularly the ways

that differ from the inflammatory signaling pathways induced by

pathogenic bacteria [13–19]. We have previously reported that a

fermentation product from Bifidobacterium breve (BbC50sn) could

induce maturation, high IL-10 production and prolonged survival
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of DCs via a TLR2 pathway [20]. Nuclear factor-kappa B (NF-kB)

activation was involved in the maturation process of DCs treated by

BbC50sn (BbC50sn-DCs). However, IL-10 production and pro-

longed DC survival were independent of NF-kB, suggesting other

intracellular pathways induced by BbC50sn. Interestingly, BbC50sn

was able to suppress the biological effects of lipopolysaccharide

(LPS) on IL-12 production and DC apoptosis, confirming that

different signaling pathways are involved in DC biology. Moreover,

if NF-kB activation is required for DC maturation after TLR

engagement, other intracellular pathways, such as mitogen-

activated protein kinases (MAPK), glycogen synthase kinase-3

(GSK3) and phosphatidylinositol 3-kinase (PI3K) pathways, seem to

be critical in the biological functions of DCs [21–26]. We therefore

studied the roles of these kinases in the regulation of activation,

maturation and survival induced by BbC50sn on human monocyte-

derived DCs using specific inhibitors.

Results

Survival of BbC50sn, LPS and Zymosan-stimulated DC
was enhanced by PI3K, with an opposite effect of
p38MAPK and GSK3 signaling pathways

As previously described [20], BbC50sn induced prolonged DC

survival compared to LPS after 8 days of stimulation. Zymosan, a

TLR-2 agonist, induced a DC survival similar to that induced by

BbC50sn (Fig. 1A). In order to study the involvement of signaling

pathways in BbC50sn-DC survival, we added specific kinase

inhibitors to the culture medium 1 hour before the addition of the

different TLR agonists. The dosage of kinase inhibitors was chosen

in order to avoid a non toxicity (data not shown). The p38MAPK

inhibitor (SB203580; 20 mM) increased DC survival, whatever the

TLR agonist: BbC50sn (50%614 vs 78%614; p = 0.008, n = 5),

LPS (28%614 vs 69%622, p = 0.008, n = 4), Zymosan (56%68

vs 77%613, p = 0.008, n = 5) (Fig. 1B). Interestingly the DC

survival observed with LPS after addition of the p38MAPK

inhibitor was similar to that observed with BbC50sn. In contrast,

the PI3K inhibitor (LY294002; 10 mM) reduced BbC50sn-DC

survival (50%614 vs 27%69, p = 0.004, n = 4) (Fig. 1C), and also

LPS-DC (28%614 vs 18%611, p = 0.031, n = 5) and Zymosan-

DC (56%68 vs 37%612, p = 0.02, n = 5) survival, with a dose-

dependent effect (data not shown). The ERK inhibitor (PD98059;

25 mM) did not significantly change DC survival after LPS or

Zymosan stimulation, but reduced survival after for BbC50sn

stimulation (50%614 vs 35%65, p = 0.048, n = 5) (Fig. 1D). The

GSK3 inhibitor (SB216763; 10 mM) increased survival of

BbC50sn-DC (50%614 VS 85%66, p,0.001, n = 4); LPS-DC

(28%614 vs 80%67, p,0.001, n = 4) and Zymosan-DC (56%68

vs 88%66, p,0.001, n = 4) (Fig. 1E). PI3K activation therefore

Figure 1. BbC50sn-DC survival with the PI3K, p38MAPK, ERK and GSK3 inhibitors. DCs were used either unstimulated (NS) or in the
presence of BbC50sn (100 mg/ml), LPS (50 ng/ml) or Zymosan (25 mg/ml) for 8 days. The results are expressed as: A) the percentage of cell survival
(double Annexin V and 7AAD-negative cells) without inhibitors; B, C, D, E) the percentage of cell survival as mean6SD of 5 different experiments B)
with and without SB203580 (20 mM), C) with and without PD98059 (25 mM), D) with and without LY294002 (10 mM) E) with and without SB216763
(10 mM). The effects of kinase inhibitors were compared for panel B, C, D and E with the same control data for each stimulation. Statistical analysis was
performed using the Wilcoxon test for paired non-parametric data. Significance is indicated by p value * p#0.05; **p#0.001.
doi:10.1371/journal.pone.0002753.g001
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induces DC survival whereas p38MAPK and GSK3 reduce DC

survival. The differences observed in survival between BbC50sn-

DC and LPS-DC could be due to preferential activation of PI3K

by BbC50sn and Zymosan and preferential activation of

p38MAPK by LPS.

Maturation of BbC50sn, LPS and Zymosan-stimulated DC
was enhanced by p38MAPK and PI3K, with opposite
effects of ERK and GSK3 signaling pathways

BbC50sn induced DC maturation, with up-regulation of CD83

and CD86 in the same proportions as did LPS and Zymosan 2

days after stimulation (Fig. 2A). The p38MAPK inhibitor

(SB203580) induced a profound reduction in CD83 and CD86

DC expression after BbC50sn (83%610 vs 38%67, p,0.001,

n = 6), LPS (87%67 vs 48%68, p,0.001, n = 6) and Zymosan

(83%67 vs 52%69, p,0.001, n = 6) stimulation (Fig. 2B). The

PI3K inhibitor (LY294002) induced a reduction in CD83 and

CD86 DC expression after BbC50sn (83%610 vs 64%615,

p = 0.05, p = 4), LPS (87%67 vs 60%614, p,0.001, n = 4) and

Zymosan (83%67 vs 67%613, p = 0.06, n = 4) stimulation

(Fig. 2C). In contrast, the ERK (PD98059) and GSK3

(SB216763) inhibitors did not modify DC maturation after

BbC50sn, LPS or Zymosan stimulation, but increased maturation

of unstimulated cells (Fig. 2D; 2E). Furthermore, when sub-

optimal doses of BbC50sn, LPS or Zymosan (10 mg/ml, 5 ng/ml,

5 mg/ml, respectively) were used, the addition of ERK and GSK3

inhibitors induced full DC maturation (Fig. 2F; 2G). p38MAPK

and to a lesser extent PI3K are therefore both positively involved

in DC maturation whereas ERK and GSK3 activation inhibit DC

maturation.

Cytokine production of BbC50sn, LPS and Zymosan-
stimulated DC was differentially regulated by p38MAPK,
ERK, GSK3 and PI3K signaling pathways

Monocyte-derived DCs were activated by BbC50sn, LPS or

Zymosan and cytokine synthesis was analysed by ELISA in the

supernatant of these cultures. BbC50sn-treated DCs produced low

IL-12 and high IL-10 levels in contrast to LPS-treated DCs

(404 pg/ml6480 vs 1175 pg/ml61070, p = 0.005, n = 10 (Fig. 3A)

and 3444 pg/ml63700 vs 1780 pg/ml62800, p = 0.007, n = 10

(Fig. 3B), respectively). No significant IL-12 production was

measurable after Zymosan stimulation (Fig. 3A), whereas IL-10

production was high (3175 pg/ml64400 (Fig. 3B)). Due to the

high variability of cytokine productions between donors (Fig. 3),

we chose to express the results in percentage of the cytokine levels

measured in the absence of kinase inhibitors to analyse their effects

on IL-12 (Fig. 4) and IL-10 (Fig. 5) DC production. The

p38MAPK inhibitor (SB203580) induced a near total reduction

in IL-12 production after BbC50sn and LPS stimulation (Fig. 4B).

The GSK3 inhibitor (SB216367) also induced a reduction in IL-12

production after BbC50sn and LPS stimulation (Fig. 4E). In

contrast, the ERK inhibitor (PD98059) and the PI3K inhibitor

(LY294002) induced increases in IL-12 DC production after

BbC50sn or LPS stimulation (Fig. 4CD). Zymosan was unable to

produce measurable IL-12 levels, even in the presence of ERK

and PI3K inhibitors (Fig. 4A).

The p38MAPK inhibitor (SB203580), and to a lesser extent the

ERK inhibitor (PD98059) and the PI3K inhibitor (LY294002),

induced a significant reduction in IL-10 production by DCs after

BbC50sn, Zymosan or LPS stimulation (Fig. 5BCD). In contrast,

the GSK3 inhibitor (SB216367) induced an increase in IL-10

production after BbC50sn, LPS or Zymosan (Fig. 5E). These

results suggest that p38MAPK is positively involved in both IL-12

and IL-10 DC production, that PI3K and ERK decrease IL-12

and increase IL-10 production and that GSK3 decreases IL-10

and increases IL-12 production.

The differences in cytokine production observed between

BbC50sn- and LPS-DC (Fig. 4A, 5A) could be due to a

preferential activation of PI3K by BbC50sn as in DC survival.

But the differences observed between BbC50sn and Zymosan

(Fig. 4A, 5A) suggest that BbC50sn is also able to activate

p38MAPK although to a lesser extent. We therefore studied the

phosphorylation of Akt and p38MAPK in DC after stimulation by

BbC50sn, LPS or Zymosan. As shown in Fig. 6, BbC50sn induced

a phosphorylation of Akt similar to that observed with Zymosan,

but a phosphorylation of p38MAPK similar to that observed with

LPS.

Discussion

We have previously observed that NF-kB activation was

involved in the maturation process of DCs stimulated by a

supernatant of a Bifidobacterium fermentation product [20]. But in

contrast to Menard who reported anti-inflammatory properties of

a similar Bifidobacteria strain with decreased NFkB nuclear

translocation [27], our results, concerning a product of fermen-

tation and not the supernatant of the bacteria alone, didn’t show

modification of IL-10 production and prolonged DC survival after

NF-kB inhibition by lactacystin, suggesting the involvement of

other intracellular pathways. In the present study, we demonstrat-

ed for the first time that BbC50sn induces maturation, activation

and survival of dendritic cells via different signaling pathways. We

used kinase inhibitors mostly used in the literature in order to

compare our results with other publications. Moreover, these

inhibitors, SB203580, LY294002, PD98059, and SB216763 seem

to be the most specific inhibitors described for respectively

p38MAPK, PI3K, ERK and GSK3 [28]. We found that 1) the

PI3K pathway is positively involved in the prolonged DC survival

induced by BbC50sn whereas p38MAPK and GSK3 have

negative effects; 2) p38MAPK and PI3K are both positively

involved in DC maturation, in contrast to ERK and GSK3; 3)

PI3K and ERK are positively involved in DC-IL-10 production, in

contrast to GSK3 that is positively involved in DC-IL-12

production and p38MAPK that is positively involved in both. 4)

BbC50sn induced a PI3K/Akt phosphorylation similar to that

induced by Zymosan and a p38MAPK phosphorylation similar to

that induced by LPS. Furthermore, the preferential involvement of

some of these different pathways after BbC50sn, LPS and

Zymosan stimulation could explain the different properties

observed with these agonists.

We observed that the PI3K pathway was involved in the

prolonged DC survival measured after 8 days of stimulation by

BbC50sn. PI3K has recently been shown to be directly involved in

TLR signaling pathways, independently of the IRAK/TRAF6/

NF-kB pathway [29,30]. PI3K therefore constitutes a good

candidate for DC signaling pathway after the TLR2 engagement

by BbC50sn or Zymosan. Few studies have reported the

involvement of PI3K in DC survival. Xie et al reported that

PI3K was essential for DC survival during the differentiation of

monocytes in immature DCs, independently of any TLR

stimulation [31]. Ardeshna et al demonstrated that PI3K was

involved in myeloid DC survival by modulating the balance of

pro- and anti-apoptotic Bcl-2/Bad family proteins which could be

induced by BbC50sn, as we have previously described [20,32].

Interestingly, the same authors found that p38MAPK induced DC

survival measured 48 h after LPS stimulation, in contrast to our

results where p38MAPK decreased long term DC survival

Probiotic Signaling in DC
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measured on day 8 after BbC50sn, LPS and Zymosan stimulation.

This suggests that p38MAPK may have a positive effect on early

DC survival and a negative effect on long term DC survival. We

also showed for the first time that inhibition of GSK3 increased

DC survival. GSK3 is a serine protein kinase involved in

maturation, activation and apoptosis of several cells [33–35]. It

has been reported that PI3K neutralizes GSK3 activity, via Akt

phosphorylation [33]. Therefore, the prolonged DC survival that

we observed with BbC50sn could be partly the consequence of

GSK3 inhibition induced by PI3K and Akt.

We also found that p38MAPK was involved in the maturation

of DCs treated by BbC50sn. This is in accordance with previous

Figure 2. BbC50sn-DC maturation with the PI3K, p38MAPK, ERK and GSK3 inhibitors. In panel A, B, C, D and E, DCs were used either
unstimulated (NS) or in the presence of BbC50sn (100 mg/ml), LPS (50 ng/ml) or Zymosan (25 mg/ml) for 2 days. The results are expressed as A) the
percentage of CD83 and CD86 double positive cells without inhibitors; B, C, D, E) the percentage of CD83 and CD86 double positive cells as
mean6SD of 6 different experiments, B) with and without SB203580, C) with and without PD98059, D) with and without LY294002, E) with and
without SB216763 with the same inhibitors doses as in Fig 1. The effects of kinase inhibitors in panels B, C, D and E were compared with the same
control data for each stimulation. In panels F and G, DCs were used either unstimulated (NS) or in the presence of sub-optimal doses of BbC50sn
(10 mg/ml), LPS (5 ng/ml) or Zymosan (2.5 mg/ml) for 2 days, with the same inhibitors that in panels 2D and 2E respectively. The results are expressed
as the percentage of CD83 and CD86 double positive cells F) with and without PD98059, G) with and without SB216763, with the same inhibitors
doses as in Fig 1. The effects of kinase inhibitors in panels F and G were compared with the same control data for each stimulation. Statistical analysis
was performed using the Wilcoxon test for paired non-parametric data. Significance is indicated by p value :* p#0.05; **p#0.001.
doi:10.1371/journal.pone.0002753.g002
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studies on monocyte-derived DCs stimulated with LPS or

Zymosan [32,36–38]. The p38MAPK signaling pathway positively

regulates DC maturation, with increased CD80, CD86, CD83 and

HLA-DR expression [39]. In contrast, we observed that ERK and

GSK3 inhibitors increased DC maturation after suboptimal

stimulation with either BbC50sn, LPS or Zymosan, which

confirmed that p38MAPK and ERK have opposite effects on

DC maturation [25,40,41]. We also observed that inhibition of

PI3K reduced DC maturation after BbC50sn, LPS and Zymosan

stimulation but at lower levels than with the p38MAPK inhibitor.

This suggests that PI3K is positively involved in DC maturation.

This could be due in part to the inhibition of GSK3 induced by

PI3K and Akt, because we observed that GSK3 inhibitor

increased DC maturation. Our results are in accordance with

those of Rodionova et al who recently reported that GSK3 inhibits

spontaneous DC maturation and that GSK3 activity was inhibited

by Akt after TLR engagement during the maturation process [35].

In many cases, inhibition of p38MAPK and to a lesser extent

PI3K have the same effect on DC maturation whether microbial

or non-microbial stimuli as CD40L trimers are used [42].

However, ours results suggested that the intensity of the kinase

recruitment is different between LPS or BbC50sn and Zymosan

(Fig. 2 and Fig. 6).

In terms of cytokine production, the p38MAPK and GSK3

inhibitors decreased DC IL-12 production after BbC50sn and LPS

stimulation, in contrast to PI3K and ERK inhibitors which

increased IL-12 production. These results are in accordance with

those of Agrawal et al who reported that p38MAPK is positively

involved in DC IL-12 production after LPS stimulation of human

monocyte-derived DC [25]. They observed that the magnitude

and kinetics of MAPK phosphorylation depended on the TLR

agonist involved: TLR4 activation induced a positive p38MAPK/

ERK ratio in contrast to TLR2. p38MAPK positively regulates

IL-12 production after TLR4 engagement and ERK negatively

regulates IL-12 production after TLR2 engagement. As for

maturation, p38MAPK and ERK have opposite effects on DC

IL-12 production [36,37,39,40,43]. Furthermore, we found that

GSK3 inhibitor decreased DC IL-12 production after BbC50sn

and LPS stimulation, which is in accordance with the literature

concerning monocytes and DCs [34,35]. Moreover, we observed

that the PI3K inhibitor increased IL-12 production, which could

be related to a regulatory function of this kinase in DC cytokine

production through inhibition of GSK3 [44]. Martin et al reported

that PI3K also induced ERK phosphorylation on human

monocytes after TLR2 engagement [45]. The increased DC IL-

12 production observed with the PI3K inhibitor in our study could

therefore also be the consequence of a reduction in ERK

phosphorylation.

We observed that ERK, p38MAPK and PI3K inhibitors

decreased IL-10 production. This is in accordance with several

studies which reported the role of ERK in DC IL-10 production

[37,39,40,43]. Although, ERK and p38MAPK had opposite

effects on IL-12 production, we observed that p38MAPK inhibitor

also reduced DC IL-10 production after BbC50sn, LPS and

Zymosan stimulation. Foey et al also reported that p38MAPK is

involved in monocyte IL-10 production [46] and Messmer et al

found the same effect of p38MAPK on DC IL-10 production [47].

p38MAPK could be involved in the stability of cytokine mRNA at

a post-transcriptional level, and this could explain the reduction in

both IL-12 and IL-10 production [48]. Because BbC50sn and

Figure 3. BbC50sn-DC cytokine production. DCs were stimulated with either BbC50sn (100 mg/ml) or LPS (50 ng/ml) or Zymosan (25 mg/ml) for
2 days. IL-12 (A) or IL-10 (B). Synthesis were analyzed by ELISA in the supernatant of these cultures after 48 h of stimulation. The results are expressed
in picograms per milliliter: each point represents the values of one donor for each stimulation and the heavy bar the mean of cytokine production for
each stimulus. Statistical analysis was performed using the Wilcoxon test for paired non-parametric data. Significance is indicated by p value.
doi:10.1371/journal.pone.0002753.g003
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Zymosan stimulations, in comparison with LPS, result in a higher

level of IL10 production and a greater Akt phosphorylation, we

hypothesize that PI3K/Akt had a key role in the control of the IL-

10/IL-12 DC production balance (Fig. 7). This action could be

mediated by GSK3 activity which negatively regulates cAMP

response element-binding (CREB), previously described as an IL-

10 transcription factor [49]. In conclusion, few studies have

investigated the DC intracellular pathways induced by probiotic

bacteria [19]. In previous study [20], we have demonstrated that

the BbC50sn activity on maturation of DC was dependant of the

media in which BbC50 had grown. Indeed, we did saw DC

activation by BbC50sn when BbC50 had been cultured in media

containing hydrolyzed whey protein as protein source, but not in

other media in which dairy proteins contents were different (data

not shown). In addition, contrary to BbC50sn the supernatant of

BbC7 obtained by the fermentation of BbC7 in media containing

hydrolyzed whey protein was not able to trigger DC maturation.

Thus the effect of BbC50sn on DC is both media and strain-

dependant. Regarding this conclusion, we hypothesis that the

nature of the compound(s) could be : metabolite(s) produced

during the fermentation ; after dialysis, glycoproteins are the main

chemical compounds produced during fermentation and/or

bacterial fragments of which composition is modified by the

composition of the fermentation media. In this study, we report for

the first time that a fermentation product of a bifidobacteria can

differentially activate MAPK, GSK3 and PI3K in order to

modulate the maturation, activation and survival of DCs to

promote a regulatory profile. We observed that PI3K is positively

involved in the effetc of BbC50sn on 1) the prolonged DC survival;

2) the maturation; 3) the balance of IL-10/IL-12 production.

Nevertheless, the DC p38MAPK phosphorylation induced by

BbC50sn could explain some of the properties observed with this

fermentation product. Description of the differential modulation of

the intracellular signaling induced by PAMPs is important to

understand the fine-tuned balance between the maintenance of

normal mucosal homeostasis to commensal and fermentation

products of bacteria and the specific inflammatory immune

responses to pathogen bacteria. Therefore, a better knowledge of

the molecular mechanisms of signaling pathways induced by

probiotic bacteria, could allow new therapeutic strategies of

allergic and autoimmune diseases.

Methods

Medium, cytokines, monoclonal antibodies, kinase
inhibitors and reagents of cell culture

The culture medium used was RPMI 1640 (Gibco, Cergy

Pontoise, France) supplemented with 50 IU/mL penicillin,

50 IU/mL streptomycin (Gibco), 2 mM L-glutamin (Gibco) and

10% heat-inactivated fetal calf serum (FCS) (Gibco). Recombinant

Figure 4. BbC50sn-DC IL12 production with the PI3K, p38MAPK, ERK and GSK3 inhibitors. DCs were stimulated by BbC50sn (100 mg/ml)
or LPS (50 ng/ml) for 2 days. A) with and without SB203580; one representative experiment, B) with and without PD98059, C) with and without
LY294002, D) with and without SB216763 with the same inhibitor doses as in Fig 1. The results, determined by ELISA, are expressed in percentage of
the levels measured for each donor with and without inhibitors and represent 4 to 7 different experiments. Statistical analysis was performed using
the Wilcoxon test for paired non-parametric data. Significance is indicated by p value.
doi:10.1371/journal.pone.0002753.g004
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Figure 5. BbC50sn-DC IL10 production with the PI3K, p38MAPK, ERK and GSK3 inhibitors. DCs were used in the same conditions as in
Fig 3: in the presence of either BbC50sn or LPS or Zymosan for 2 days: A) with and without SB203580 one representative experiment, B) with and
without PD98059, C) with and without LY294002, D) with and without SB216763 with the same inhibitor doses as in Fig 1. IL-10 production in culture
supernatants was determined by ELISA. The results are expressed in percentage of the levels measured for each donor with and without inhibitors of
4 to 7 different experiments. Statistical analysis was performed using the Wilcoxon test for paired non-parametric data. Significance is indicated by p
value.
doi:10.1371/journal.pone.0002753.g005
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human IL-4 was obtained from R&D Systems (Abingdon, United

Kingdom), GM-CSF from AbcysSA (Paris, France), LPS from

Sigma-Aldrich (St Quentin Fallavier, France) and Zymosan from

Invivogen (Toulouse, France). Kinase inhibitors, SB203580 which

directly inhibits p38MAPK activity [28,49], PD98059 which

prevents activation of MAPK kinase (MEK) upstream activators of

MAPK 3 and 1 (ERK), [50] and SB216763 which prevents

activation of GSK3 were obtained from Sigma-Aldrich (St

Quentin Fallavier, France), and LY294002 which inhibits PI3K

(prevents Akt phosphorylation) from Cell Signaling. The following

mouse anti-human mAbs were used for cytometry analysis:

fluorescein isothiocyanate (FITC)-anti-CD83 (IgG1, HB15e) and

phycoerythrin (PE)-anti-CD86 (IgG2b, HA5), purchased from

Immunotech (Marseille, France). Signaling protein phosphoryla-

tions were analyzed by FACS with monoclonal antibodies specific

for phosphorylated forms of Akt, p38MAPK and ERK (PE

coupled for Akt, Alexa 647 for p38MAPK and ERK, from Becton

Dickinson, Rungis France). Control cells were stained with

corresponding isotype-matched control mAbs (Immunotech and

Becton Dickinson). (FITC)-labeled Annexin V (5 mL/16105 cells)

and 7-amino actinomycin D (7-AAD, 10 mg/mL) were used for

apoptosis analysis (Becton Dickinson, Rungis, France; Sigma, St

Quentin Fallavier, France).

Production of Bifidobacterium breve supernatant
Bifidobacteria were isolated from infant stools as Bifidobacterium

breve and the strain was called C50 (BbC50). BbC50 was cultured

in the presence of hydrolyzed cow’s whey. Fermentation was

carried out at 37uC under anaerobic conditions for 15 hours. The

supernatant of the culture medium was collected by high speed

centrifugation after fermentation and concentrated by ultrafiltra-

tion (300 kDa), and then dialyzed on a 10 kDa membrane. After

concentration, the supernatant was lyophilized for use and called

BbC50sn. All the results reported here were obtained with the

same batch. BbC50sn activity was evaluated by its ability to

promote both increase in bifidobacteria and reduction of

Clostridium and Bacteroides pullulation in mouse gut [51].

Differentiation and maturation of dendritic cells
Blood of healthy volunteer donors was obtained from

cytapheresis after informed consent. Human peripheral blood

mononuclear cells (PBMC) were then isolated over Ficoll hypaque

and 26108 were plated in a 175 cm2 flask in complete culture

medium. After 45 min at 37uC, nonadherent cells were discarded

and adherent cells were cultured in the presence of 25 ng/mL

recombinant human IL-4 and 1000 IU/mL GM-CSF. After 5

days, 15 to 206106 cells were harvested, washed and resuspended

in culture medium with IL-4 and GM-CSF. DC purity was

97.3%+/21.4 SD (determined according to CD1a positive cells

by flow cytometry). Kinase inhibitors, when mentioned, were

added 1 hour before BbC50sn (100 mg/ml), LPS (50 ng/ml) or

Zymozan (25 mg/ml). DCs were harvested after stimulation,

washed and used for cytometry analysis or functional assays.

Analysis of cell surface molecules, measurement of
apoptosis and protein phosphorylation analysis by flow
cytometry

Monocyte-derived dendritic cells were harvested and 1 to

26105 cells/sample were resuspended in phosphate-buffered

saline (PBS). For maturation analysis, cells were then incubated

Figure 6. BbC50sn induced both Akt and p38MAPK phosphorylations. Akt and p38MAPK phosphorylations induced by either BbC50sn or
LPS or Zymosan in DC were evaluated at different times by flow cytometry and expressed in mean fluorescence intensity (MFI) for A) Akt; B)
p38MAPK. Black histograms represent staining of phosphorylated kinases and empty or gray histograms correspond to isotype controls for Akt and
p38MAPK respectively. These results are representative of one out of 2 experiments.
doi:10.1371/journal.pone.0002753.g006
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with saturating concentrations of the different fluorochrome-

conjugated monoclonal antibodies for 30 min at 4uC. The stained

cells were washed twice in PBS and fixed in 0.5% paraformalde-

hyde PBS solution until analysis by flow cytometry. Cell surface

expression was then analyzed using a laser flow cytometer

(FACSCantoH, BD, Mountain View, USA). Data were analyzed

for the percentage of marker-positive cells (at least 10,000 cells/

sample were analyzed using DivaH software (Becton Dickinson).

For measurement of apoptosis, DCs were incubated with

Annexin V and 7-AAD. The proportions of positive and negative

7-amino actinomycin D (7-AAD) and fluorescein isothiocyanate

(FITC)-labeled Annexin V cells were determined by flow

cytometry (FACSCantoH, Becton Dickinson). Double Annexin V

and 7AAD-negative cells corresponded to cell survival.

Signaling protein phosphorylations were studied by FACS.

Briefly, DC were incubated at 37uC with either BbC50sn or

Zymosan or LPS, then fixed and permeabilized using a

commercially available cell permeabilization reagent kit (Caltag

Laboaratories). Finally, cells were stained with specific Abs for

1 hour at room temperature, then washed once in PBS-2% human

albumin serum (HAS) and resuspended in PBS until analysis by

flow cytometry.

Cytokine quantification in culture supernatant.

Measurements of IL-12 (p70) and IL-10 levels were performed by

human enzyme-linked immunosorbent assay (ELISA) using

commercially available antibodies and standards according to the

manufacturer’s protocols (eBioscience).
Statistical analysis. Results are expressed as the

mean6standard deviation (SD) unless otherwise stated.

Comparison between samples with and without kinase inhibitors

was conducted using the Wilcoxon test for paired non-parametric

data. Analyses were performed using XLSTAT 2008 Software

V2.03. A value of p,0.05 was considered as significant.
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