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MANUSCRIPT 

Introduction 

Patients with renal impairment are problematic for endovascular therapists. Although frank 

renal failure is rare, it is common for progressive renal dysfunction to appear following 

endovascular aortic aneurysm repair(1) (EVAR). Patients undergoing EVAR are likely to 

have a pre-existing renal impairment, associated with their cardiovascular risk factors. 

Patients with severe renal failure or end-stage kidney failure are particularly exposed, 

following EVAR, to the short and medium-term risk of dialysis. Among the factors 

responsible for such complications, contrast-induced nephropathy(2, 3) (CIN) can be partly 

responsible for a deterioration in kidney function. CIN is defined as an increase in serum 

creatinine levels by ! 0.5 mg/dL, or ! 25%, with respect to the baseline value, within 72 

hours following a contrast radiography using an iodinated contrast medium(4). CIN is more 

frequent in arterial procedures(5) and occurs in 2% to 25% of cases, following coronary 

procedures(6-8). One of the risk factors of CIN is pre-existing renal impairment. Permanent, 

severe renal failure requiring dialysis could occur in up to 10% of patients who have received 

a coronary angiography(9). Although the incidence of CIN in EVAR could be similar, this has 

not been accurately evaluated. Several techniques have been described, allowing the 

incidence of CIN to be reduced. One of these involves minimizing the volume of contrast 

medium, since the occurrence of CIN is dose-dependent. Current guidelines in cardiology(5) 

state that: “the volume of contrast media should be the minimum necessary to obtain adequate 

radiographs”. Fusion imaging is an emerging technique, facilitating navigation and 

visualization during EVAR. While fusion is associated with a significant reduction in the 

volume of injected contrast agent(10), this technique still requires the intraoperative injection 

of a minimal volume and, in particular, a pre-operative computerized tomography 

angiography (CTA). In the present paper, we describe a new image processing technique 
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allowing the preoperative CT-scan to be artificially enhanced. The resulting image can be 

used for the fusion imaging guidance of EVAR procedures, without the need for pre- and 

intraoperative contrast media. We report on the short-term results achieved with patients with 

severe chronic kidney disease (CKD).  

 

Methods 

The study protocol was approved by our institutional review board. Patient informed consent 

was obtained for being registered anonymously in our database. From October 2013 to 

February 2014, every patient requiring aortic aneurysm repair and presenting with an end-

stage kidney failure (estimated glomerular filtration rate (eGFR)<15 ml/min/m2) or a severe 

renal failure (eGFR between 15 and 30 ml/min/m2) underwent pre-operative non-enhanced 

CT-scan and duplex scan imaging. 

Pre-operative image analysis 

The non-enhanced CT-scans were analysed with a dedicated 3D workstation (EndoSize(11), 

Therenva). Centrelines were manually extracted by selecting points at the centre of the vessels 

(aorta, common iliac and renal arteries) using axial, coronal and sagittal views. A plane 

orthogonal to the centrelines was then created in order to measure their diameters. Five key 

points (P2 to P6) were positioned, allowing length measurements to be made and suitable 

endografts to be selected (Fig. 1).  

A combination of several different image-processing functions allowed the pre-operative CT-

scans to be virtually enhanced, using in-house software developed by the Signal and Image 

Processing Laboratory. Firstly, a set of contours was extracted by manually adjusting a B-

spline curve (4 points) to the vessel lumen, in each of the cross-section planes (EndoSize). 

Using this technique, the contours extracted corresponded to the most external layer of the 

aorta (adventice). Secondly, from these curves, additional B-spline curves were created in the 
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longitudinal direction in order to build a “skeleton” of the vascular structure. The geometry of 

the vascular wall was then reconstructed by interconnecting the curves with a surface 

interpolation tool (Fig. 2) (Ansys DesignModeler). Finally, a binary volume with the same 

properties as the patient's CT-scan (dimensions, spacing…) was generated by rasterizing the 

mesh representing the vascular structure. The original patient CT-scan was then modified to 

enhance the contrast between the vascular structure and the surrounding tissues, by artificially 

increasing the value of the vascular structure voxels to 500 Hounsfield Units (HU) (Fig. 3). 

This method enhanced every voxels within the contours initially extracted and could not 

separate thrombus and vessel lumen. Vessel centreline (aorta, iliac and renal arteries) and key 

point representations were then added to the patient CT-scan, using the same method. A 3 mm 

diameter cylindrical mesh was used for the centrelines, and a larger diameter (5 mm) 

spherical mesh was used for the key points. These additional features were included in the 

CT-scan, through the use of density values lying outside the range of those corresponding to 

human tissues (> 3000 HU). 

Intraoperative imaging 

The surgical procedures were performed in the TheraImage Plateform Angiosuite at the 

Rennes University Hospital, France. The virtually enhanced pre-operative CT-scan was then 

imported into the Syngo software (Siemens Healthcare, Forchheim, Germany). In order to 

construct the fusion image, this software was used to match the pre-operative CT-scan with an 

intraoperative Cone Beam CT, recorded with a 270° c-arm rotation (Artis Zeego; Siemens 

Healthcare). The methodology used to construct this type of fusion image has been fully 

described in previous papers(12, 13), and was also applied in the present study. This process 

allowed the  virtually enhanced 3D vascular volume, including the centrelines and key points,  

represented by different colours (Fig. 4), to be projected onto the 2D live fluoroscopic image. 

The alignment of this projection was checked at the beginning of the procedure, by 
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catheterizing the lowest renal artery with a 0.014 inch guidewire, which was later retrieved. 

For the thoracic case, the left subclavian artery was catheterized with the same method.  

Following completion of the procedure, the patency of the aortic collaterals, the effective 

exclusion of the aneurysm, and the absence of any endoleak, were verified by an experienced 

radiologist using a duplex scan. For the thoracic case, a cardiologist came at the end of the 

procedure to perform a transesophageal duplex ultrasound.  

Post-operative imaging 

A second duplex scan and a non-enhanced CT scan were performed before discharge, and 

again one month later (duplex scan only). For the thoracic case, a second transesophageal 

duplex was performed before discharge but not at one month (only CT scan). To assess the 

accuracy of the stent-graft deployment, specific distances were measured, identifying the 

proximal and distal landing zones on the pre- and post-operative scans. In the case of 

abdominal aneurysms, the distance (L1 pre) between the lowest renal artery and the planned 

landing zone (key point P2) was measured, in addition to the distance (L2 pre) between the 

origin of the internal iliac artery and the planned distal landing zone (key points P5 and P6). 

In the case of thoracic aneurysm, these distances were measured between the subclavian 

artery and the proximal landing zone, and between the coeliac trunk and the distal landing 

zone. On the post-operative CT scan, the same measurements were performed: the distance 

(L1 post) between the top of the endograft (identified by gold markers) and the planned 

proximal landing zone (pre-operative key point P2); and the distance (L2 post) between the 

planned distal landing zone (key points P5 and P6) and the end of the endograft, were 

measured.  

The differences between “L1 pre” and “L1 post”, and between “L2pre” and “L2 post”, were 

therefore considered to be the errors in stent-graft placement at the proximal and distal 

landing zones, respectively.  
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Statistical analysis 

The data are presented as mean standard deviations for the quantitative variables, unless 

otherwise noted. The non-parametric Wilcoxon signed rank test was used to compare the 

variations in serum creatinine and eGFR levels. 

 

Results 

Six patients (one woman and five men, mean age 77.1 years) were treated for endovascular 

aneurysm repair (5 abdominal aneurysms and 1 descending thoracic aneurysm). The patients' 

demographic characteristics and pre-operative anatomic measurements are provided in 

Table 1.  The mean preoperative serum creatinine level (Scr) and eGFR was 295 µmol/l and 

19.6 ml/min/1.73 m-2 respectively.  

The procedures were performed under general anaesthesia. The percutaneous approach was 

used in all cases. Two Endurant, 2 Cook LP, and 1 Gore Excluder C3 stent-grafts were used. 

The technical success rate of these interventions was 100%. No contrast medium was used 

during any of the procedures. The mean fluoroscopic time was 21.1 min, and the mean 

radiation dose area was 8.1 mGy.m-2. No intraoperative endoleak was observed on the post-

operative duplex scan nor on those performed before discharge. The patient with a thoracic 

aneurysm was treated with a Valient Captivia delivery system, deployed below the subclavian 

artery and 45 mm above the celiac trunk. No endoleak was observed on transesophageal 

duplex.   

The post-operative follow-up was free of complications in all cases. The mean length of 

hospital stay was 5.2 days. The variations in eGFR and serum creatinine levels are provided 

in Table 2. No significant variation in Scr/eGFR was observed at 3 days (mean 

Scr/eGFR=280/20.5), at 1 week (mean Scr/eGFR=301/19.2) and at 1 month (mean Scr/eGFR 

=322/18.7). One patient required definitive dialysis at 35 days follow-up, in the context of a 
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coronary endovascular revascularization for an acute coronary syndrome. One type 2 

endoleak was noted on the patient's duplex scan at 1 month follow-up. The mean stent-graft 

placement errors at the proximal and distal landing zones were 1.33 mm and 6.5 mm, 

respectively. The details of the various reference distances measured in each patient are 

presented in Table 3.  

 

Discussion 

CIN is not as infrequent as commonly believed. In addition to acute kidney failure, patients 

developing CIN are also more exposed to adverse long-term events (14). It is thus 

indispensible that new techniques be developed, in an effort to reduce the use of contrast 

media during endovascular procedures. Canyigit et al.(15) have described the catheterization 

of the lowest renal artery during EVAR, with a mean contrast volume of 47 ml. This 

technique is simple, but still requires the use of a contrast medium. Alternatives to iodinated 

contrast agents, such as carbon dioxide (CO2), have been proposed. As a consequence of 

respiratory elimination, CO2 has no side effect on renal function, and the safety of its use in 

EVAR has been reported in several studies(16-18). Although no deterioration in renal 

function was reported in these studies, some of the data is contradictory. Whereas Chao et 

al.(16). reported longer fluoroscopy and operating room times, and increased radiation 

exposure, Criado et al.(17) observed the opposite effect. Recently, a prospective study(18) 

was conducted to assess the use of CO2 for the detection of endoleaks in EVAR. In this study, 

the iodinated contrast agent appears to lead to better results than CO2. Moreover, the 

widespread utilization of CO2 is limited by the difficulties associated with its use: a dedicated 

injector is required, and most practitioners are unfamiliar with the administration protocol. 

Finally, the use of CO2 leads to a risk of ischemia, resulting from the presence of undissolved 

gas in the bloodstream(19).  
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Fusion imaging is an emergent technology, which has been introduced into vascular surgery, 

and is practiced in hybrid rooms. This application can be used in computed-assisted 

surgery(20), thereby providing valuable information at the appropriate moment, contributing 

to decision making, and enhancing the security of endovascular procedures. Two studies(10, 

21) have revealed a significant reduction in the use of contrast media during complex 

endovascular aneurysm repair, and Kobeiter et al.(22) have reported the first zero contrast 

agent endovascular aneurysm repair to be achieved with fusion imaging. Concerning X-ray 

exposure, some of the results are contradictory(21, 23), thus calling for confirmation of these 

preliminary outcomes. McNally et al(24) recently reported a significant decrease of all 

intraoperative data during fenestrated procedure: X-ray exposure, procedure time and contrast 

usage. From our own experience (>100 EVAR carried out in a hybrid room), X-ray exposure 

in the hybrid room is greater than in a standard operating room, but also depends on the use of 

c-arm equipment. 

The use of fusion imaging with a non-enhanced pre-operative CT has not been previously 

described. The advantage of our process is that it leads to an overlay of not only the 3D aortic 

volume, but also the sizing information. In the first case treated by our team, since the neck 

diameter was irregular it was decided to deploy the endograft 11 mm below the lowest renal 

artery. By overlaying key sizing points (P2), it was thus possible to respect the planning. 

Although the pre-operative image processing required the participation of a team experienced 

in the use of this technology, it is now possible to apply this software process to any non-

enhanced CT-scan. The implementation of this software clearly has no side effects, and 

specific skills are no longer required during the procedure. Fusion with pre-operative 

magnetic resonance angiography (MRA) has also been reported, for the treatment of an 

internal iliac aneurysm(25). The sizing procedure for EVAR with MRA imagery is more 

complex. However, the pre-operative fusion of an MRA image and a non-enhanced CT-scan 
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(then used for intraoperative fusion) could be an advantageous solution for patients with 

CKD.  

Our protocol has some limitations. The process requires manual contouring of the aorta on the 

non-injected scan. This step is assisted by the software, but nevertheless takes approximately 

30 minutes. The whole process is therefore difficult to use in emergency situations. This 

technology is not currently available elsewhere than in our centre. The long-term outcome of 

procedures using this technology remains to be determined. As mentioned in the description 

of the technique, the artificial enhancement cannot assess the location of the thrombus. But 

we usually size EVAR adventice to adventice, so thrombus is therefore no important. Even 

tough there was thrombus at the proximal neck, these patients would underwent EVAR 

because they were deemed unfit for open repair. The detection of any endoleak after 

completion of the procedure could be underestimated, because the ultrasound techniques 

dedicated to vascular procedures could be less sensitive than those used during follow-up 

examinations. Nevertheless, radiologists have confirmed that a significant endoleak can be 

realistically detected, even with the ultrasound devices commonly employed in vascular 

procedures. The positional errors in stent-graft placement reported in our study are 

reasonable. Even when procedures are carried out with a contrast agent, this parameter is 

rarely measured. The distal landing zone errors are greater than the proximal landing zone 

errors, which can be explained by the deformation of iliac arteries resulting from the use of 

stiff guidewires. There are differences in the iliac artery lengths, between those measured on 

the pre-operative CT-scan and those measured during procedures. This discrepancy can lead 

to accidental hypogastric coverage, and we are currently evaluating the use of numerical 

simulations to anticipate such deformations(26).  

Conclusion 

In the present study, we describe the first known implementation of an EVAR procedure 



 

 10 

without the use of any pre- or intraoperative contrast agents. This was achieved through the 

use of specific software applied to fusion imaging. The artificial enhancement of CT-scans is 

a new process, among various alternatives to the use of iodinated contrast agents, and is 

intended for the case of patients with severe CKD. Long-term results with a larger cohort are 

needed, before the accuracy of this technology can be confirmed.  
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Fig. 1 Non injected 3D aortic volume. For sizing and planning 5 keys points are placed: 
proximal landing zone (P2) ; end of proximal neck (P3) ; aortic bifurcation (P4), right and left 
distal landing zone (P5, P6) 

 
 
Fig. 2  From the CT-scan, coutours of the aorta are exported in a software (Ansys 
DesignModeler) allowing a connection between them with a surface interpolation tool.  
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Fig. 3 Preoperative CT-scan before (A,C) and after (B,D) artificial enhancement on axial view 
(A, B) and on 3D view (C,D). Centerlines are added to the 3D view (D) and external iliac 
arteries not represented.  
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Fig.4: During the procedure, different information can be overlaid onto the native 2D 
fluoroscopic image (A). Centerlines and keys points can be projected (B), as the artificially 
enhanced aortic volume. 
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Table 1 Patients' characteristics and intraoperative data. 
 Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 (t)* Patient 6 
Age (years) 80 74 79 87 84 62 

Aneurysm diameter (mm) 54 52 43** 55 65 51 

Neck length (mm) 35 15 34 38 35 17 

Fluoroscopic time (min) 24.2 20.8 24.3 9.1 15.1 33 

Dose area product (mGy/m-2) 13.8 10.5 5 6.2 5.7 7.1 

 * patient with a descending thoracic aneurysm  
**patient with a false aneurysm 
 
Table 2. eGFR at baseline, 3 days after the procedure, and at 1 month follow-up.   
 Patient 1 Patient 2 Patient 3 Patient 4 Patient 5  Patient 6 P value** 
Pre-operative Scr/eGFR 355/15 291/19 347/12 190/30 375/14 210/28  

3 days post-operative Scr/eGFR 313/18 260/22 356/11 202/28 332/16 214/28 0.4/0.34 

1 week post-operative Scr/eGFR 425/12 277/20 304/14 192/29 389/13 220/27 0.75/0.59 

1 month post-operative Scr/eGFR 553/10* 277/20 307/14 190/29 376/14 230/25 0.79/0.5 

Scr Serum creatinine level (µmol/l), eGFR estimated glomerular filtration rate (ml/min/1.73m-2) 
*Patient requiring definitive dialysis in the context of endovascular coronary revascularization  
** p value from the Wilcoxon signed rank test comparing preoperative Scr/eGFR with the 3 days, 1 week and 1 month data 
 
Table 3. Distances used for the assessment of stent-graft placement accuracy.  
 Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 (t)*  Patient 6 
L1 pre (mm) 11 0 12 0 0 0 

L1 post (mm) 11 1 14 3 2 0 

Stent-graft placement error at 

proximal landing zone (mm) 
0 1 2 3 2 0 

L2 pre (mm) (r/l) ** 5/16 0/0 19/22 8/6 56 4/10 

L2 post (mm) (r/l)** 26/15 12/11 24/17 6/6 45 5/18 

Stent-graft placement error at distal 

landing zone (mm) 
21/1 12/11 5/5 2/0 5 1/8 

L1 pre: distance between the lowest renal artery and key point P2  
L1 post: distance between the lowest renal artery and the proximal extremity of the endograft   
L2 pre: distance between the origin of the internal iliac artery and the key points P5 (right) or P6 (left)  
L2 post: distance between the origin of the internal iliac artery and the extremity of the limb endograft 
* patient with a descending thoracic aneurysm, distances were measured between the subclavian artery and the proximal landing zone (L1 
pre and post), and between the coeliac trunk and the distal landing zone (L2 pre and post)  
** right distal landing zone/left distal landing zone 
 


