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ABSTRACT 

Background - The great clinical potential of myocardial β-AR imaging has been 

shown by recent studies evaluating the -AR specific, non selective agent [
11

C]-

CGP12177 in the setting of idiopathic dilated cardiomyopathy and myocardial 

infarction. However, the short half-life of 
11

C hampers the potential of [
11

C]-

CGP12177 for routine clinical use. AMI9 is an analog of the -adrenoceptor 

ligand practolol that can readily be labeled using radioactive isotopes of iodine. 

The present study was aimed at characterizing the in vitro, ex vivo, and in vivo -

AR binding properties of [
125

I]-AMI9.   

Methods and Results – Newborn rat cardiomyocytes were used for saturation 

and kinetic binding assays as well as for displacement and competition 

experiments. Isolated perfused rat hearts were used to evaluate the 

pharmacological activity of AMI9. The in vivo kinetics of [
125

I]-AMI9 were 

studied using biodistribution experiments in mice. [125I]-AMI9 displayed high 

specific affinity for -AR with no -AR subtype selectivity (KD, 5.6±0.3 nM; 

Bmax, 231±7 fmol/mg of protein). AMI9 potently inhibited the inotropic effects 

of isoproterenol. The early in vivo cardiac and lung activities of [
125

I]-AMI9 

compared favorably with those of the clinically validated tracer CGP12177.  

Conclusions – Iodine-labeled AMI9 is a promising agent for the molecular 

imaging of myocardial -AR density.  

 

Key Words: basic science - radiopharmaceuticals – receptor imaging 
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ABBREVIATIONS 

 

AMI9, [(R,S)-(1-[4-(-4-iodobut-3-enecarboxamido)phenoxy]-3-

isopropylaminopropan-2-ol)] 

AR, Adrenergic Receptors 

DUR, Differential Uptake Ratio 

HPLC, High Performance Liquid Chromatography 

ICYP, Iodocyanopindolol 

LV, Left Ventricle 

NE, Norepinephrine 

NRCM, Newborn Rat Cardiomyocytes 

RBA, Relative binding Affinity 

SNS, Sympathetic Nervous System 
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INTRODUCTION 

The cardiac SNS affects fundamental features of cardiac function such as systolic 

contraction, diastolic relaxation, myocardial blood flow, and heart rate through 

pre-synaptic release of the neurotransmitter NE by sympathetic neurons and post-

synaptic binding of NE to α- and β- AR on cardiac cells. Importantly, cardiac SNS 

dysfunction has been recognized to play major roles in the development of LV 

dysfunction, heart failure, and diabetic heart disease progression [1, 2]. 

Pathophysiological modifications in β-AR density have been observed in a 

number of cardiac conditions [3] and more specifically in heart failure [1] and 

diabetic heart disease [2]. The non-selective, β-AR specific ligand [
11

C]-

CGP12177 represents the most studied agent for the non invasive in vivo 

assessment of β-AR density in clinical settings such as non-ischemic 

cardiomyopathy and myocardial infarction [4, 5].  [
11

C]-CGP12177 predicted the 

improvement of cardiac function in patients with idiopathic dilated 

cardiomyopathy after long-term carvedilol treatment whereas dobutamine stress 

echocardiography did not [6], and Gaemperli et al. found that reduced myocardial 

-AR density early after myocardial infarction was associated with the incidence 

of congestive heart failure on long-term follow-up [7]. In addition, recent studies 

have emphasized the clinical importance of assessing the presence of a potential 

mismatch in the cardiac SNS using agents targeted at the pre- and post-synaptic 

function [8, 9]. Although such studies have provided proof-of-concept that β-AR 

imaging has great potential clinical interest by itself or in combination with a pre-
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synaptic agent, the development of an [
11

C]-labelled PET imaging agent is limited 

by the extremely short half-life of the isotope (20.4 min).  

-blockers labeled with radioactive isotopes of iodine and therefore suitable for 

SPECT imaging have not proven successful so far due to either suboptimal 

affinity for -AR or high nonspecific binding associated with high lipophilicity 

[10-13]. Studies performed with iodinated analogues of CGP-12177 also yielded 

negative results [14]. The aim of the present study was to perform the in vitro, ex 

vivo, and in vivo preclinical evaluation of AMI9, an analog of the -AR ligand 

practolol, for the molecular nuclear imaging of β-AR density.  

 

MATERIALS & METHODS 

 

The chemical structure of AMI9 is presented in Figure 1. Primary cultures of 

NRCM were prepared and used as previously described [15] to perform 

radioligand displacement experiments and binding assays while isolated and 

perfused rat hearts were used to determine AMI9 & AMI9S pharmacological 

activities and swiss mice were used to evaluate [
125

I]-AMI9, [
3
H]-CGP-12177, 

and [
125

I]-ICYP in vivo biodistribution. Full details regarding these procedures as 

well as those used for AMI9 & AMI9S chemical synthesis, radiolabeling, and 

determination of lipophilicity are provided in the supplementary data file. All 

experimental procedures were in accordance with Institutional Guidelines for 

Care and Use of Laboratory Animals. 
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RESULTS 

 

Radioligand displacement experiments 

Competition curves between [3H]-CGP-12177 and AMI9 or AMI9S are shown in 

Figure 2. Both sets of data were best fitted monophasically, indicating a single 

class of affinity for -AR. The competition curves between [3H]-CGP-12177 and 

alprenolol (), atenolol (1), metoprolol (1), pindolol (), propranolol () and 

timolol () presented similar profiles. Corresponding KI, IC50 and RBA values 

are shown in Table 1. The rank order of increasing RBA was atenolol < 

metoprolol < AMI9S < AMI9 < propranolol < alprenolol < timolol < pindolol. 

 

Binding assays 

[125I]-AMI9 and [125I]-AMI9S Scatchard curves for NRCM -AR binding are 

shown in Figure 3. Bmax values with [125I]-AMI9 (KD: 5.6 ± 0.3 nM) and 

[125I]-AMI9S (KD: 3.1 ± 0.2 nM) were 231 ± 7 fmol/mg prot, and 223 ± 7 

fmol/mg prot, respectively. Plasmic membrane -AR density was estimated at 85 

± 6 fmol/mg prot using [3H]-CGP-12177 (KD: 1.0 ± 0.1 nM) while total -AR 

density as estimated using [125I]-ICYP reached 290 ± 20 fmol/mg prot (KD: 0.4 

± 0.0 nM). In accordance with results from saturation experiments, the KD values 

of [125I]-AMI9 and [125I]-AMI9S as obtained from the analysis of the kinetics 

curves were 4.5 nM and 2.6 nM, respectively (data not shown). 
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The results from competition experiments aimed at assessing the specificity and 

selectivity of [125I]-AMI9 and [125I]-AMI9S binding are shown in Table 2. Both 

[125I]-AMI9 and [125I]-AMI9S did not bind to muscarinic receptors as shown 

from the lack of effect of atropine. Conversely, 1-, 2-, 1- and 2-selective 

blockers competed with [125I]-AMI9 and [125I]-AMI9S binding. The biphasic 

profiles observed in the presence of CGP-20712A, ICI 118551 and prazosin 

indicated subtype selectivity although yohimbine addition did not lead to a 

biphasic competition curve. At the highest concentration of competitor, AMI9 and 

AMI9S binding inhibition by CGP-20712A and ICI 118551 was similar to that 

observed with propranolol. Prazosin and phentolamine also had a comparable 

potential for AMI9 & AMI9S binding inhibition. 

 

Pharmacological activity 

Propranolol, AMI9 and AMI9S inhibited the isoproterenol-induced increase in 

dP/dtmax of isolated perfused rat hearts in a dose-dependent manner (Table 3). A 

significant inhibition of isoproterenol-induced increase in contractility was 

observed with 1 nM AMI9 and 10 nM AMI9S or propranolol. The concentrations 

of propranolol, AMI9, and AMI9S required to reach half-maximal inhibition of 

the isoproterenol-induced increase in dP/dtmax (CID50) were 5.9 ± 0.8 nM, 1.4 ± 

0.5 nM and 3.7 ± 2.1 nM, respectively. 
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Lipophilicity 

The log(P) value of AMI9 was 0.613. The retention coefficient (k') value of AMI9 

(1.11) was lower than that of the lipophilic compound propranolol (1.43), 

comparable to that of the moderately lipophilic CGP-20712A (0.97) and higher 

than those of the hydrophilic compounds oxprenolol (0.78), CGP-12177 (0.13), 

and practolol (0.06).  

 

Biodistribution in mice 

The biodistributions of [125I]-AMI9, [3H]-CGP-12177 and [125I]-ICYP are 

presented in Tables 4, 5 and 6, respectively.  

[125I]-AMI9 - Blood tracer activity was maximal immediately following 

injection (0.5 min, DUR: 3.1 ± 0.1) and then rapidly decreased to stabilize at ~1.2. 

In contrast, the cardiac radioactivity initially accumulated and peaked at 2 min p.i. 

(DUR: 5.3 ± 0.5) prior to decreasing (120 min-DUR: 0.5 ± 0.1).  Pulmonary 

activity was 2 to 6-fold higher than myocardial activity at all time points. The 

tracer was excreted predominantly though the kidneys with significant 

involvement of the hepatic route as well. Low [
125

I]-AMI9 activities were 

observed in the brain, muscle and fat (DUR range: brain, 0.1-0.3; muscle 0.3-1.2; 

fat, 0.1-0.5). 

[3H]-CGP-12177 - Blood tracer activity peaked immediately following 

injection (0.5 min, DUR: 2.2 ± 0.2) and decreased slowly thereafter to reach a 

minimal value of 0.6 ± 0.1 at 120 min p.i. The cardiac activity followed 

approximately the same kinetic pattern. Early pulmonary activity was comparable 
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to that observed following injection of [
125

I]-AMI9 but remained elevated at later 

time points with lung uptake typically being 5- to 10-fold higher than cardiac 

uptake. The renal and hepatic routes were equally involved in tracer excretion and 

liver activity was lower than that of [
125

I]-AMI9. Finally, [3H]-CGP-12177 

exhibited low brain, muscle and fat activities (DUR range: brain, 0.0 - 0.2; 

muscle, 0.4 - 0.9; fat, 0.1 - 0.6). 

[125I]-ICYP - Blood tracer activity remained stable over time with DUR 

values within the 1.7 ± 0.5 and 2.7 ± 0.1 range. One-min cardiac radioactivity 

reached a maximum value similar to that of [125I]-AMI 9 and stabilized at a DUR 

of ~2.1 from 15 min p.i.. Pulmonary uptake was 5 to 20-fold higher than cardiac 

uptake at all time points and did not decrease significantly over time. No hepatic 

and renal accumulation of [
125

I]-ICYP was observed. Finally, brain, muscle and 

fat also displayed low [
125

I]-ICYP activities (DUR range: 0.07 - 0.12, 0.5 - 0.8 and 

0.0 - 0.6, respectively). 

 

DISCUSSION 

The affinity (KA) of radiolabeled -AR ligands for -ARs should approximate 

109 M-1 [16], and the compounds should display -blocker properties without 

inner sympathomimetic activity in order to form stable complexes with -AR. 

As observed for most -blockers, the asymmetry of the carbon carrying the 

secondary alcohol function of the AMI9 compound generates two optical 

enantiomers R and S. Since the S enantiomer of aryloxypropanolamines is 

generally better recognized by -AR than the R enantiomer, an original synthesis 
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pathway was developed for the obtention of AMI9S. The results from the present 

study indicated that [
123

I]-AMI9 and [
123

I]-AMI9S displayed high affinities for -

AR in vitro and ex vivo as well as in vivo kinetics suitable for non invasive cardiac 

imaging following intravenous injection. 

In vitro binding experiments using the reference -AR radioligands [3H]-CGP-

12177 and [125I]-ICYP were performed to validate the NRCM model. The KD 

value for CGP-12177 (1.0 ± 0.1 nM) was in accordance with data obtained on rat 

intact cardiac myocytes (from 0.38 ± 0.03 nM to 3 ± 1 nM) [17] and the Bmax (85 

± 6 fmol/mg prot) was close to that observed for plasma membrane -AR by 

Yonemochi et al. (118 ± 18 fmol/mg prot) [18]. The KD value for ICYP (0.4 ± 0.0 

nM) was found to be higher by approximately one order of magnitude than values 

generally observed in the rat heart (22-29 pM) [19] while Bmax (290 ± 20 

fmol/mg prot) was similar to that observed by Karliner et al. for the total amount 

of -AR in a similar experimental model (260 ± 71 fmol/mg prot) [20]. 

[3H]-CGP-12177 displacement assays on NRCM allowed the comparison of RBA 

values for AMI9 and AMI9S with those of well-known -blockers. The rank 

order of increasing affinity for -AR was in overall accordance with previously 

published values [21]. RBA values of AMI9 and AMI9S were intermediary 

between those of metoprolol and propranolol. As the latter has an affinity 

considered as minimal for a potential -AR SPECT radioligand (KD from 0.76 to 

6 nM) [16, 22, 23], the affinity of AMI9 and AMI9S is therefore suitable for use 

as -AR SPECT ligands. Saturation and kinetic binding studies gave similar KD 
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values for AMI9 (5.6 ± 0.3 nM vs 4.5 nM, respectively) and AMI9S (3.1 ± 0.2 vs 

2.6 nM, respectively). Affinity ratios between AMI9S and AMI9 (1.64, 1.79 and 

1.75 depending on the binding study) were ~ 2 (theoretical ratio) and therefore 

confirmed the expected better activity of the S enantiomer. Finally, the two-phase 

profiles of the competition curves between CGP-20712A or ICI 118551 and 

AMI9 or AMI9S provided evidence that AMI9 and AMI9S bind to both 1- and 

2-AR. In addition, AMI9 and AMI9S poorly discriminated between -AR 

subtypes as indicated by the results obtained with the one-site model used to fit 

the corresponding Scatchard curves. The Bmax values of AMI9 and AMI9S 

relative to NRCM -AR were found to be identical, as expected for a racemic 

mixture in which the S-enantiomer only binds to receptors. Bmax values of both 

radioligands were therefore intermediary between those of [3H]-CGP-12177 and 

[125I]-ICYP, indicating that AMI9 bound not only to externalized -AR but also 

to intracellular -AR.  

These results were in accordance with the moderate lipophilicity of AMI9, whose 

partition coefficient (log(P) = 0.61) was intermediary between that of CGP-12177 

and ICYP (log(P) = -0.52 and 1.26, respectively) [24]. HPLC analysis confirmed 

the moderate lipophilic nature of AMI9, close to that of oxprenolol and CGP-

20712A. AMI9 and AMI9S therefore appear well suited for those pathologies 

such as chronic heart failure in which global down-regulation of –adrenoceptor 

expression occurs whereas their potential for diseases in which membrane 

receptors are being internalized will require further evaluation. 
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Results from specificity studies indicated that AMI9 and AMI9S bound to both - 

and -AR. Specificity ratios for CGP-20712A, ICI 118551 and prazosin from the 

present study were similar to those previously published. Indeed, 1:2 ratios for 

CGP-20712A (580:1 and 380:1) were close to those described by Birnbaumer et 

al. (845:1) [25]. Those for ICI 118551 (1:406 and 1:116) reflect the differences in 

the published ratios for this agent (1:54, 1:123, 1:225) [25-27], while the 1:2 

ratios for prazosin (3220:1 and 450:1) were around the generally observed relative 

values (1000:1 or 1590:1) [28, 29]. Human -AR myocardial expression 

represents approximately 10% and 25% of total AR expression in non-failing and 

failing human myocardium, respectively [30]. However, the potential poorer 

scintigraphic contrast resulting from AMI9 and AMI9S binding to -AR and due 

to a higher number of targets (vessels, atria, platelets) does not theoretically 

constitute constraints for in vivo quantification of -AR in SPECT because Bmax 

determination will mostly depend upon the highly specific nature of the cold 

ligand used to study nonspecific binding. In addition, the IC50 of AMI9 for [
3
H]-

prazosin and [
3
H]-yohimbin to NRCM was 2.2.10

-5
 M and 1.2.10

-5
 M, 

respectively (data not shown), whereas this value reached 1.9.10
-6

 M when [
3
H]-

CGP12177 was used (Table 1), indicating that AMI9 had a much lower affinity 

for α–AR than for β–AR. AMI9 binding to -AR should therefore represent a 

minimal confounding actor while quantifying -AR density from scintigraphic 

images.  

-AR imaging should avoid the use of -AR agonists due to subsequent 

alterations in receptor conformation, binding dissociation, activation of 
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intracellular reactions and consequently -AR regulation mechanisms. Ligands 

should therefore display high -blocking potency without inner sympathomimetic 

activity. AMI9 and AMI9S demonstrated such properties in isolated perfused rat 

hearts. Indeed, both compounds inhibited the 10 nM isoproterenol-induced 

increase in contractility with a similar potency to that of propranolol without 

causing alterations in cardiac contractility when perfused alone at 1 µM (data not 

shown).  

[3H]-CGP-12177 and [125I]-ICYP behaved as expected in in vivo mouse 

biodistribution studies. ICYP bound more than CGP-12177 to most tissues, likely 

due to the high lipophilicity of the former compound and therefore to its ability to 

bind to nonspecific targets as well as to all β-AR whereas the more hydrophilic 

CGP-12177 only bound to membrane receptors, resulting in lower heart uptake. 

[
3
H]-CGP-12177 and [125I]-ICYP cardiac activities that were obtained in mice in 

the present study were consistent with previously published data in rats when 

considering the differences in heart-to-weight ratios between these 2 species [31]. 

The early cardiac washout of [
125

I]-AMI9 and [
125

I]-ICYP was higher than that of 

[
3
H]-CGP12177 and the results did not seem to indicate that binding affinity 

represented a major determinant of the early in vivo cardiac kinetics of 

radiolabelled β-AR-specific ligands. Indeed, an order of magnitude was observed 

between the Kd of [
125

I]-AMI9 and that of [
125

I]-ICYP (5.6 and 0.4 nM, 

respectively), yet both tracers exhibited a similar cardiac washout of ~60% over 

the first 15 min following injection which was much greater than that of [
3
H]-

CGP12177 (~15%) whereas the latter had a Kd roughly similar to that of [
125

I]-
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ICYP (1 nM). Linear relationships have been described between the lipophilicity 

of compounds and their respective binding to plasma proteins [32]. A hypothesis 

that might account for greater early cardiac washout of [
125

I]-AMI9 and [
125

I]-

ICYP than [
3
H]-CGP12177 could therefore be that the more lipophilic nature of 

[
125

I]-AMI9 & [
125

I]-ICYP (log(P) = 0.61 and 1.26, respectively) when compared 

to that of [
3
H]-CGP12177 (log(P) = -0.52) resulted in increased cardiac washout 

through increased binding to plasma proteins.  

 [125I]-AMI9 biodistribution showed a significantly lower lung activity than that 

of the more lipophilic [125I]-ICYP from 5 min p.i. Interestingly, [125I]-AMI9 

lung activity was similar to that of the hydrophilic [3H]-CGP-12177 in the first 5 

min following injection and lower afterwards, reaching a CGP-12177/AMI9 DUR 

ratio of 4.7 at 90 min p.i. The moderate in vivo lung activity of AMI9 represents a 

favorable feature for high quality cardiac imaging. Considering the fact that [
11

C]-

CGP12177 has been used clinically with no reports of lung activity impairing 

image acquisition and quantification, and since [
125

I]-AMI9 lung uptake is lower 

than that of [
3
H]-CGP12177, we believe that our results suggest that the 

pulmonary activity of [
125

I]-AMI9 that was observed in the present study is 

suitable for further evaluation of the tracer in the clinical setting.  

Moreover, the fact that [
125

I]-AMI9 cardiac activity was ~1.5 to 2-fold higher than 

that of [
3
H]-CGP12177 in the first 15 min following injection and [

125
I]-AMI9 

blood activity was 17-35% lower than that of [
3
H]-CGP12177 between 1 and 15 

min post-injection resulting in superior early heart-to-blood ratios for [
125

I]-AMI9 

whereas [
3
H]-CGP12177 ratios were slightly superior afterwards. of the 
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tracersThese results suggests that the potential for in vivo -AR density imaging 

with AMI9 should be further evaluated with special emphasis on early post-

injection time points. 

 

Conclusion 

The iodinated -blocker analog of practolol AMI9 as well as its S enantiomer 

AMI9S exhibited high affinity for -AR in vitro and ex vivo together with 

moderate lipophilicity. AMI9 is a promising iodinated ligand for the in vivo 

assessment of myocardial -adrenoceptor density which requires further clinical 

evaluation.  

 

New Knowledge Gained 

Pathophysiological modifications in β-AR density have been observed in heart 

failure and diabetic heart disease. Although studies using [
11

C]-CGP12177 have 

provided proof-of-concept that β-AR imaging has great potential clinical interest, 

the development of an [
11

C]-labelled PET imaging agent is limited by the 

extremely short half-life of the isotope. The present study showed that the 

iodinated -blocker analog of practolol AMI9 as well as its S enantiomer AMI9S 

exhibited high affinity for -AR in vitro and ex vivo together with moderate 

lipophilicity and that both compounds are therefore promising iodinated ligands 

for the in vivo assessment of myocardial -adrenoceptor density.  
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FIGURE CAPTIONS 

 

Figure 1  

Chemical structure of AMI 9.  

 

Figure 2  

Competition curves for binding to membrane -adrenoceptors from newborn rat 

cardiac myocytes. a, AMI9 vs [
3
H]-CGP-12177; b, AMI9S vs [

3
H]-CGP-12177. 

 

Figure 3  

Scatchard curves indicating saturation of newborn rat cardiac myocyte -

adrenoceptors by [
125

I]-AMI9 (a) and [
125

I]-AMI9S (b). Bound = specifically 

bound radioligand (fmol/mg protein); F = free radioligand (M). Nonspecific 

binding was assessed with 25 µM (±)-propranolol. 
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Compound KI (M) IC50 (M) RBA 

Atenolol (1.1±0.2)x10
-6

 6.9x10
-6

 35.6 

Metoprolol (3.9±0.5)x10
-7

 2.4x10
-6

 12.6 

AMI9 (3.0±0.5)x10
-7

 1.9x10
-6

 9.7 

AMI9S (1.8±0.3)x10
-7

 1.1x10
-6

 5.9 

Propranolol (3.1±0.8)x10
-8

 1.9x10
-7

 1.0 

Alprenolol (1.9±0.2)x10
-8

 1.2x10
-7

 0.6 

Timolol (1.7±0.3)x10
-8

 1.1x10
-7

 0.6 

Pindolol (7.9±1.0)x10
-9

 4.9x10
-8

 0.3 

TABLE 1. KI, IC50 and relative binding affinity [RBA, (KIcompound/KIpropranolol)] 

values of AMI9, AMI9S, and a series of reference -blockers as obtained from 

[
3
H]-CGP-12177 displacement experiments on newborn rat cardiac myocytes. 
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  [
125

I]-AMI9  [
125

I]-AMI9S 

  KI 1 (M) KI 2 (M)  KI 1 (M) KI 2 (M) 

CGP-20712A (  (3.8±2.8)x10
-10

 (2.2±1.1)x10
-7

  (8.1±7.0)x10
-10

 (3.1±0.8)x10
-7

 

ICI 118551 (  (1.1±0.2)x10
-6

 (2.7±1.0)x10
-9

  (1.7±0.8)x10
-7

 (1.5±1.0)x10
-9

 

Prazosin (  (1.1±1.0)x10
-9

 (3.7±1.7)x10
-6

  (8.3±3.4)x10
-9

 (3.8±1.3)x10
-6

 

Yohimbine (  ˜ 10
-3

 (4.7±0.9)x10
-9

  ˜ 10
-3

 (5.5±0.7)x10
-9

 

Atropine (musc.)  NC NC  NC NC 

TABLE 2. KI values of selective inhibitors from displacement experiments of [
125

I]-AMI9 and [
125

I]-AMI9S 

binding on newborn rat cardiac myocytes. KI 1 and KI 2 refer to KI values for either the 1/1 or the 2/2 

receptor subtypes. Musc., muscarinic; NC, no competition.  
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TABLE 3. Dose-dependent inhibitory effects of propranolol, AMI9 and AMI9S on the dP/dt max of isolated rat 

hearts stimulated by 10 nM isoproterenol; dP/dt max values (mmHg/sec) expressed as mean ± SD; P value refers 

to the comparison between control perfusion (isoproterenol continuously) and continuous co-perfusions of 

isoproterenol + tested compound. 

Compound Dose (mol/L) n 
dP/dt max 

Baseline 

dP/dt max 

Isoproterenol 

dP/dt max 

co-perfusion 

% inhibition 
P value  

None 

(Control) 

 6 715±325 2535±1233 2398±1088 5.5±11.6  

 10
-10

 6 797±195 2949±341 2857±425 4.7±14.4 0.53 

 10
-9

 6 1017±245 2529±293 2223±176 20.9±7.5 0.40 

Propranolol 10
-8

 6 837±176 2170±325 1271±200 67.5±14.5 0.007 

 10
-7

 6 1004±144 2586±266 926±256 105.9±11.5 0.0001 

 10
-6

 9 941±363 2830±910 767±218 111.5±14.6 0.0001 

 10
-5

 4 905±361 1854±328 156±130 toxic 0.0002 

 10
-10

 6 1101±263 2727±313 2581±277 9.1±3.6 0.83 

 10
-9

 6 991±347 2277±452 1653±456 47.1±13.5 0.029 

AMI9 10
-8

 6 1139±322 2742±237 1371±346 85.2±9.2 0.002 

 10
-7

 4 1304±168 3107±118 1412±214 93.8±5.2 0.003 

 10
-6

 7 1275±195 2758±679 1013±243 116.1±10.3 0.0001 

 10
-5

 6 889±113 2051±644 805±145 109.2±5.4 0.0006 

 10
-10

 5 1686±255 3410±431 3390±498 0.8±8.1 0.96 

 10
-9

 5 1137±132 2198±557 1840±514 38.7±14.0 0.060 

AMI9S 10
-8

 5 1033±216 2050±368 1507±352 55.6±13.6 0.015 

 10
-7

 5 857±215 2152±520 1041±212 85.6±4.1 0.004 

 10
-6

 5 1139±291 2194±700 1180±247 95.5±5.3 0.004 

 10
-5

 4 864±122 1894±388 785±144 108.5±9.1 0.003 
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Time post-

injection (min) 

Heart 

 

Lung 

 

Liver 

 

Kidney 

 

Brain 

 

Muscle 

 

Blood 

 

Fat 

 

0.5 4.7±2.3 14.7±12.1 3.3±2.7 8.9±7.2 0.2±0.1 0.6±0.5 3.1±0.1 0.2±0.1 

1 4.7±2.3 13.9±9.5 3.6±2.5 12.5±8.8 0.2±0.1 0.7±0.4 1.3±0.5 0.2±0.1 

2 5.3±0.5 13.7±2.1 5.2±0.1 12.0±1.6 0.1±0.0 1.2±0.0 1.3±0.2 0.3±0.0 

5 4.2±0.5 9.8±0.6 5.9±1.1 11.0±3.2 0.1±0.0 1.2±0.3 1.3±0.4 0.3±0.0 

10 2.6±0.5 5.6±1.5 3.9±0.5 6.5±2.6 0.1±0.0* 1.0±0.2 1.5±0.5 0.3±0.0 

15 1.8±0.1* 4.7±0.5 2.8±0.2 4.7±1.4 0.1±0.0* 1.1±0.0 1.3±0.1 0.5±0.1* 

30 0.9±0.2* 3.2±0.3 1.8±0.2 2.2±0.4 0.1±0.0* 0.6±0.0 1.2±0.2 0.2±0.0 

45 0.6±0.1* 3.9±0.3 1.3±0.1 1.6±0.1 0.1±0.1 0.5±0.0 1.0±0.3 0.3±0.1 

60 0.5±0.1* 2.7±0.3 1.0±0.1 1.2±0.1 0.1±0.0* 0.4±0.0 1.2±0.5 0.1±0.0 

90 0.5±0.1* 2.3±0.5 0.8±0.1 1.0±0.2 0.3±0.2 0.3±0.1 1.3±0.2 0.1±0.0 

120 0.5±0.1* 2.0±0.3 0.7±0.2 1.3±0.5 0.1±0.0 0.3±0.1 1.1±0.1 0.1±0.0 

TABLE 4. Organ biodistribution of [
125

I]-AMI9 in mice. Values expressed as mean ± SD of DUR. * P < 0.05 vs. 1 min. 
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Time post-

injection (min) 

Heart 

 

Lung 

 

Liver 

 

Kidney 

 

Brain 

 

Muscle 

 

Blood 

 

Fat 

 

0.5 2.5±0.2 14.3±0.6 0.5±0.1 2.7±0.8 0.2±0.1 0.9±0.1 2.2±0.2 0.1±0.1 

1 2.5±0.2 12.9±1.2 0.6±0.0 3.0±1.3 0.1±0.0 0.7±0.1 1.7±0.1 0.2±0.0 

2 2.4±0.2 17.1±1.1* 0.7±0.1* 1.6±0.3 0.1±0.0 0.5±0.2 1.9±0.4 0.4±0.5 

5 2.3±0.4 12.3±4.3 0.7±0.2 1.0±0.2* 0.1±0.0 0.5±0.1* 1.9±0.2 0.1±0.0 

10 1.9±0.4* 11.1±0.7 0.6±0.1 1.1±0.2 0.2±0.0 0.7±0.1 1.8±0.1 0.3±0.3 

15 2.1±0.4 9.8±2.5 0.7±0.1 0.8±0.1* 0.1±0.0 0.8±0.1 2.0±0.0* 0.2±0.0 

30 1.5±0.1* 9.9±0.4* 0.4±0.7 0.7±0.1* 0.1±0.1 0.5±0.1* 1.2±0.2* 0.2±0.1 

45 1.3±0.3* 8.3±2.1* 0.4±0.1 0.5±0.2* 0.1±0.0* 0.5±0.3 0.8±0.1* 0.2±0.2 

60 1.3±0.3* 9.9±1.4* 0.4±0.1* 0.6±0.1* 0.1±0.0* 0.5±0.0* 0.9±0.1* 0.6±0.6 

90 1.1±0.2* 10.7±0.8* 0.4±0.0* 0.5±0.1* 0.0±0.0* 0.4±0.1* 0.7±0.1* 0.1±0.1* 

120 0.9±0.2* 7.9±1.4* 0.3±0.0* 0.4±0.1* 0.0±0.0* 0.5±0.1* 0.6±0.1* 0.1±0.1 

TABLE 5. Biodistribution pattern of [
3
H]-CGP-12177 in mice. Values expressed as mean ± SD of DUR. * P < 0.05 vs. 1 min. 
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Time post-

injection (min) 

Heart 

 

Lung 

 

Liver 

 

Kidney 

 

Brain 

 

Muscle 

 

Blood 

 

Fat 

 

0.5 4.7±1.5 23.4±3.5 3.4±0.3 10.1±1.3 0.1±0.0 0.7±0.0 2.6±0.4 0.1±0.0 

1 4.9±0.7 24.8±13.6 2.9±0.2 8.6±0.7 0.1±0.0 0.8±0.3 1.8±0.3 0.2±0.1 

2 4.1±0.4 23.4±7.0 3.1±0.6 6.9±1.2 0.1±0.0 0.6±0.1 2.4±0.4 0.3±0.3 

5 3.3±0.8* 27.7±4.8 2.7±0.1 8.8±0.4 0.1±0.0 0.5±0.2 2.2±0.6 0.3±0.3 

10 2.4±0.4* 35.2±6.8 1.7±0.1* 5.1±0.3* 0.1±0.0 0.5±0.1 2.4±0.1* 0.6±0.1* 

15 2.2±0.8* 24.6±0.0 2.0±0.6 6.0±0.8* 0.1±0.0 0.5±0.1 1.9±0.6 0.2±0.0 

30 2.1±0.2* 26.9±5.6 1.5±0.1* 5.0±0.8* 0.1±0.0 0.6±0.1 2.3±0.1* 0.3±0.1 

45 1.8±0.2* 34.8±8.3 1.1±0.1* 4.5±0.5* 0.1±0.0 0.5±0.1 2.7±0.7 0.3±0.1 

60 2.2±0.5* 32.5±8.5 1.0±0.1* 2.2±0.2* 0.1±0.0 0.6±0.2 1.7±0.5 0.1±0.0 

90 2.2±0.3* 34.3±7.3 1.1±0.2* 2.5±0.5* 0.1±0.0 0.5±0.1 1.8±0.5 0.4±0.3 

120 2.1±0.2* 18.2±1.8 1.1±0.2* 1.9±0.1* 0.1±0.0 0.7±0.1 1.9±0.1 0.1±0.1 

TABLE 6. Biodistribution pattern of [
125

I]-ICYP in mice. Values expressed as mean ± SD of DUR. * P < 0.05 vs. 1 min. 
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