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Abstract 

Implication of the long-chain fatty acid (LCFA) receptor GPR120, also termed free fatty acid receptor 4 

(FFAR4), in the taste-guided preference for lipids is a matter of debate. To further unravel the role of 

GPR120 in the “taste of fat”, the present study was conducted on GPR120-null mice and their wild-type 

littermates. Using a combination of morphological (i.e. immunohistochemical staining of circumvallate 

papillae - CVP), behavioral (i.e. two-bottle preference tests, licking tests and conditioned taste aversion) 

and functional studies (i.e. calcium imaging in freshly isolated taste bud cells - TBC), we show that absence 

of GPR120 in oral cavity was not associated with changes in i) the gross anatomy of CVP, ii) the LCFA-

mediated increases in [Ca2+] i, iii) the preference for oily and LCFA solutions and iv) the conditioned 

avoidance of LCFA solutions. In contrast, the rise in [Ca2+] i triggered by grifolic acid (GA), a specific 

GPR120 agonist, was dramatically curtailed when GPR120 gene was lacking. Taken together these data 

demonstrate that activation of lingual GPR120 and preference for fat are disconnected, suggesting that 

GPR120 expressed in TBC is not absolutely required for the oral fat detection in the mouse. 

 

Keywords: Lipids; Diet and dietary lipids; Nutrition; Receptors; G-Protein; Fat taste; Feeding Behavior; 

Mouse; GPR120. 
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Introduction 

A growing number of studies strongly suggest that, in addition to textural, olfactory and post-ingestive cues, 

the oro-sensory detection of lipids involves a taste component dependent on long-chain fatty acids (LCFA). 

LCFA are mainly released from triglycerides by the salivary lipases (1-3). The plasma membrane receptor 

CD36 is thought to play a significant role in this taste detection system. Firstly, CD36 displays a high affinity 

for LCFA (4) and its expression in lingual epithelium is restricted to the gustatory papillae in the rat (5), 

mouse (6) and human (7). Secondly, a LCFA-dependent signaling cascade leading to a huge rise in 

intracellular calcium levels ([Ca2+] i) was specifically found in mouse CD36-positive taste bud cells (TBC), 

associated with neurotransmitters release (8, 9). Thirdly, the activation of the nucleus of the solitary tract in 

the brainstem after an oral fat deposition is CD36-dependent (8). Finally, there is a tight correlation between 

CD36 gene expression and oral fat detection sensitivity: CD36 disruption rendered mice unable to properly 

detect, and prefer, low concentrations of lipids (6, 10, 11). Similarly, siRNA-targeted depletion of CD36 

expression in gustatory papillae decreased oral lipid detection performance in rats (12). In human, subjects 

expressing the A/A alleles at the gene variant rs1761667, which reduces CD36 expression (13), displayed a 

higher detection threshold (i.e. a lower sensitivity) for lipids than G/G controls (2) and showed a greater 

attraction for added fats and oils (14). 

Recently, two members of the G-protein coupled receptor (GPCR) family, GPR40 (FFAR1) and GPR120 

(FFAR4), known to bind and be activated by medium- and long-chain fatty acids, were reported to be also 

implicated in oral lipid sensing in the mouse (15). A low gustatory nerve response to LCFA and a decreased 

preference for linoleic or oleic acids (LA, OLA) were found both in GPR40-/- and GPR120-/- mice (15). 

Nevertheless, a role of GPR40 as gustatory lipid sensor is questionable since this GPCR has not been found 

by others in the mouse (16), rat (17) and human (18) taste buds. In contrast, GPR120 was systematically 

detected in murine and human gustatory papillae (11, 15, 18) in which it was frequently co-expressed with 

CD36 (11, 19). This last observation raises the question of the respective role(s) of these two LCFA 

receptors in the coding mechanisms eliciting the oro-sensory detection of dietary lipids at the periphery. It 
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has recently been shown that CD36 and GPR120 have non-overlapping roles in the LCFA-mediated 

signaling in human TBC (19). Whether GPR120 plays a primary role in the oral fat detection and preference 

remains a subject of debate. In contrast to prior results (15), a recent study reported that GPR120-/- mice did 

not differ from wild-type mice in their preference for Intralipid (20), a fat emulsion composed of soy bean 

oil, egg phospholipids and glycerin, suggesting that GPR120 might not be essential for oral fat detection. 

Although these two studies were conducted using the same GPR120 KO mouse model, a direct comparison 

between these two sets of data is uneasy by reason of deep differences in the lipid stimuli used, which were 

either free LCFA (15) or lipid micelles (20). In another report, despite a specific activation of their afferent 

gustatory fibres, wild-type mice were unable to detect and prefer non-fatty acid GPR120 agonists during 

behavioral tests (21). Consistent with this behavioral data, healthy humans subjected to a two-alternative 

forced choice test were also unable to detect these GPR120 agonists (21). Altogether these new findings 

suggest that the ligand binding activation of lingual GPR120 is not sufficient to generate a typical food 

choice. These contradictory reports render confused the role played by GPR120 in the preference for fat. To 

unravel the GPR120 function in the lingual gustatory epithelium, a set of behavioral tests (two-bottle 

preference tests, licking tests and conditioned taste aversion) associated to functional experiments (calcium 

imaging studies on freshly isolated TBC) were conducted in GPR120-/- mice and their wild-type littermates.  
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Materials and methods 

Animals 

French guidelines for the use and care of laboratory animals were followed and experimental protocols were 

approved by the animal ethic committee of the University of Burgundy. GPR120-deficient mice on C57Bl/6 

background were generated by homologous recombination leading to the replacement of exon 1 by a PGK-

neo cassette (21). Animals were individually housed in a controlled environment (constant temperature and 

humidity, dark period from 7 p.m. to 7 a.m.). The mice had free access to regular chow and tap water during 

the experiments, unless otherwise specified. GPR120-/- mice and GPR120+/+ littermate controls were locally 

generated by mating of heterozygous animals. Genotypes of animals were determined by PCR using 

previously published procedures (21).  

 

Tissues and blood samples 

Mouse circumvallate papillae (CVP) were isolated according to the procedure described elsewhere (6). 

Briefly, lingual epithelium was separated from connective tissue by enzymatic dissociation (elastase and 

dispase mixture, 2 mg/mL each in Tyrode buffer) and the unique CVP was dissected under a binocular 

microscope. Heparinised blood samples were obtained from retro-orbital sinus and plasmas were obtained 

after centrifugation of blood (5000 g for 10 min, 4°C). Plasma insulin levels were assayed by using a 

commercial ELISA kit (Mercodia, Sweden) and plasma glucose levels were determined using enzymatic 

reaction kits (Biomerieux, France). 

 

Behavioral experiments 

Two-bottle preference tests: Mice were offered simultaneously two bottles for 12 h at the beginning of the 

dark period (22). Animals were subjected to a choice between control or experimental solutions (each test 

was separated by a rest period of at least 48 h). In one set of experiments, both solutions contained 0.3% 

xanthan gum w/v (Sigma-Aldrich, USA) in water in order to produce an oil suspension and to minimize 
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textural cues between the two bottles. Experimental solutions contained, in addition to xanthan gum, either 

0.02%, 0.2% or 2.0% rapeseed oil (w/v, Fleur de Colza, Lesieur, France), 0.5% or 1% LA, 2% sucrose (w/v) 

or 0.3mM quinine (Sigma-Aldrich, USA). In another set of experiments, Intralipid (20% Fresenius kabi a.b., 

Sweden) solutions were tested vs. deionized water (0.25% and 2.5% Intralipid, v/v) (20). To avoid the 

development of side preferences, the position of each bottle was randomized and reversed for each test. At 

the end of the tests, the consumption of control and experimental solutions was analyzed by weighing the 

bottles and the percentage of preference for the experimental solution was calculated (ratio of the 

consumption of the experimental solution relative to total consumption). 

Licking tests: These tests were performed in order to analyze the short-term (1 min) attraction for a LCFA 

by using computer-controlled lickometers (Med Associates, USA). Mice were food and water deprived at 

the beginning of the dark period and for 6 h before the tests. Naive animals were trained to learn the 

procedure. The first day, mice were successively subjected to a bottle containing either water or a more 

attractive solution (4% sucrose) for 15 min sessions. The following day, the procedure was repeated, except 

that the mice were given the bottles in the reverse order. On the third day, mice were given mineral oil 

(Cooper, France) for both sessions so that the mice were not neophobic to the oily texture. 

On test days, animals were successively and randomly subjected to the control (mineral oil) or experimental 

(mineral oil + 0.5% OLA or 0.5% LA w/v; Sigma-Aldrich, USA) solutions and the number of licks on each 

bottle was determined for 1 min from the first lick to minimize post-ingestive signals (11). LA and OLA 

were tested on 2 different days. 

Conditioned taste aversion (CTA) tests: CTA was performed on wild-type and GPR120-/- mice. To train the 

animals to drink during a short period, access to water (containing 0.3% xanthan gum) was restricted from 

10:00 to 11:00 a.m. for 3 days before conditioning. Water restriction was followed during the conditioning 

and the preference tests. To avoid dehydration, animals had also access to drinking water from 3:00 to 3:30 

p.m. On the day of conditioning, mice were given 2% LA in 0.3% xanthan gum (conditioned stimulus) from 

10:00 to 11:00 a.m., then were intraperitoneally injected with 0.15M LiCl (16.5 µL/g body weight, 
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conditioned mice) or saline solution (16.5 µL/g body weight, controls). To reinforce the CTA, a second 

conditioning was performed 3 days later, as described previously, with 0.5% LA. Preference tests were 

performed with 0.5% LA vs. vehicle (0.3% xanthan gum in water). The specificity of aversion to LA was 

assessed using an additive two-bottle preference test with 2% sucrose vs. vehicle. 

For all double-choice tests, the preference for the experimental solution (LA or sucrose) was calculated as 

the ratio of the consumption of the experimental solution upon total consumption. 

 

Histology and Immunohistochemistry  

CVP from fasted male wild-type and GPR120-/- mice were harvested and tissues were fixed by immersion 

in 4% paraformaldehyde in PBS for 4 h on ice. CVP were transferred to 15% sucrose in PBS for 2 h then in 

30% sucrose overnight before being embedded in OCT medium (Tissue-Tek, Sakura Finetek). Cryostat 

sections (10 µm) were air dried for 2 h at room temperature and then rehydrated in PBS for 10 min. 

Rehydrated sections were incubated during 1 h with PBS containing 0.3% Triton X-100 and 10% fatty acid-

free BSA. Then, the slices were incubated overnight at 4°C with an anti-rabbit -gustducin antibody (1/50; 

Santa Cruz Biotechnology Inc, sc-395) or an anti-rabbit Ki67 antibody (1/50; Abcam, ab16667). -

gustducin was used as a marker of type II TBC and Ki67 as a proliferative cells marker. After washing, 

sections were incubated for 1 h at room temperature with a fluorescent anti-rabbit secondary antibody (Alexa 

568, 1:500 dilution; Invitrogen, USA) for α-gustducin staining or for 30 min with an HRP-conjugated anti-

rabbit secondary antibody (JIR, 111-035-144) for Ki67, then were revealed with an Alexa fluor 568 tyramide 

kit (Invitrogen, T20934). The nuclei were counterstained with Hoechst 33258 (0.05 mg/mL; Sigma-

Aldrich). Negative control tests without primary antibodies were performed (data not shown). Slices were 

analyzed under an epifluorescence microscope (Cell Observer Zeiss). For hematoxilin-eosin staining, the 

tissues containing CVP were fixed in formalin, dehydrated and then embedded in paraffin. Colorations were 

performed with Autostainer XL robot (Leica Biosystems, Germany). 
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Real-time RT-PCR  

Total RNAs from CVP were extracted using the Total RNA Purification Kit (Norgen Biotek, Canada) 

according to the manufacturer’s instructions. Briefly, nitrogen-frozen CVP were homogenized in the lysing 

buffer with an RNase free piston pellet. After homogenization, RNA were bound on purification columns 

and treated with an amplification grade DNase (RNase-Free DNase I kit, Norgen Biotek, Canada) to ensure 

genomic DNA removal. After purification RNA were re-suspended in RNase free water. RNA 

concentrations were measured with a Nanodrop® (Thermo Fisher Scientific) spectrophotometer. Reverse 

transcription reactions were carried out using the High Capacity cDNA Reverse Transcription kit 

(LifeTechnology, USA) according to the manufacturer’s recommendations with 50 ng of total RNA from 

CVP and random primers. Real time PCR reactions were performed with a StepOne Plus (LifeTechnology, 

USA) device with the use of TaqMan Gene Expression Master Mix (LifeTechnology, USA) according to 

the manufacturer’s instructions. To assay transcripts quantities, commercially available Taqman Gene 

Expression Assays (LifeTechnology, USA) were used: ffar4 (GPR120) Mm00725193_m1, GPR40 

Mm_00809442_S1, Hprt1 (housekeeper) Mm01545399_m1; and CD36 and α-gustducin as described in 

(22). The comparative 2-ΔΔCT method was used for relative quantification. 

 

Measurement of Ca2+ signaling 

CD36-positive gustatory taste buds cells were freshly isolated from mouse CVP as described previously 

(23) and further cultured for 24 h in Willico-Dish wells, containing RPMI-1640 medium, supplemented 

with 10% foetal calf serum, 200 U/mL penicillin and 0.2 mg/mL streptomycin. The next day, the CD36-

positive TBC were gently washed with a buffer containing the following: 3.5 mM KH2PO4; 17.02 mM 

Na2HPO4; 136 mM NaCl, pH 7.4. The cells were then incubated with Fura-2/AM (1 µM) for 60 min at 37°C 

in loading buffer which contained the following: 110 mM NaCl; 5.4 mM KCl; 25 mM NaHCO3; 0.8 mM 

MgCl2; 0.4 mM KH2PO4; 20 mM Hepes-Na; 0.33 mM Na2HPO4; 1.2 mM CaCl2, pH 7.4. 

After loading, the cells (2x105/mL) were washed three times and remained suspended in the identical buffer. 

After adding LA or specific agonist grifolic acid (GA) at a concentration of 20 µmol/L, or both successively 
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in the medium, the changes in intracellular Ca2+ (F340/F380) were monitored under the Nikon microscope 

(TiU) by using S-fluor 40x oil immersion objective. The planes were taken at Z intervals of 0.3 μm, and 

NIS-Elements software was used to deconvolve the images. The microscope was equipped with EM-CCD 

(Lucas) camera for real time recording of 16-bit digital images. The dual excitation fluorescence imaging 

system was used for studies of individual cells. The changes in intracellular Ca2+ were expressed as ΔRatio, 

which was calculated as the difference between the peak F340/F380 ratio. The data were summarized from 

the large number of individual cells (20–40 cells in a single run, with 3–9 identical experiments done in at 

least three cell preparations). Each experiment was repeated 3 times. 

 

Statistics 

Results are expressed as Means ± SEM. The significance of differences between groups was evaluated with 

GraphPad Prism (GraphPad Software). We first checked that the data for each group were normally 

distributed and that variances were equal. We then carried out two-tailed Student’s t-test or two-way 

ANOVA corrected for multiple comparison with the Tukey post-hoc test. 
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Results 

The lack of GPR120 does not affect the circumvallate papilla organization 

According to the genotyping profile (Fig. 1A), no GPR120 mRNA was detected in small intestine or in CVP 

from GPR120-/- animals (Fig. 1B). GPR120 gene invalidation did not interfere on CD36 and α-gustducin 

expression levels in taste buds since similar mRNA levels were found in CVP from GPR120+/+ and GPR120-

/- mice. According to data found in different species (16-18), GPR40 mRNA was undetectable in the mouse 

CVP (Fig. 1B). In young GPR120-/- animals, evolution of body mass is slightly lower than in littermate 

controls (Fig. 1C). This small difference is due to a lower lean mass which might explain the weaker energy 

expenditure previously found in GPR120-/- mice during the light-inactive phase (21). In agreement with 

published data obtained in different GPR120 KO mouse models (21, 24), our GPR120-/- mice displayed 

higher fasted blood glucose and plasma insulin levels than wild-type counterparts suggesting a latent insulin 

resistance (Fig. 1C). In brief, the GPR120-/- mice used in this study share the classical phenotyping 

characteristics previously evidenced by others (21, 24). 

The GPR120 gene is flanked by two genes known to be involved in the regulation of cell cycle and cell 

proliferation (i.e. Centrosomal Protein 55 and Retinol Binding Protein 4, respectively). To verify whether 

the genic deletion used to disrupt GPR120 gene expression did not interfere with the organization of the 

gustatory tissue, histology and immunostaining using specific markers of type-II cells (i.e. α-gustducin), in 

which GPR120 is mainly expressed (17), and of cell proliferation (i.e Ki67) were undertaken in CVP from 

controls and GPR120-/- mice. No obvious change in the gross anatomy of CVP, taste buds structure and 

Ki67 labeling was elicited when GPR120 was lacking (Fig. 1D). 

 

GPR120-null mice detect and prefer lipid solutions  

We have previously shown, using 12 h two-bottle preference tests performed with different concentrations 

of rapeseed oil, that mice become able to detect and prefer oily solutions when concentration reaches 0.02% 

oil, the maximal preference being observed with 2.0% oil in solution (22). According to this previous results, 
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preference tests were performed in wild-type and GPR120-/- mice in presence of 0.02, 0.2 and 2% rapeseed 

oil mixed with 0.3% xanthan gum. Rapeseed oil was chosen by reason of its LCFA composition including 

saturated, mono-unsaturated (OLA) and poly-unsaturated ω6 (LA) and ω3 fatty acids known to be GPR120 

ligands (25). Surprisingly, GPR120-/- mice displayed the same behavior as their littermate controls and were 

able to properly detect the different concentrations of oil (Fig. 2A). This behavior is not gender-dependent 

since similar results were found in age-matched males and females (data not shown). Consistent with 

Sclafani’s data (20), GPR120-/- mice displayed a similar attraction for Intralipid than controls (Fig. 2B). 

Similarly, but in contrast to prior results (15), the GPR120 gene invalidation was not associated with a 

decrease in the detection and preference for LA during two-bottle preference tests (Fig. 2C). No difference 

between the responses of control and GPR120-null mice was detected for sucrose (sweet) and quinine 

(bitter) (Fig. 2D). 

 

GPR120-/- and GPR120+/+ mice display similar conditioned aversion to LA. 

Conditioned taste aversion (CTA) is a learned reduction of hedonic value of a taste occurring when the taste 

experience is paired with a digestive malaise. This paradigm was used to further explore the putative 

involvement of GPR120 in oral LCFA detection. Consistent with previously published data (8), control 

mice, developed a clear aversion for LA when this conditioned stimulus was previously paired with a LiCl-

induced digestive pain (Fig. 3A). A similar behavior was maintained in GPR120-/- mice (Fig. 3A). This 

avoidance was specific since the sweet preference was not affected in LA-conditioned GPR120+/+ and 

GPR120-/- mice (Fig. 3B).  

 

GPR120-/- and GPR120+/+ mice display similar reward behavior for LCFA. 

The behavior observed during long-term two-bottle preference tests is greatly influenced by post-ingestive 

regulatory feedback (26). Brief-access lick paradigm, by limiting post-ingestive cues, is believed to primary 

measure the taste-guided reward behavior (i.e. hedonic value and motivation (27)). Therefore, computer-

controlled lickometers were used to measure the number of licks for 1 min and determine the attraction for 
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0.5% OLA or 0.5% LA solubilized in mineral oil. As shown in Fig. 4, the number of licks given by GPR120-

/- or GPR120+/+ mice is significantly higher for the LA or OLA solutions than for the control solution, thus 

the lack of GPR120 did not affect the reward behavior for these two LCFA. 

 

LA triggers the Ca2+ signaling pathway in TBC from GPR120-null mice 

LCFA are known to induce Ca2+ signaling in mouse circumvallate TBC (8, 9, 19, 28). To explore the role 

played by the GPR120 receptor in this event, freshly isolated circumvallate TBC from wild-type and 

GPR120-/- mice were subjected to 20 µmol/L LA or GA, a specific GPR120 partial agonist (29) and were 

analyzed using calcium imaging. LA triggered a similar induction of [Ca2+] i both in TBC from control and 

GPR120-/- mice, indicating that GPR120 was not indispensable for the LA-mediated calcium response in 

taste buds (Fig. 5A & C). As expected, the rapid and huge rise in [Ca2+] i triggered by GA in control TBC 

was dramatically curtailed when GPR120 gene was lacking (Fig. 5B & C). To strengthen these observations, 

effect of combinations of LA and GA on [Ca2+] i responses in TBC was studied. Addition of 20 µmol/L GA 

after that of 20 µmol/L LA, or inversely, triggered an additive response in TBC from wild-type controls 

(Fig. 6A & C) while this effect was lacking in GPR120-/- mice (Fig. 6B & C). 
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Discussion 

A growing number of studies support the involvement of a taste component in the oro-sensory detection of 

dietary lipids. By detecting the LCFA, this sensing system might play a significant role in food choices. The 

plasma membrane glycoprotein CD36 was firstly identified as a candidate to the function of gustatory lipid 

sensor in the mouse (6, 10). More recently, the LCFA sensors GPR40 and GPR120 were shown to be 

possible alternative candidates (15). Mice lacking GPR40 or GPR120 were unable to detect and prefer a 

lipid source (OLA or LA) during behavioral tests. Moreover, direct recording of gustatory nerves reveals 

that GPR40 and GPR120 were required to generate nerve signals in response to oral lipid stimulation (15). 

This original finding correlated quite well with the gustatory function of other GPCRs, like T1Rs and T2Rs 

receptors involved in sweet, bitter and umami tastes. Nevertheless, a direct implication of GPR40 in oral fat 

detection is unlikely since we did not retrieve any transcript of this receptor in the mouse CVP, and others 

did not find it not only in the mouse circumvallate, but also in fungiform and foliate papillae, in contrast to 

what was found for GPR120. Similarly, GPR40 was not retrieved in gustatory papillae in rat (17) and human 

(18). 

Despite the expression of GPR120 in mouse type-II taste cells (17) and its activation by LCFA (25), an 

implication of GPR120 in fat detection and preference remains a matter of debate. As aforementioned, it 

was recently reported that oral GPR120 is not essential for this function in the mouse (20, 30), contrary to 

prior findings (15). To further unravel the GPR120 role in the “taste of fat”, we chose to revisit the effects 

of a GPR120 gene invalidation on taste bud functionality and lipid preference in the mouse. Since the 

aforementionned contradictory data were generated in the same KO mouse model, present experiments were 

conducted using an alternative GPR120-/- mouse model. We report herein that GPR120-/- mice and controls 

displayed a similar appetence for oily solution or Intralipid emulsion during 12 h two-bottle preference tests. 

This behavior was reproduced when free LCFA (LA) solutions were checked by using long-term (12h) two-

bottle preference tests, but also in conditions known to deeply minimize post-ingestive influences (i.e. 1 min 

licking tests with LA or OLA) suggesting that the absence of GPR120 in oral cavity did not alter the taste-
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guided attraction for fat. Moreover, GPR120-/- mice subjected to conditioned taste aversion tests learned to 

avoid 0.5% LA like wild-type mice, whereas their preference for sweet was maintained. Altogether these 

results suggest that GPR120 is not indispensable for the oro-sensory detection of lipids in the mouse. Long-

term two-bottle preference tests performed with LA or OLA allows a direct comparison with the previous 

study (15), but leads to an opposite conclusion. Origin of this discrepancy remains elusive. In the present 

study, LCFA concentrations tested were deliberately limited to values reported as leading to significant 

differences between controls and GPR120-/- mice during two-bottle preference tests in (15), but remaining 

within the limits that may be found in the feed. Moreover, an influence of the KO mouse model used is 

unlikely since we found an attraction for Intralipid similar as the one found by Sclafani et al. (20) whom 

experiments were conducted in the same GPR120-/- mice as Cartoni et al. (15).  

Ca2+ signaling being an early event downstream of taste receptor activation, calcium imaging studies were 

performed in freshly isolated mouse TBC to gain insight into the functional incidence of a GPR120 gene 

deletion. In line with our behavioral data, LA-mediated induction of [Ca2+] i was not altered in GPR120-/- 

mice. This result is consistent with a recent report showing that LA-mediated increase in [Ca2+] i is poorly 

or not affected by the siRNA knock-down of GPR120 in a human fungiform cell line (19). By contrast, the 

huge rise in [Ca2+] i triggered by GA, a GPR120 partial agonist, was deeply diminished when GPR120 was 

lacking . Therefore, in the gustatory cells from mouse CVP, GPR120 can be efficiently activated by GA, 

but not by LCFA. These unexpected results suggest that activation of GPR120 and preference for lipids 

might be disconnected. This conclusion is consistent with a recent report showing that wild-type mice did 

not display any preference for non-fatty acid GPR120 agonists over water in two-bottle preference tests, 

despite a GPR120-dependent activation of the glossopharyngeal nerve (30). Further experiments are needed 

to elucidate these paradoxical results. It is noteworthy that expression of GPR120 extents to surrounding 

non-gustatory epithelium in human (18). Moreover, GPR120 has been identified in a lingual population of 

trigeminal neurons in rodents (31, 32). These observations raise the possibility of an implication of GPR120 

in other oro-sensory cues. Interestingly, a tight relationship exists between taste and somatosensory signals 

with a convergence in the NTS (33). In some cases, this association inhibits taste response (34). Existence 
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of a complex modulation of NTS neurons by GPR120-positive trigeminal afferents might explain the 

dissociation between taste nerve activation and attraction for fat reported by Godinot and coworkers (30).  

 

GPR120 was firstly identified in the entero-endocrine L-cells in which it mediates the GLP-1 secretion 

induced by LCFA (25). Several observations support a similar implication of GPR120 in mouse gustatory 

papillae. Indeed, GPR120 and GLP-1 are co-expressed in a subset of TBC (22). Moreover, GLP-1 release 

is triggered by the specific GPR120 agonist GSK137647A in CVP explants (22) and by GA in freshly 

isolated TBC (19). Finally, concomitant presence of the GLP-1 receptor (GLP-1R) in the gustatory mucosa 

(35) suggests that this hormone is locally active and, thus, might directly affect the basic functions in mouse 

taste buds. Consistent with this assumption, it was reported that the GLP-1 signaling modulates the sweet 

taste sensitivity (35).  

 

We have recently reported that CD36 protein levels in mouse CVP is subjected to a high sensitive short-

term down-regulation during food intake, in contrast to GPR120 (11). This regulation is strictly dependent 

on the presence of lipids in the diet. It is a local control since a direct oil deposition onto the tongue is 

sufficient to trigger the decrease of CD36 protein in CVP. As reported for numerous surface receptors, this 

negative feedback might constitute a desensitization system of CD36-positive TBC during persistent 

exposure to dietary lipids during a meal (11). Interestingly, the absence of GLP-1R suppresses this lipid-

mediated down-regulation suggesting that CD36 protein levels in CVP are dependent of the GLP-1 signaling 

pathway (22). Since TBC co-express GLP-1 and GPR120 (22), it is tempting to speculate that the lipid-

mediated drop of CD36 in CVP is locally regulated by GLP-1 via GPR120. Therefore, the lower attraction 

for fat found in GLP-1R-/- mice (22) might be due to the functional impairment of CD36 in CVP. The 

molecular mechanism of such a regulation remains to be determined. It is known that the invalidation of the 

CD36 gene elicits a dramatic decrease in the attraction for lipids despite the absence of changes in GPR120 

expression in CVP (11). We reported herein that GPR120 gene disruption is not associated with a change 

in CD36 expression levels in CVP and in preference for fat. All these data strongly suggest that CD36 and 
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GPR120 play different, but complementary functions in the mediation of fat preference. CD36 should be 

critical for the oral fat detection and preference, whereas GPR120, through the local GLP-1 signaling might 

modulate the lipid detection sensitivity. Further studies are needed to explore this hypothesis. Because taste-

guided preference for highly palatable fatty foods contributes to obesity, the molecular deciphering of the 

mechanisms responsible for the detection of dietary lipids by the peripheral gustatory pathway constitutes a 

real public health challenge that might lead to new insights to reduce the obesity risk in a near future. 
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Figures  

Fig. 1: Impacts of GPR120 gene invalidation on body weight, blood glucose, plasma insulin levels and 

circumvallate papilla morphology. A- Genotyping of studied mice: agarose gel electrophoresis of PCR 

products. B- RT-qPCR of circumvallate papillae (CVP) (n=5, ud, undetectable). C- Typical GPR120-/- 

phenotypes compared to littermates GPR120+/+ mice: evolution of body weight in mice fed a standard chow 

(n=7), fasted blood glucose and plasma insulin levels (n=8-12). Means + SEM. *, P<0.05; **, P<0.01. D- 

Morphology of CVP from wild-type and GPR120-/- mice. Gross anatomy: hematoxylin-eosin-stained CVP. 

Black arrows show apical taste pore areas of taste buds. Identification of taste buds cells by α-gustducin 

staining and visualization of taste bud cells proliferation by Ki67 staining. 

Fig. 2: Effect of GPR120 gene invalidation on the preference for lipids.  

Two bottles (control and experimental solutions) were simultaneously offered to wild-type and GPR120-/- 

mice for 12 h. Experimental solutions contained: A- 0.02%, 0.2% or 2.0% of rapeseed oil (w/v), n=10-12. 

B-2.5%, 0.25% of Intralipid (v/v), n=10 C- 0.5% or 1% linoleic acid (LA), n=7. D- 2% sucrose (w/v) or 

0.3mM quinine (bitter taste), n=10-12. Means + SEM. Dotted line represents the absence of preference. 

Fig. 3: Effect of GPR120 gene invalidation on the conditioned avoidance of linoleic acid (LA). 

Conditioned Taste Aversion (CTA) performed by pairing a conditioned stimulus, i.e. linoleic acid (LA) with 

a digestive pain obtained by intraperitoneal (i.p.) injection of LiCl (150mM, 16µL/g of body weight), was 

assessed by using 1 h two-bottle preference tests. Unconditioned controls (GPR120+/+ and GPR120-/- mice) 

received an i.p. NaCl injection. A- LA-mediated CTA. Data shown are the average of two successive tests 

(48 h interval). There was no interaction between the tests and no effect of the time. Means + SEM (n=7-9). 

***, P≤0.001. B- To demonstrate the specificity of LA-taste aversion, two bottle preference test was 

performed with sucrose (n= 7-9). 

Dotted line represents the absence of preference. 

Fig. 4: Effect of GPR120 gene invalidation on the attraction for Long-chain fatty acids (LCFA). 
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Short-term (1 min) licking tests in GPR120-/- and their littermate controls (GPR120+/+). Animals were 

subjected successively in a randomized manner to a control solution (mineral oil) and an experimental 

solution of 0.5% oleic acid (OLA) or linoleic acid (LA) in mineral oil. Means + SEM (n=12). *, P<0.05; **, 

P<0.01; ***, P<0.001.  

Fig. 5: Effects of linoleic acid (LA) or grifolic acid (GA) on Ca2+ signaling in mouse circumvallate taste 

bud cells (TBC). 

Ca2+ imaging studies were performed in calcium-containing (100% Ca2+) media. The changes in intracellular 

Ca2+ (F340/F380) were monitored under a Nikon microscope (TiU) by using S-fluor 40x oil immersion 

objectives, as described in the Materials and Methods section. Colored time-lapse changes show the kinetics 

of the rise in [Ca2+] i levels in a CD36-positive taste bud cell freshly isolated from circumvallate papillae 

(CVP) from GPR120+/+ and GPR120-/- mice following addition of 20 µM linoleic acid (LA) or gripholic 

acid (GA) in the medium. The arrows indicate when LA or GA were added into the cuvette without 

interruptions in the recording. A- changes (F340/F380) in intracellular Ca2+ evoked by LA, 20 µM and B- by 

GA, 20 µM. C- Means ± SEM (n=7). ***, P<0.001; ns= non-significant. 

Fig. 6: Differential intracellular Ca2+ signaling responses induced by LA and GA in taste bud cells 

(TBC). 

Ca2+ imaging studies were performed in calcium-containing (100% Ca2+) media. The changes in intracellular 

Ca2+ (F340/F380) were monitored under the Nikon microscope (TiU) by using S-fluor 40x oil immersion 

objectives, as described in the Materials and Methods section. Colored time-lapse changes show the kinetics 

of the rise in [Ca2+] i levels in a CD36-positive taste bud cell freshly isolated from circumvallate papillae 

(CVP) from GPR120+/+ and GPR120-/- mice following addition of 20 µM linoleic acid (LA) and gripholic 

acid (GA) one after another in the medium. The arrows indicate when LA or GA were added into the cuvette 

without interruptions in the recording. A- in GPR120+/+ mice and B- in GPR120-/- mice. C- Means ± SEM 

(n=7). *, P<0.05; **, P<0.01. 
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