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O-GlcNAcylation is a reversible post-translational modification that regulates the activities
of cytosolic and nuclear proteins according to glucose availability.This modification appears
to participate in several hyperglycemia-associated complications. An important feature of
metabolic diseases such as diabetes and obesity is the presence of a low-grade chronic
inflammation that causes numerous complications. Hyperglycemia associated with the
metabolic syndrome is known to promote inflammatory processes through different mech-
anisms including oxidative stress and abnormally elevated protein O-GlcNAcylation. How-
ever, the role of O-GlcNAcylation on inflammation remains contradictory. O-GlcNAcylation
associated with hyperglycemia has been shown to increase nuclear factor κB (NFκB)
transcriptional activity through different mechanisms.This could contribute in inflammation-
associated diabetic complications. However, in other conditions such as acute vascular
injury, O-linked N -acetyl glucosamine (O-GlcNAc) also exerts anti-inflammatory effects via
inhibition of the NFκB pathway, suggesting a complex regulation of inflammation by O-
GlcNAc. Moreover, whereas macrophages and monocytes exposed to high glucose for a
long-term period developed a pro-inflammatory phenotype, the impact of O-GlcNAcylation
in these cells remains unclear. A future challenge will be to clearly establish the role of
O-GlcNAcylation in pro- and anti-inflammatory functions in macrophages.

Keywords: O-GlcNAc glycosylation, diabetes, metabolic syndrome, inflammation, cytokines, macrophages, nitric
oxide, NFκB

INTRODUCTION
In the last decades, changes in lifestyle, including excessive energy
intake and consumption of food enriched in saturated fat, com-
bined with the lack of physical activity, have led to a dramatic
increased prevalence of pathologies such as diabetes, obesity,
and atherosclerosis. These pathologies are part of the metabolic
syndrome, which constitutes one of the major threats to global
health.

It is now well established that these metabolic diseases are
associated with a low-grade chronic inflammation (1) that causes
complications such as nephropathy, neuropathy, retinopathy, and
atherosclerosis, and contributes to morbidity and mortality asso-
ciated with the metabolic syndrome. This low-grade inflammation
is characterized by an abnormal cytokine production. Thus, it has
been demonstrated that the adipose tissue of obese individuals
produce higher levels of the pro-inflammatory cytokine tumor-
necrosis factor α (TNFα) and other pro-inflammatory factors
such as interleukin (IL) 6 (1). The excessive amount of nutritional
lipids might have a role not only in the pathogenesis of obesity-
associated insulin resistance but also in the chronic inflammation
associated with this condition. Indeed, free fatty acids can acti-
vate the lipopolysaccharide (LPS) receptor toll-like receptor (TLR)
4 and induce the production of pro-inflammatory cytokines by
macrophages (2). Not only lipids but also high-glucose concentra-
tions are involved in inflammatory processes (3, 4). High glycemic
index diets appeared to play a key role in the establishment and

persistence of inflammation (5–7). In contrast, a 4 weeks food
restriction in obese patients was sufficient to significantly reduce
oxidative stress (8).

It is well documented that hyperglycemia associated with the
metabolic syndrome promotes abnormally elevated protein O-
GlcNAcylation, which participates in the glucotoxicity phenome-
non (9). O-GlcNAcylation is a reversible post-translational modi-
fication consisting in the addition of N -acetylglucosamine to ser-
ine or threonine on cytosolic and nuclear proteins (Figure 1). Only
two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase
(OGA), control the level of O-linked N -acetyl glucosamine (O-
GlcNAc) on proteins. OGT uses UDP-GlcNAc, produced through
the hexosamine biosynthetic pathway (HBP) to O-GlcNAcylate
proteins, whereas OGA removes O-GlcNAc from proteins. Thus,
according to glucose availability and its flux through the HBP,
O-GlcNAcylation modulates protein functions by regulating their
sub-cellular localization, stability, interaction with protein part-
ners, or activity. More than 1000 proteins have now been identified
as target of this modification, including transcription factors (10–
17) and signaling molecules (9, 18–22) involved in glucose and
lipid metabolism, insulin resistance, and inflammation. In addi-
tion to glucose, the O-GlcNAc also includes amine and acetyl
moieties, and therefore also integrates amino-acids (glutamine)
and fatty acid (AcetylCoA) metabolisms, suggesting that the avail-
ability of other nutrients may also be sensed by this pathway. Thus,
infusion of a lipid emulsion in rats induced a twofold increase in
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FIGURE 1 | Protein O-GlcNAcylation depends on the flux of glucose
through the hexosamine biosynthesis pathway. A small fraction of the
glucose entering the cell feeds the hexosamine biosynthetic pathway
(HBP) to produce UDP-GlcNAc, the substrate used by
O-GlcNAc-transferase (OGT) to add N -acetyl glucosamine on serine or
threonine residues of cytosolic or nuclear proteins. This dynamic and
reversible post-translational modification controls the activity, the
localization, or the stability of proteins according to glucose availability.
Glucose enters the HBP as fructose-6-phosphate. The latter is converted to
glucosamine-6-phosphate by the glutamine:fructose-6-phosphate
amidotransferase (GFAT), the rate limiting enzyme of the pathway. After a

subset of reactions, UDP-N -acetylglucosamine (UDP-GlcNAc) is generated
and used by OGT to add GlcNAc on serine or threonine residues of target
proteins. The O-GlcNAc moiety is removed from O-GlcNAc-modified
proteins by the O-GlcNAcase (OGA). Experimentally, O-GlcNAcylation of
proteins can be increased by incubating the cells with high concentrations
of glucose, or with glucosamine, which bypass the rate limiting step
catalyzed by GFAT. Inhibitors of OGA such as
O-[2-acetamido-2-deoxy-D-glucopyranosylidene] amino-N -phenylcarbamate
(PUGNAc) or (3aR,5R,6S,7R,7aR)-2-(ethylamino)-3a,6,7,7a-tetrahydro-5-
(hydroxymethyl)-5H-Pyrano[3,2-d]thiazole-6,7-diol (Thiamet-G) can also be
used to increase the O-GlcNAc level on proteins.

UDP-GlcNAc content in skeletal muscle, associated with insulin
resistance. Moreover, fatty acids can directly regulate the expres-
sion of glutamine:fructose-6-phosphate amidotransferase (GFAT)
(23) and other enzymes of the HBP pathway (24) in muscle and
pancreatic β-cell. Therefore, increased nutrients, and particularly
increased blood glucose and fatty acids levels associated with excess
food intake, obesity, and/or diabetes, are likely to impact numer-
ous cellular processes, including those involved in inflammation,
through protein O-GlcNAcylation.

O-GlcNAcylation, DIABETIC COMPLICATIONS, AND
INFLAMMATORY PROCESSES
A number of experimental data have suggested the involve-
ment of the HBP in pathological manifestations of the metabolic
syndrome, such as diabetic associated-kidney disease. Indeed,
one-third of diabetic patients will develop diabetic nephropa-
thy, a chronic microvascular complication leading to a progressive
decline in renal function, decreased glomerular filtration rate and
proteinuria. Clinical trials have demonstrated that high glucose is
central to the pathogenesis of diabetic nephropathy (25), and the
beneficial effect of glycemia correction on renal complications has

been demonstrated (26). Mesangial cells are smooth muscle-like
pericytes that surround the filtration capillaries within glomeru-
lus (27). In these cells, glucose flux, through the HBP pathway,
regulates the expression of pro-fibrotic factors such as trans-
forming growth factor β1 (TGFβ1) and plasminogen activator
inhibitor 1 (PAI-1), and extracellular matrix components (28,
29), at least in part via the O-GlcNAcylation of transcription fac-
tors such as Sp1 (11, 30). In mesangial cells, the HBP pathway
also regulates the expression of pro-inflammatory factors such
as vascular cell adhesion molecule-1 (VCAM-1), IL6, and TNFα,
through the nuclear factor κB (NFκB) pathway (31). Abnormal
activation of the NFκB pathway is certainly a major contributor
in inflammation-associated diabetic complications. In vascular
smooth muscle cells, high-glucose conditions resulted in NFκB
activation (32). Peripheral blood mononuclear cells isolated from
patients with diabetic nephropathy showed an increased activation
of NFκB that could be corrected by anti-oxidant treatment (33,
34). Glucose oxidative stress is obviously central to glucotoxicity in
diabetic conditions (35), and a link between hyperglycemia, oxida-
tive stress, and O-GlcNAcylation has been proposed, reinforcing
the potential involvement of O-GlcNAcylation in inflammation
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(36, 37). Therefore, exploring the potential regulation of NFκB
activity by O-GlcNAcylation in different settings is of paramount
importance.

O-GlcNAcylation AND THE NFκB PATHWAY
The transcription factor NFκB is involved in a large number
of cell functions including apoptosis, cell survival, and differen-
tiation, and is critical to immune response and inflammation.
NFκB family comprises five proteins, p65 (RelA), RelB, c-Rel,
p105/p50 (NFκB1), and p100/52 (NFκB2) that associate to form
distinct homo and hetero-dimeric complexes (38–40). In non-
stimulated cells, NFκB is inactive and is retained in the cytoplasm
by the inhibitor of κB (IκB) (Figure 2). Upon stimulation by
pro-inflammatory cytokines, LPS, or growth factors, IκB is phos-
phorylated by the IκB kinase (IKK). This phosphorylation leads
to IκB ubiquitination and proteosomal degradation. Free NFκB
can then translocate into the nucleus to activate its target genes
(38–40).

Nuclear factor κB activation has been implicated in the meta-
bolic syndrome and in diabetes pathogenesis (43–46). Because
NFκB is mainly regulated by post-transcriptional modifications
(with an important role of phosphorylation and acetylation), and
because high glucose is known to activate NFκB and stimulate
its target genes, different studies focused on the potential role of
O-GlcNAc on NFκB activation.

O-GlcNAcylation AS A POSITIVE REGULATOR OF NFκB ACTIVITY
In the first study addressing this question, mesanglial cells treated
with glucosamine or high-glucose exhibited an increased nuclear
protein binding to NFκB consensus sequences in an electromo-
bilty shift assay, correlated with O-GlcNAcylation of p65 (31). This
observation suggested that NFκB O-GlcNAcylation could play a
part in inflammatory processes. However, in that first study, the O-
GlcNAc modification sites on NFκB had not been identified and
the mechanism by which O-GlcNAc modification led to NFκB
activation remained unclear (31).

It now clearly appears that different mechanisms, acting at var-
ious cellular levels, are involved in the effects of O-GlcNAcylation
on activation of NFκB signaling. First, O-GlcNAcylation can regu-
late the interaction between NFκB and its inhibitor IκB. In porcine
vascular smooth muscle cells, it has been demonstrated that down-
regulation of O-GlcNAcylation mediated by OGA over-expression
inhibits hyperglycemia-induced NFκB activation. In contrast, an
increase in O-GlcNAcylation mediated by OGT over-expression
increases NFκB activity (41). These effects were due to an increase
in O-GlcNAcylation of RelA on T352 that decreases its affinity
for IκB, leading to an increased nuclear translocation of RelA
[Figure 2A (I)]. This could contribute to the sustained activa-
tion of NFκB that is associated with diabetes (41). Another study
indicated that O-GlcNAcylation increases NFκB transcriptional
activity by promoting its acetylation (42). Indeed, chromatin
immunoprecipitation assays demonstrated that, upon induction
with TNFα , OGT localizes to NFκB-regulated promoters. OGT
siRNA experiments showed that OGT protein was required for
NFκB-dependent transcription. The mechanism involved was the
attachment of O-GlcNAc moiety to T305 on RelA that promoted
NFκB transcription by potentiating p300-dependent acetylation
on K310 [Figure 2A (II)] (42).

The O-GlcNAcylation of NFκB also appears to play an impor-
tant role in the immunity and the production of pro-inflammatory
cytokines by T lymphocytes. Golks et al. first showed that OGT
was necessary for activation of T lymphocytes by the T-cell recep-
tor (TCR), inducing O-GlcNAcylation of p65 and stimulation
of NFκB-dependent transcription (47). More recently, it was
reported that in these cells, the c-Rel subunit of NFκB was modified
by O-GlcNAcylation on Ser 350 [Figure 2A (III)]. This modifica-
tion increased c-Rel transcriptional activity and was necessary for
c-Rel mediated expression of IL2, IFNG, and CSF2 in response to
TCR activation (48). Importantly c-Rel O-GlcNAcylation was not
required for TNFα- or TCR-induced expression of other NFκB tar-
get genes, such as NFKBIA (which encodes IκBα) and TNFAIP3
(which encodes A20), indicating a gene specific requirement of
c-Rel O-GlcNAcylation (48). These results suggest that during
chronic hyperglycemia, an increase in c-Rel O-GlcNAcylation
could contribute to type-1 diabetes progression by enhancing the
production of Th1 pro-inflammatory cytokines, leading to pan-
creatic β cells destruction (48, 49). Finally, O-GlcNAcylation of
IKK [Figure 2A (IV)] has also been demonstrated, resulting in
an increase in its kinase activity, leading to subsequent increase
in phosphorylation, and degradation of IκB and stimulation of
NFκB activity in cancer cells (50). Whether this mechanism is also
operative in the context of hyperglycemia-induced inflammation
remains to be evaluated.

O-GlcNAcylation AS A NEGATIVE REGULATOR OF NFκB ACTIVITY
Whereas O-GlcNAcylation is generally found associated with an
increased in NFκB activity in diabetic conditions, in some situa-
tions, O-GlcNAc appears, however, to reduce its pro-inflammatory
activity (51–53). Thus, in a rat model of trauma-hemorrhage fol-
lowed by fluid resuscitation, increased O-GlcNAcylation induced
by glucosamine or PUGNAc significantly improved cardiac func-
tion and peripheral organ perfusion, and decreased the circulating
levels of pro-inflammatory cytokines TNFα and IL6 (51, 52).
These authors observed that increased O-GlcNAcylation reduces
IκB phosphorylation and NFκB signaling in cardiac tissue from
trauma-hemorrhage treated rats. Moreover, O-GlcNAcylation-
inducing treatments appear to have anti-inflammatory and vaso-
protective effects during acute vascular injury (54, 55). Indeed,
Xing et al. showed that in rat aortic smooth muscle cells, O-
GlcNAcylation of p65 NFκB upon PUGNAc or glucosamine treat-
ment was accompanied by a reduction in TNFα-induced phos-
phorylation on serine 536, resulting in increased association of
NFκB with IκB, decreased NFκB activity and inhibition of the
production of pro-inflammatory mediators (Figure 2B) (53).

It therefore appears that, depending on the cellular context and
type of insult (chronic hyperglycemia versus acute vascular injury),
O-GlcNAcylation may have different effects on the NFκB pathway,
resulting in either pro- or anti-inflammatory outcomes.

O-GlcNAcylation AND MACROPHAGE ACTIVITY
Monocytes and macrophages play central roles in acute and
chronic inflammatory processes. As mentioned previously, insulin
resistance, obesity, and diabetes are associated with recruit-
ment of pro-inflammatory monocytes/macrophages in differ-
ent organs, including adipose tissue, liver, pancreas, as well as
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FIGURE 2 | O-GlcNAcylation regulates NFκB transcriptional activity
through different mechanisms. (A) O-GlcNAcylation stimulates NFκB
transcriptional activity. High-glucose conditions are known to promote
inflammatory processes through different mechanisms, including
increased O-GlcNAcylation of NFκB. Several mechanisms have been
described that could account for increased transcriptional activity of this
factor upon O-GlcNAcylation. (I) O-GlcNAcylation of p65/RelA on T352
decreases its affinity for IκB, resulting in increased in its nuclear
localization and transcription of its target genes (41). (II) O-GlcNAcylation
of T305 on RelA promotes NFκB transcriptional activity by potentiating its
p300-dependent acetylation on K310 (42). (III) O-GlcNAcylation of c-Rel
on S350. This modification increases c-Rel DNA binding and

transcriptional activity. (IV) O-GlcNAcylation of the β-subunit of IKK on
Ser733 stimulates its activity, resulting in increased phosphorylation and
degradation of IκB, and thereby increased NFκB activity.
(B) O-GlcNAcylation inhibits NFκB transcriptional activity.
O-GlcNAcylation-inducing treatments appear to have anti-inflammatory
and vaso-protective effects during acute vascular injury. In rat aortic
smooth muscle cells, O-GlcNAcylation of NFκB specifically inhibits its
phosphorylation on Ser 536, while leaving other phosphorylation sites
unaffected. This results in increased NFκB binding to IkB, inhibition of
TNFα-induced NFκB DNA binding, and reduction of expression of genes
coding for inflammatory mediators (TNFR, TNFα receptor; TCR, T-cell
receptor; IKK, Iκ kinase).
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blood vessels wall (56–62). Numerous studies have shown that
macrophages/monocytes submitted to long-term exposure to
high-glucose concentrations developed a pro-inflammatory phe-
notype. Indeed, in human monocytic cells THP1, high glucose
(15 mmol/L) for 72 h increased gene expression of the pro-
inflammatory factors monocyte chemotactic protein 1 (MCP1),
IL1β, and TNFα. Of interest, in this study, the NFκB activa-
tion played an important role in the high glucose-induced MCP1
transcription (63). In THP1 cells, exposure to high glucose also
increased the RNA and protein levels of TLR2 and TLR4, which
play key roles in innate immune response and inflammation. TLR2
and TLR4 activate MyD88 dependant signaling and induce NFκB
transactivation, leading to the production of pro-inflammatory
cytokines. These up-regulations of TLR2 and TLR4 under high-
glucose condition seemed at least in part mediated by protein
kinase C (PKC) (64). In RAW 264.7, a murine macrophages cell
line, high-glucose alone did not induce inflammatory mediator
expression but increased inducible nitric oxide synthase (iNOS)
expression and nitric oxide (NO) production in response to LPS.
This effect appeared to be mediated by NFκB activation (65).
High-glucose also increased IL1β secretion from LPS activated
macrophages, a risk factor in diabetes that contributes to pancre-
atic β-cell damage (66). This effect appeared to involve activation
of ERK1/2, JNK1/2, and PKCα and δ in macrophages cultured in
high-glucose conditions (65).

In vivo hyperglycemia also affects the inflammatory pro-
file of macrophages. An increased pro-inflammatory profile
was observed in peritoneal macrophages from mice two weeks
after diabetes induction with alloxan or streptozocin (67, 68).
However, peritoneal macrophages from mice with 4 months
streptozotocin-induced diabetes displayed complex modification
of the pro-inflammatory profile, with increased NO production
but decreased TNFα and IL6 in response to LPS stimulation
(69). Another study showed impaired inflammatory response
to multiple TLR ligands in alveolar macrophages from 2 weeks
streptozotocin-induced diabetic mice (70). Therefore, in vivo
hyperglycemia may have complex effects on macrophages func-
tions, depending on their tissue of origin and on the duration of
the diabetes.

High-glucose concentrations may affect macrophages func-
tions through numerous mechanisms, including oxidative stress,
activation of PKC, and/or MAP kinases, advanced glycation end
products, as well as protein O-GlcNAcylation. Only a few studies
evaluated the role of O-GlcNAcylation in macrophages functions,
and contradictory results were obtained.

In the human monocyte THP1 cell line, high-glucose concen-
trations and PUGNAc increased the expression and the secretion
of macrophage inflammatory protein MIP1α and β through OGT
dependent epigenetic mechanisms (71).

On the other hand, glucosamine exerted neuroprotective effects
via suppression of post-ischemic microglia inflammation in rat
brain after ischemia/reperfusion injury (72). Accordingly, in cul-
tured mouse BV2 microglial cells and RAW264.7 macrophages,
Hwang et al. observed that glucosamine suppressed LPS-induced
up regulation of pro-inflammatory molecules by inhibiting NFκB
activation by LPS. Glucosamine, which bypass the rate limit-
ing step of the HBP, is often used to increase O-GlcNAcylation

in cells. Unexpectedly, in this study, glucosamine induced a
decrease in NFκB O-GlcNAcylation. This counter-intuitive result
was explained by an inhibitory effect of glucosamine on an
LPS-induced interaction between OGT and NFκB (72). More
recently, the same group obtained similar results with cRel in
BV2 microglial cells, showing glucosamine inhibition of LPS-
induced cRel-OGT interaction, associated with decreased O-
GlcNAcylation of c-Rel and subsequent inhibition of its tran-
scriptional activity (73). However, the mechanism by which glu-
cosamine may interfere with the LPS pathway and affect OGT-
NFκB interaction was not elucidated. For instance, the specific
effect of increasing O-GlcNAcylation levels using PUGNAc or
Thiamet-G was not evaluated in theses studies. Glucosamine, by
increasing UDP-GlcNAc in the cell, may also affect complex glyco-
sylations of proteins. Thus, it is possible that glucosamine effects
were mediated by modification of N-linked glycosylation of recep-
tors and/or secreted proteins, as suggested previously in a study
using macrophage cell lines (74). Moreover, depending on the
experimental setting, glucosamine may also induce ATP depletion
(75) or promote oxidative stress (76). Therefore, glycosylation-
independent effects might also play a role in the paradoxical effect
of glucosamine on NFκB O-GlcNAcylation state. Further confu-
sion was provided by an additional study by Hwang et al. (77),
which showed that over-expression of OGT unexpectedly reduced
the transcriptional activity of NFκB both in the absence and
presence of glucosamine, resulting in inhibition of LPS-mediated
expression of the NFκB target gene iNOS.

Innate immune signaling initiated by interaction of pathogen
ligands with TLRs induces iNOS expression, and, subsequently,
the production of NO, which not only plays a role as a bacte-
ricidal agent but also act as an intracellular mediator. Indeed,
S-nitrosylation of cysteine thiols regulates protein activities in
NO-generating cells. Complex interactions between NO signal-
ing and O-GlcNAcylation pathway have been suggested. Thus,
in RAW264.7 cells and in mice peritoneal macrophages, Ryu
et al. observed that LPS treatment induces increased global S-
Nitrosylation of proteins, concomitant with a paradoxical deni-
trosylation of S-nitrosylated OGT (78). Denitrosylation of OGT
was associated with an increase in its catalytic activity, suggesting
a potential mechanism for LPS-induced O-GlcNAcylation of p65
and subsequent production of pro-inflammatory cytokines (78).
On the other hand, in N9 microglia cells, Zheng et al. observed that
LPS induced a (modest) reduction in global O-GlcNAcylation of
proteins, associated with a reduction in OGT protein level (79).
Clearly, additional work will be needed in order to untangle the
complex relationships between OGT and p65 and their poten-
tial regulation by LPS, glucosamine, and S-nitrosylation signaling
pathways, and to firmly establish their relative role in pro- and
anti-inflammatory functions in macrophages.

CONCLUSION
Whereas the implication of hyperglycemia in metabolic syndrome-
associated inflammation is now well established, the involvement
of O-GlcNAcylation appears complex, with both pro- and anti-
inflammatory effects associated with this modification, depending
on the type and duration (acute versus chronic) of the insult (80).
In agreement with a dual effect of O-GlcNAc on inflammation,
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O-GlcNAcylation of NFκB, through an array of different mecha-
nisms, can have both positive and negative effects on its activity
depending on pathophysiological models and cell types (31, 41,
42, 47, 48, 51, 52, 81).

Recent data suggested that O-GlcNAcylation in the immune
system may participate in the pathogenesis of both type-1 and
type-2 diabetes (48, 49). Interestingly, O-GlcNAcylation was dis-
covered 30 years ago in immune cells (82), and dynamic changes
in O-GlcNAc levels upon lymphocyte activation were detected
as early as the beginning of the nineties (83). However, only a
limited amount of studies have investigated the function and reg-
ulation of this modification in immune cells, and very few works
concern macrophages biology. This is indeed an emerging field,
with many deficiencies in the existing knowledge. Several impor-
tant points should be addressed in the future. Thus, the role of
OGT and O-GlcNAcylation on macrophage functions (phagocy-
tosis, ROS production in the phagosome, cytokine expression and
secretion, M1 versus M2 polarization, etc.) should be thoroughly
investigated. Ideally, these studies should be performed using pri-
mary cultured macrophages rather than in cell lines. In addition,
the consequences of in vivo chronic hyperglycemia on protein O-
GlcNAcylation in macrophages should also be evaluated. In this
context, the development of macrophages specific OGT or OGA
knock-out mice should provide important clues on the role of this
modification in hyperglycemia-induced inflammation. Therefore,
a large continent in the O-GlcNAc world remains to be explored.
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