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Abstract

Nonlinear mixed effect models (NLMEM) are used in model-based drug development to analyse longitudinal
data. To design these studies, the use of the expected Fisher information matrix (MF ) is a good alternative
to clinical trial simulation. Presently, MF in NLMEM is mostly evaluated with first-order linearisation.
The adequacy of this approximation is, however, influenced by model nonlinearity. Alternatives for the
evaluation of MF without linearisation are proposed, based on Gaussian quadratures. The MF , expressed
as the expectation of the derivatives of the log-likelihood, can be obtained by stochastic integration. The
likelihood for each simulated vector of observations is approximated by Gaussian quadrature centred at
0 (standard quadrature) or at the simulated random effects (adaptive quadrature). These approaches have
been implemented in R. Their relevance was compared with clinical trial simulation and linearisation, using
dose-response models, with various nonlinearity levels and different number of doses per patient. When
the nonlinearity was mild, three approaches based on MF gave correct predictions of standard errors, when
compared with the simulation. When the nonlinearity increased, linearisation correctly predicted standard
errors of fixed effects, but over-predicted, with sparse designs, standard errors of some variability terms.
Meanwhile, quadrature approaches gave correct predictions of standard errors overall, but standard Gaussian
quadrature was very time-consuming when there were more than two random effects. To conclude, adaptive
Gaussian quadrature is a relevant alternative for the evaluation of MF for models with stronger nonlinearity,
while being more computationally efficient than standard quadrature.

Keywords: Design, Dose-response studies, Fisher information matrix, adaptive Gaussian quadrature,
Linearisation, Nonlinear mixed effect model

1. Introduction

Nonlinear mixed effect models (NLMEM) are frequently used in model-based drug develop-

ment to analyse longitudinal data obtained during clinical trials (Lalonde et al., 2007; Smith and

Vincent, 2010). They were introduced about 40 years ago (Sheiner et al., 1972, 1977) and were

initially used in pharmacokinetic analyses as an alternative to the non-compartmental approach

(NCA) (Gabrielson and Weiner, 2006). This modelling approach is more complex than NCA, but
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allows for the analysis of few samples per subject. It accounts for within and between subject

variability, and is appropriate for exploiting the richness of repeated measurements. Consequently,

this approach is increasingly used in the biomedical field, not only for pharmacokinetic analy-

ses (Sheiner et al., 1972, 1977), but also for analyses of viral loads (Perelson and Ribeiro, 2008),

of bacterial resistance to antibiotics (Nielsen et al., 2007), and of the dose-response relationship.

This approach has become the main statistical tool in pharmacometrics, the science of quantita-

tive pharmacology (Van der Graaf, 2012). Parameters of these models are commonly estimated by

likelihood maximisation (Dartois et al., 2007). However, the nonlinearity of the structural model

prevents a closed form solution for the integration over the random effects in the expression of the

likelihood function. Many approaches have been proposed over the years to overcome this dif-

ficulty, and implemented in several estimation software packages. These are first-order marginal

quasi-likelihood or first-order linearisation (Lindstrom and Bates, 1990) in NONMEM, R, Splus,

Laplace approximation (Wolfinger, 1993) in NONMEM and SAS, adaptive Gaussian quadrature

(Pinheiro and Bates, 1995) in SAS and in the R package lme4, Stochastic Approximation Expecta-

tion Maximisation (SAEM) (Kuhn and Lavielle, 2005) in MONOLIX and NONMEM. Pillai et al.

(2005) described these estimation methods in a review paper and recently, Plan et al. (2012) com-

pared their performance, showing that adaptive Gaussian quadrature, although the slowest, was

generally the best method.

Before the modelling step to estimate parameters, it is important to define an appropriate design,

which consists in determining a balance between the number of subjects and the number of samples

per subject, as well as the allocation of times and doses, according to experimental conditions. The

choice of design is crucial for an efficient estimation of model parameters (Al-Banna et al., 1990;

Hashimoto and Sheiner, 1991; Jonsson et al., 1996), especially when the studies are conducted in

children or in patients where only a few samples can be taken per subject. The main approach for

design evaluation has long been based on clinical trial simulation (CTS), but it is a cumbersome

method and so the number of designs that can be evaluated is limited. An alternative approach has

been described in the general theory of optimum experimental design used for classical nonlinear

models (Atkinson et al., 2007; Walter and Pronzato, 2007; Atkinson et al., 2014), relying on the

Rao-Cramer inequality which states that the inverse of the Fisher information matrix (MF ) is the

lower bound of the variance-covariance matrix of any unbiased estimate of the parameters and its
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diagonal elements are the expected variances of the parameters. Several criteria based on MF have

been developed to evaluate designs. One of the criteria widely used is the criterion of D-optimality,

which consists in maximising the determinant of MF . The computation of this criterion requires

a priori knowledge of the model and its parameters, which can usually be obtained from previous

experiments. This leads to the concept of "locally optimal designs", which has been studied in

several publications (Chernoff, 1953; Box and Lucas, 1959; D’Argenio, 1981). Since there is no

closed form of the likelihood in NLMEM, there is no analytical expression of MF . An approxi-

mation of the expected MF has been proposed for NLMEM, using first order linearisation of the

model around the random effect expectation (Mentré et al., 1997; Retout et al., 2002; Bazzoli et al.,

2009). This approach has been implemented in several software programs (Bazzoli et al., 2010;

Leonov and Aliev, 2012; Gueorguieva et al., 2007; Nyberg et al., 2012) such as PFIM (INSERM,

University Paris Diderot), POPED (University of Uppsala), POPDES (University of Manchester),

and POPT (University of Otago), frequently used to design new studies in academia as well as in

pharmaceutical companies (Mentré et al., 2013).

However, it has been shown that the use of the linearisation (LIN) approach is only appropriate

if the variances of the random effects are small, or the nonlinearity is mild (Jones and Wang, 1999;

Jones et al., 1999). Consequently, as pointed out by Han and Chaloner (2005), when an optimal

design is found using this approximation but the estimation is carried out using a true NLMEM, the

performance of the design needs further investigation. The nonlinearity of a model with respect to

its parameters is defined from the behaviour of the first order derivatives of the model function. Its

consequences on the structural identifiability of a model have been studied by Walter and Pronzato

(1995). The notion of level of nonlinearity ("mild" or "strong" as mentioned in this paper) is derived

from the term "close to linear" introduced when evaluating a nonlinear model’s behaviour (Fletcher

and Powell, 1963). Measures of nonlinearity have been studied in several publications (Bates and

Watts, 1980; Cook and Goldberg, 1986; Smyth, 2002) in order to evaluate whether the "close to lin-

ear" condition is satisfied and to indicate if the linear approximation is reasonable or questionable.

When first-order linearisation is to be avoided, alternative approaches are necessary. Various new

approaches have been proposed, but these are not always better than the usual first-order lineari-

sation. For instance, linearisation of the model around the individual values of the random effects

(Retout and Mentré, 2003) or around the expected mode of the marginal likelihood (Nyberg et al.,
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2012) has been proposed but is quite time consuming because Monte Carlo simulations are needed.

Other approaches based on the Laplace approximation (Vong et al., 2012) or Monte Carlo inte-

gration (Mielke, 2012) give correct predictions for the precision of parameter estimation, but they

are also very time consuming. Another possible alternative for computing the Fisher information

matrix in designing studies is the use of Gaussian quadrature rules. This consists in approximating

integrals of functions with respect to a given probability density by a weighted sum of function

values at abscissas chosen within the integration domain. It has been shown that adaptive Gaussian

quadrature (AGQ) performs better than standard Gaussian quadrature (GQ) in estimation (Pinheiro

and Bates, 1995); the difference between the two approaches is that the grid of nodes is centred at

the expectation of the random effects in GQ while it is centred at the conditional modes of the ran-

dom effects in AGQ. Neither approach has ever been proposed for designing studies with different

types of models, except in an example of an HIV dynamic model written with ordinary differential

equations (Guedj et al., 2007).

In this context, we aim to propose alternatives to linearisation for evaluating the predicted Fisher

information matrix, based on GQ and AGQ. In order to challenge and investigate the performance

of both new approaches as well as linearisation compared with CTS, we use examples of dose-

response trials inspired by the article of Plan et al. (2012) comparing different estimation methods.

Dose-response studies are of critical importance in drug development and need to be planned care-

fully (Bretz et al., 2010; Pronzato, 2010; McGree et al., 2012) but little has been done to study their

design in the context of NLMEM. We consider the sigmoid Emax model, with various degrees of

nonlinearity (i.e. different sigmoidicity coefficients), and in addition a linear model where MF can

be calculated exactly.

We introduce the necessary notation for the design and model and present the new GQ and

AGQ approaches developed for computing MF in Section 2. The performance of both approaches

is evaluated and compared with CTS and LIN for different scenarios in Section 3 and is discussed

in Section 4.
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2. Computing Fisher information matrix in NLMEM with Gaussian quadratures

2.1. Design

The elementary design ξi of individual i (i = 1, . . . ,N) is defined by the number ni of observa-

tions and the design variables (xi1, . . . ,xini). Consequently, the population design for N individuals

can be defined as Ξ = {ξ1, . . . ,ξN}. Usually, population designs are composed of a limited number

Q of groups of individuals with identical designs in each group. Each of these groups is composed

of a global elementary design ξq and is performed in a number Nq of subjects. The population

design can thus be written as Ξ = {[ξ1,N1]; . . . ; [ξQ,NQ]}.

2.2. Nonlinear mixed effect model

We denote by yi the ni-vector of observations for the individual i obtained with the design ξi

and by f the known function describing the nonlinear structural model. The NLMEM linking the

response yi to the samples ξi = (xi1, . . . ,xini) can be written as

yi = f (φi,ξi)+ εi, (1)

where εi is the vector of random errors which follows a standard normal distribution N (0,σ2Ini)

and Ini is an ni× ni identity matrix. The vector of individual parameters φi can be expressed as

function g of µ , the P-vector of fixed effects and of bi, the P-vector of random effects for individual

i. g can be additive (for normal parameters), so that the pth component of φi is written as

φip = g(µp,bip) = µp +bip, (2)

or exponential (for lognormal parameters), so

φip = g(µp,bip) = µp exp(bip). (3)

It is assumed that bi ∼N (0,Ω), with Ω defined here as a diagonal variance-covariance matrix of

size P×P. Each element ω2
p of Ω represents the variance of the pth component of bi. As usual,

the following assumptions are made: εi|bi are independent between subjects, and εi and bi are
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independent for each subject. The model can also be written as

yi = f (g(µ,bi),ξi)+ εi. (4)

Let λ = (ω1, ...,ωP,σ)′ be the vector of standard deviations of random effects and standard devia-

tion of random error. Ψ, the vector of all population parameters to be estimated, is Ψ = (µ ′,λ ′)′.

2.3. Fisher information matrix

The individual Fisher information matrix is defined from the likelihood of the observations yi

of individual i, which is expressed by the following integral

L(yi;Ψ) =
∫

RP
p(yi|bi;Ψ) p(bi) dbi, (5)

where p(yi|bi;Ψ) is the conditional density of the observations yi given the random effects bi, and

p(bi) is the density of bi∼N (0,Ω). Then, the Fisher information matrix for the elementary design

ξi is the following expectation taken with respect to the distribution of the observations p(y;Ψ)

MF(Ψ;ξi) = E
(

∂ logL(yi;Ψ)

∂Ψ

∂ logL(yi;Ψ)

∂Ψ

′)
. (6)

As the individuals are independent, the Fisher information matrix MF(Ψ,Ξ) for a population design

Ξ is defined by the sum of the N elementary matrices MF(Ψ,ξi), so that

MF(Ψ,Ξ) =
N

∑
i=1

MF(Ψ,ξi). (7)

In the case of a limited number Q of elementary designs ξq, we have

MF(Ψ,Ξ) =
Q

∑
q=1

NqMF(Ψ,ξq). (8)

However, there is no analytical expression for the likelihood L(yi;Ψ) in NLMEM. Approximations

such as linearisation can be used to approximate the Fisher information matrix (Mentré et al., 1997;

Retout et al., 2002; Bazzoli et al., 2009). The predicted MF after linearisation is a block matrix

with a block corresponding to derivatives of the log-likelihood with respect to the fixed effects, a

6



block for derivatives with respect to the standard derivation terms and a block containing mixed

derivatives with respect to all parameters. In our work, the block of mixed derivatives was set to

0 for linearisation, based on publications showing the better performance of the block diagonal

expression compared with the full one (Mielke and Schwabe, 2010; Fedorov and Leonov, 2014;

Nyberg et al., 2014).

2.4. Gaussian quadrature and adaptive Gaussian quadrature

When linearisation is to be avoided, alternatives such as Gaussian quadratures can be used

to express the likelihood analytically. For simplicity, we omit the index i for the individual in

this section. The elementary Fisher information matrix MF(Ψ,ξ ) in (6) for an individual with

elementary design ξ of n observations can also be written as

MF(Ψ,ξ ) =
∫

Rn
h(y;Ψ) p(y;Ψ) dy, (9)

where p(y;Ψ) is the marginal density of y and

h(y;Ψ) =
∂ logL(y;Ψ)

∂Ψ

∂ logL(y;Ψ)

∂Ψ′
=

∂L(y;Ψ)
∂Ψ

∂L(y;Ψ)
∂Ψ′

L(y;Ψ)2 . (10)

First, we propose to evaluate the integral of h(y;Ψ) with respect to p(y;Ψ) in (9) by stochastic

integration. We generate M vectors of observations ym (m = 1, . . . ,M), each vector with the same

design ξ of n samples, under the same probability distribution p(y;Ψ). Thus, an approximation of

(9) can be obtained by

MF(Ψ,ξ ) =
1
M

M

∑
m=1

h(ym;Ψ). (11)

Then, in order to obtain an analytical expression of h(ym;Ψ) as expressed in (10) for each

simulated ym, we need to compute the likelihood L(ym;Ψ). We define η = Ω−1/2b, then η ∼

N (0, IP), where IP is the identity matrix of dimension P×P. Consequently, the likelihood in (5)

can also be written as

L(ym;Ψ) =
∫

RP
p(ym|η ;Ψ)p(η)dη , (12)

where p(η) is the density of N (0, IP). This integral can be evaluated numerically by the Gaussian

quadrature approach, as a weighted sum of p(ym|η ;Ψ) evaluated at pre-determined nodes chosen
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within the distribution of η (Pinheiro and Bates, 1995). Quadrature weights and nodes for ap-

proximating one-dimensional integrals are those of the standard Gauss-Hermite rule (Abramowitz

and Stegun, 1964; Golub and Welsh, 1969; Golub, 1973). The nodes are the roots of the Hermite

polynomial of degree κ , obtained from successive derivatives of exp(η2) (Press et al., 1992). As

in Pinheiro and Bates (1995), the P-dimension integral here was transformed into P successive

one-dimensional integrals. The distribution of nodes and weights used in standard GQ does not

take into account the nature of the integrand, which is why standard GQ requires a high number

of nodes in order to provide a correct estimation of parameters. AGQ, by centring and scaling the

standard quadrature nodes, places the nodes according to the areas of high density and improves

the approximation. Consequently it requires fewer nodes compared with standard GQ, while giving

better performance in estimation (Pinheiro and Bates, 1995).

In order to approximate each one of these integrals in L(ym;Ψ) using standard GQ, for all

simulated ym, κ quadrature nodes and weights are selected from the standard normal distribution

N (0,1). Then the integral of dimension P can be approximated by the weighted sum over K

nodes ηk, where K = κP and ηk are vectors in RP, associated with weights wk (k = 1, . . . ,K). So,

we obtain the following analytical expression

L(ym;Ψ) =
K

∑
k=1

wk p(ym|ηk;Ψ), (13)

where ym|ηk ∼N ( fk,σ
2In) with fk = f (g(µ,Ω1/2ηk),ξ ). Thus, we can write

p(ym|ηk;Ψ) = (2πσ
2)−n/2 exp

(
−1
2σ2 (ym− fk)

′(ym− fk)

)
,and (14)

log p(ym|ηk;Ψ) =−n
2

log2π− n
2

logσ
2− 1

2σ2 (ym− fk)
′(ym− fk). (15)

The likelihood L(ym;Ψ) can also be approximated by AGQ. Since a vector of standardised

random effects ηm is simulated when generating each ym, we select K = κP nodes ηmk and weights
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wk based on p̃(η) which is the N (ηm, IP) density. We can write

L(ym;Ψ) =
∫

RP

p(ym|η ;Ψ) p(η)

p̃(η)
p̃(η)dη (16)

=
K

∑
k=1

wk
p(ηmk)

p̃(ηmk)
p(ym|ηmk;Ψ), (17)

where ym|ηmk ∼N ( fmk,σ
2In) with fmk = f (g(µ,Ω1/2ηmk),ξ ), and the weights for AGQ can be

written as

wk
p(ηmk)

p̃(ηmk)
= wk

(2π)−P/2 exp(−1
2η ′mkηmk)

(2π)−P/2 exp(−1
2(ηmk−ηm)′(ηmk−ηm))

(18)

= wk exp
(
−1

2
(
η
′
mkηmk− (ηmk−ηm)

′(ηmk−ηm)
))

. (19)

Finally, using (13) or (17) in (10) and in (11), the individual Fisher information matrix can be

approximated as

MF(Ψ,ξ ) =
1
M

M

∑
m=1

(
∑

K
k=1 wmk

∂ pmk(ym;Ψ)
∂Ψ

) (
∑

K
k=1 wmk

∂ pmk(ym;Ψ)
∂Ψ′

)
(
∑

K
k=1 wmk pmk(ym;Ψ)

)2 (20)

=
1
M

M

∑
m=1

(
∑

K
k=1 wmk pmk(ym;Ψ)∂ log pmk(ym;Ψ)

∂Ψ

) (
∑

K
k=1 wmk pmk(ym;Ψ)∂ log pmk(ym;Ψ)

∂Ψ′

)
(
∑

K
k=1 wmk pmk(ym;Ψ)

)2 .

(21)

When using GQ, wmk = wk and pmk(ym;Ψ) = p(ym|ηk;Ψ) as defined in (14). When using AGQ,

wmk = wk
p(ηmk)
p̃(ηmk)

as defined in (19) and pmk(ym;Ψ) = p(ym|ηmk;Ψ) as defined in (14) with fmk

instead of fk.

As Ψ = (µ ′,λ ′)′, the Fisher information matrix MF(Ψ,ξ ) can be written as a block matrix

MF(Ψ;ξ ) =

 MF(µ;ξ ) MF(µ,λ ;ξ )

MF(µ,λ ;ξ ) MF(λ ;ξ )

 . (22)

To compute MF(µ;ξ ), we derive the log-likelihood with respect to each element µp of the vector
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of fixed effects µ = (µ1, ...,µP)
′, using

∂ log pmk(ym;Ψ)

∂ µp
=

1
σ2

∂ fk

∂ µ ′p
(ym− fk), (23)

To compute MF(λ ;ξ ), we derive the log-likelihood with respect to each element ωp or σ of the

vector of standard deviations λ = (ω1, ...,ωP,σ)′, using

∂ log pmk(ym;Ψ)

∂ωp
=

1
σ2

∂ fk

∂ω ′p
(ym− fk),and (24)

∂ log pmk(ym;Ψ)

∂σ
=− n

σ
+

1
σ3 (ym− fk)

′(ym− fk), (25)

with fmk instead of fk when using AGQ instead of GQ. Finally, using (23, 24, 25) in (21), we obtain

each element of MF(µ;ξ ) in (22).

3. Evaluation by simulation

3.1. Evaluation models and scenarios

Our evaluation examples were inspired by a previous dose-response simulation study (Plan

et al., 2012) which mimicked clinical trials including 100 subjects with identical individual design

ξ and investigating several dose levels among 0, 100, 300 and 1000 dose units.

Table 1: Different models and designs evaluated

Structural Number of Number of doses Doses Name

model parameters P per subject n

Linear 2
4 (0, 100, 300, 1000) M1R

2 (100, 300) M1S

Emax

2

γ = 1
4 (0, 100, 300, 1000) M2R

(E0 not estimated, 2 (300, 1000) M2S

fixed at same value
γ = 3

4 (0, 100, 300, 1000) M3R

in all subjects) 2 (300, 1000) M3S

Emax

3

γ = 1
4 (0, 100, 300, 1000) M4R

(E0 estimated, 3 (0, 300, 1000) M4S

varying
γ = 3

4 (0, 100, 300, 1000) M5R

between subjects) 3 (0, 300, 1000) M5S
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First, we considered a linear model of the dose-response relationship describing, for subject i,

an effect Ei j for the jth dose di j with two structural parameters: baseline E0 and slope S.

Ei j = E0i +Si×di j + εi j. (26)

The vector of the fixed effects µ was composed of µE0 = 5 and µS = 0.06. The random effect

model was additive with standard deviations ωE0 = 1.5 and ωS = 0.018. The standard deviation σ

of random error εi j was equal to 2. We studied two designs, a rich one ξ = (0,100,300,1000) and

a sparse one ξ = (100,300). We chose to evaluate first a simple linear mixed effect model (denoted

by M1) because in this case the analytical form of the Fisher information matrix is known and so

we could easily check whether our calculation and implementation are correct.

Next, we considered a sigmoid Emax model of the dose-response relationship, describing for

subject i, an effect Ei j for the jth dose di j with the following structural parameters: baseline E0,

maximal effect Emax, dose ED50 at which 50% of the maximal effect is achieved and sigmoidicity

coefficient γ , i.e. the degree of nonlinearity of the function shape.

Ei j = E0i +
Emaxi×dγ

i j

EDγ

50i
+dγ

i j
+ εi j. (27)

We considered a model with γ = 1 and a model with γ = 3. In each model, γ was known with

the same value in all subjects (i.e. µγ not estimated, ωγ = 0). We first studied models with two

structural parameters: Emax and ED50 where E0 was fixed at the same value 5 in all subjects (i.e. µE0

not estimated, ωE0 = 0). The fixed effects µ were µEmax = 30, µED50 = 500 and the random effects

were exponential with ωEmax = ωED50 = 0.3. We denote these models M2 and M3 for γ = 1 and

γ = 3, respectively. Then, we studied models with three structural parameters: Emax, ED50 and E0,

where E0 can vary from one subject to another and was estimated. The fixed effects µ were µEmax =

30, µED50 = 500, µE0 = 5 and the random effects were exponential with ωEmax = ωED50 = ωE0 = 0.3.

We denote these models M4 and M5 for γ = 1 and γ = 3 respectively. The standard deviation σ of

random error εi j was equal to 2 in all models. Designs ξ with 2, 3, or 4 doses among (0, 100, 300,

1000) were studied. The list of the 5 models above and the designs studied are detailed in Table 1.

The rich design is referred to as R and the sparse design as S. Examples of one dataset simulated
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Figure 1: Individual response versus dose profiles (in grey) for one dataset simulated using linear model (M1R), Emax
model with sigmoidicity coefficient γ = 1 (M4R) and Emax model with γ = 3 (M5R), with 4 doses per subject (0, 100,
300, 1000). The black curves represent the response predicted by the model for the fixed effect parameters.

using linear model, Emax model with 3 structural parameters, γ = 1 or γ = 3 and the rich design of

4 doses per subject (M1R, M4R and M5R respectively) are plotted in Figure 1.

We plotted the first and second order derivatives to examine graphically the model nonlinearity

(Figure 2). The first derivatives with respect to Emax and ED50 vary over design samples and are

presented in Figure 2A. We notice that the derivative with respect to Emax depends on ED50 and

the one with respect to ED50 depends on both Emax and ED50. Thus the optimal design depends on

values of Emax and ED50 but not on E0. One class of nonlinearity measures is based on the second

order derivatives (Smyth, 2002): if the second derivatives of model f1 are smaller in absolute values

than f2, then model f1 has "closer to linear" behaviour. The second derivatives that are different

from 0 are plotted against doses in Figure 2B. The magnitudes of the curves are greater when γ

= 3 than when γ = 1, indicating that model nonlinearity increases with γ . This observation was

confirmed by Plan et al. (2012) who showed decreasing performance of the linearisation approach

along the γ-increase when estimating parameters for Emax models.

3.2. Comparison of standard errors between predictions and clinical trial simulation

Our aim was to evaluate and compare the standard errors (SE) predicted using MF by GQ and

AGQ with those obtained by CTS and LIN.

We performed clinical trial simulations in R 2.14.1 with the model, parameters and designs
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Figure 2: First order (panel A) and second order (panel B) derivatives of the function f of the Emax model with respect
to the structural parameters Emax and ED50 for two sigmoidicity coefficients γ = 1 and γ = 3.

above. For each scenario, 1000 datasets of 100 subjects were simulated. Each simulated dataset

was then analysed in MONOLIX 3.2 (www.lixoft.eu). Population parameters were estimated by the

SAEM algorithm (Kuhn and Lavielle, 2005). Next, the SE by CTS, defined as the unbiased sample

estimate of the standard deviation from the 1000 parameter estimates, were calculated. The relative
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standard errors (RSE) by CTS were defined as the ratio of the SE to the true value of parameters.

As in the publication by Retout and Mentré (2003), the 95% confidence intervals for each RSE

by CTS are given, computed as
[√

q1
999 RSE2;

√
q2

999 RSE2
]

where q1 and q2 are, respectively, the

2.5% and 97.5% quantiles of the χ2 distribution with 999 degrees of freedom. We also computed

the determinant of the variance-covariance matrix of all parameter estimates, normalised according

to the standard definition of D-criterion, i.e. det(MF)
−1/(2P+1).

In parallel, we first used PFIM 3.2.2 (www.pfim.biostat.fr) with the model, parameters and de-

signs above to predict MF by LIN. Second, we implemented the calculations for GQ and AGQ

(Section 2.4) in R 2.14.1 in a working version of PFIM, using the function gauss.quad.prob

of the R package statmod and the function as.weight of the R package plink for multidimen-

sional quadratures, which is an extension of gauss.quad.prob. We used M= 1000 simulations to

compute the expectation of h (see equation 11). We found that κ = 100 nodes are needed for GQ

and only 30 nodes for AGQ to guarantee stable results with all studied models. The predicted SE

of parameters were calculated as the square root of the diagonal terms of M−1
F and the predicted

RSE were defined as the ratio of the SE to the true value of parameters. We also calculated the nor-

malised determinant of the predicted variance-covariance matrix of parameter estimates (as defined

above).

Finally, we compared the RSE and the normalised determinant of the variance-covariance ma-

trix predicted using LIN, GQ and AGQ with those obtained by CTS.

3.3. Results

For the linear dose-response model (Figure 3), the RSE predicted by LIN, GQ and AGQ were

close and in the same range as the ones calculated from CTS. In this case, the linearisation approach

provided the exact calculation of MF and of the true SE. As expected, the RSE were higher in the

sparse design with 2 doses (Figure 3, M1S) than in the rich design with 4 doses (Figure 3, M1R),

not so much for the fixed effects but more for the standard deviations of the random effects and of

the random error.

For the Emax model with 2 structural parameters and 2 random effects, when γ = 1 (Figure 4,

M2R-M2S), the three prediction approaches gave RSE close to those obtained by CTS. However,

when γ = 3 (Figure 4, M3R-M3S), with the sparse design, the linearisation approach over-predicted

the RSE for ωED50 and especially for σ (42% predicted by LIN versus 15% by GQ, 14% by AGQ
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Figure 3: Relative standard error RSE (%) for the linear dose-response model obtained by clinical trial simulation
(white bar) versus those predicted by linearisation (light grey bar), Gaussian quadrature (dark grey bar) and adaptive
Gaussian quadrature (black bar), for the fixed effects (µ), the standard deviation of the random effects (ω), and of
the random error (σ ), with rich or sparse designs: M1R (4 doses per subject), M1S (2 doses per subject). The 95%
confidence intervals of the RSE obtained by clinical trial simulation are displayed on top of the white bars.

R
S

E
 (

%
)

0
10

20
30

40

µEmax
µED50

ωEmax
ωED50 σ

M2R

CTS
LIN
GQ
AGQ

R
S

E
 (

%
)

0
10

20
30

40

µEmax
µED50

ωEmax
ωED50 σ

M2S

R
S

E
 (

%
)

0
10

20
30

40

µEmax
µED50

ωEmax
ωED50 σ

M3R

R
S

E
 (

%
)

0
10

20
30

40

µEmax
µED50

ωEmax
ωED50 σ

M3S

Figure 4: Relative standard error RSE (%) for the Emax dose-response model with fixed baseline, obtained by clinical
trial simulation (white bar) versus those predicted by linearisation (light grey bar), Gaussian quadrature (dark grey bar)
and adaptive Gaussian quadrature (black bar), for the fixed effects (µ), the standard deviation of the random effects
(ω), and of the random error (σ ), with rich or sparse designs: M2R (γ = 1, 4 doses per subject), M2S (γ = 1, 2 doses
per subject), M3R (γ = 3, 4 doses per subject), M3S (γ = 4, 2 doses per subject). The 95% confidence intervals of the
RSE obtained by clinical trial simulation are displayed on top of the white bars.
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and 17% obtained by CTS). With the rich design, the level of nonlinearity seemed to have less

impact on the performance of linearisation: like GQ and AGQ, LIN adequately predicted RSE of

all model parameters, in the same range as the ones obtained by CTS.
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Figure 5: Relative standard error RSE (%) for the Emax dose-response model with estimated baseline, obtained by
clinical trial simulation (white bar) versus those predicted by linearisation (light grey bar), Gaussian quadrature (dark
grey bar) and adaptive Gaussian quadrature (black bar), for the fixed effects (µ), the standard deviation of the random
effects (ω), and of the random error (σ ), with rich or sparse designs: M4R (γ = 1, 4 doses per subject), M4S (γ = 1, 3
doses per subject), M5R (γ = 3, 4 doses per subject), M5S (γ = 4, 3 doses per subject). The 95% confidence intervals
of the RSE obtained by clinical trial simulation are displayed on top of the white bars.

For the Emax model with 3 structural parameters and 3 random effects, when γ = 1 (Figure

5, M4R-M4S), the three prediction approaches gave RSE in the same range as those obtained by

CTS. However, as in the previous model, when γ = 3 (Figure 5, M5R-M5S), the performance of

the linearisation approach deteriorated with the sparse design and it over-predicted the RSE of ωE0

(27% predicted by LIN versus 19% by GQ, 21% by AGQ and 20% obtained by CTS). With the

rich design, the four approaches gave RSE that were close.

It is of note, as reported in Figures 3-4-5, that the RSE obtained by CTS were representative

of the true RSE because rather small 95% confidence intervals were found. Figure 6 represents

the normalised determinants of the variance-covariance matrix obtained by the four approaches for
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number of parameters (2P+1), obtained by clinical trial simulation (white bar) versus those predicted by linearisation
(light grey bar), Gaussian quadrature (dark grey bar) and adaptive Gaussian quadrature (black bar), for different models
as defined in Table 1.

different scenarios. Overall, the predicted variances were lower than the ones observed from CTS.

However, for the scenario M3S, LIN predicted a determinant of the variance-covariance matrix that

is larger than the one obtained by CTS.

Regarding computing time, the linearisation approach was much faster than the two other pre-

diction approaches. For the models with 2 random effects, the runtimes were less than 1 s by LIN

in PFIM 3.2.2, about 6 h by GQ, 20 minutes by AGQ, and 10 h by CTS. For the models with 3

random effects, the runtimes were less than 1 s by LIN, about 110 h by GQ, 11 h by AGQ and 12

h by CTS.

4. Discussion

The present work proposes new approaches to the evaluation of the Fisher information matrix

in NLMEM, using Gaussian quadrature and adaptive Gaussian quadrature when designing longitu-

dinal studies. This is an alternative to first-order linearisation, the most commonly used approach

in the field of optimal design in NLMEM. We investigated the performance of these approaches in

predicting parameter standard errors and determinants of the Fisher matrix for dose-response mod-

els, as compared with linearisation and clinical trial simulation. These predictions are important
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for design evaluation which is always the first step when planning an upcoming study and correct

values of the D-criterion are needed for design optimisation.

When the nonlinearity was mild (γ = 1), the linearisation approach gave correct predictions of

the RSE, close to the empirical ones obtained by simulation. When nonlinearity increased (γ = 3),

linearisation correctly predicted the RSE of fixed effects but over-predicted, in the case of the

sparse design, the RSE of ωED50 and σ . This poor performance could be partly explained by the

behaviour of the first derivatives of the model function, which are used in the calculation of the

MF block corresponding to the standard deviation terms (Bazzoli et al., 2009). As shown in Figure

2A, the derivatives of f when γ = 3 (especially with respect to ED50) are much more sensitive to

design samples as compared with γ = 1. This might be why when γ = 3, with the sparse design

of 2 doses (300, 1000) only, RSE of some standard deviation terms were not well predicted by

linearisation. Further evaluations of other examples are needed to understand better the difference

in performance of this approach between the sparse and rich designs.

GQ and AGQ gave correct predictions of RSE overall, close to the RSE obtained by CTS, in

spite of a slight discrepancy versus CTS for some variability terms. When experimenters design

population studies, they are more interested in the magnitude of the RSE than the exact value, so

these approaches are relevant to evaluate MF when linearisation is to be avoided. Here, we used

κ = 100 nodes for GQ and κ = 30 nodes for AGQ to approximate the integrals correctly, when

compared with CTS, in all studied models (so the total number of model evaluations was K = κP,

P is the number of random effects). Even fewer nodes were sufficient to obtain stable results

by AGQ for models with milder nonlinearity. Clarkson and Zhan (2002) needed κ = 15 nodes for

spherical-radial quadrature when estimating parameters of a logistic mixed model with two random

effects. Gotwalt et al. (2009) also used spherical-radical quadrature to compute the Bayesian design

criteria (in a nonlinear model without random effects) and showed that the number of function

evaluations to be performed increases as the square of the number of parameters P. In order to

evaluate each elementary Fisher information matrix, we also needed to perform an integration over

the marginal distribution p(y,Ψ) of the observations y, which depends on the design Ψ (equation

9). Theoretically, this could have been evaluated by Gaussian quadrature rules as well, based on

the distribution of y. However, this integral has the same dimension as the number of samples

in the individual design ξ , and in practice Gaussian quadrature rules can only be applied when
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the number of design samples is small. We proposed an alternative method based on stochastic

integration, simulating M = 1000 vectors of observations under the same probability distribution

as y, which was less time consuming than using a second quadrature, especially for rich designs.

Guedj et al. (2007) also found in their study, with a similar approach using a simulation step, that M

= 1000 was sufficient to evaluate MF in a model of HIV dynamics. Further evaluations are needed

to select the best balance between M and κ .

As a consequence, AGQ is much more computationally efficient than GQ for designing trials.

For instance, in our study, for the models with 2 random effects, the runtimes were about 6 h by

GQ, 20 min by AGQ and 10 h by CTS; and for the models with 3 random effects, about 110 h by

GQ, 11 h by AGQ and 12 h by CTS. Here, we considered variability in all parameters; the number

of random effects is the number of structural parameters, which is not always the case. Indeed,

there are usually only one or two random effects in discrete data mixed models (Savic et al., 2011;

Abebe et al., 2014) or survival frailty models (Vigan et al., 2012), so the computing times by

these new approaches are still reasonable compared with CTS. Another advantage of GQ and AGQ

compared with CTS is that the computing time in GQ or AGQ does not depend on the number

of subjects in the population design because of the properties of the population MF (equations 7

and 8). Consequently, a gain in computing time would be more obvious when designing studies in

large populations. For instance, for a model with two random effects, simulation and fitting of 1000

datasets of 1000 subjects or 10 000 subjects will take about 30 hours and 800 hours respectively,

while GQ will always take 6 hours and AGQ 20 minutes to evaluate the same design in all subjects.

GQ and AGQ would more easily allow evaluation of a larger number of designs because of the

property (8), while CTS is certainly more time consuming because one has to simulate and analyse

again new datasets whenever adding or removing an elementary design. One perspective of this

work is to evaluate the performance of alternative sampling techniques in the stochastic integration

part of our AGQ approach, for example we would try using Latin Hypercube sampling, which

might be less time consuming than standard random sampling, as suggested Ueckert et al. (2010).

Here we considered a diagonal variance-covariance matrix Ω, but one may want to take into

account the correlation between random effects in the model, for example, between those on Emax

and ED50 as in Plan et al. (2012). Therefore, it would be interesting to include the full Ω in GQ and

AGQ approaches as well, based on calculations proposed by Dumont et al. (2014). Moreover, we
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should also evaluate the GQ and AGQ with different levels of between-subject variability or with

increasing variance as in growth data. It would also be necessary to evaluate these approaches not

only for dose-response models but also for discrete data mixed models and survival frailty models

where the linearisation approach to design would work poorly.

Other possible alternatives to linearisation for evaluation of MF when designing studies could

be spherical radial integration (Monahan and Genz, 1997) or stochastic approach and importance

sampling. Stochastic approach to evaluate MF can be inspired by the SAEM algorithm (Kuhn and

Lavielle, 2005), using Louis’s (Louis, 1982) or Oakes’s (Oakes, 1999) formulas for MF , with simu-

lation of individual parameters and stochastic approximation of expectations. Importance sampling

is more time consuming than AGQ in estimation, but has the advantage of being versatile in han-

dling distributions other than the normal for both random effects and residual errors (Pinheiro and

Bates, 1995). However, it has not yet been assessed for design evaluation.

Once an appropriate approach to evaluating designs and to computing the D-criterion is chosen,

the determinant of the Fisher information matrix can be maximised using the iterative Fedorov-

Wynn algorithm (Fedorov, 1972; Wynn, 1972) within a finite set of possible designs, based on the

Kiefer-Wolfowitz equivalence theorem (Kiefer and Wolfowitz, 1960), as implemented in design

software such as PFIM (Retout et al., 2007), PkStaMP and PopDes. As suggested by Fedorov and

Leonov (2014), we would compute the normalised predicted variance for all possible combinations

of candidate points, which hits its maximum value of dim(Ψ) at the support points of the D-optimal

design. However, a limitation of the current approaches proposed here is that they require a priori

knowledge of the model and its parameters, which leads to designs that are only locally optimal.

Sensitivity analyses with respect to the model and the parameter values would be necessary to

quantify how the results vary. Alternatives, such as adaptive designs (Leonov and Miller, 2009; Foo

and Duffull, 2012) or robust designs based on Bayesian criteria (Han and Chaloner, 2004; Dette

and Pepelyshev, 2008; Gotwalt et al., 2009; Abebe et al., 2014) would be interesting to explore.

To conclude, when computing the Fisher information matrix in NLMEM for design evalua-

tion and optimisation, the linearisation approach is accurate for models with mild nonlinearity, as

has already been demonstrated for several PK (Retout and Mentré, 2003; Nguyen et al., 2012),

PK/PD (Bazzoli et al., 2009) and viral dynamic models (Retout et al., 2007; Guedj et al., 2011).

This procedure is very fast and relatively simple, is available in several design software programs,
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and is a very useful tool for designing longitudinal studies while avoiding extensive simulations.

However, when the models are complex and have never been evaluated in design approaches, non-

linearity measures (Bates and Watts, 1980; Cook and Goldberg, 1986) of the studied model should

be investigated for the evaluated or the optimised design before drawing final conclusions. If the

nonlinearity is strong and therefore the linearisation approximation is to be avoided, then GQ and

AGQ are relevant alternatives: GQ is very time consuming and is only useful for a small number

of random effects, while AGQ is much less time consuming while providing adequate results. An

appropriate choice for the number of quadrature nodes is to be defined, depending on the level of

nonlinearity. Further evaluations for other types of models are needed before implementing AGQ

in PFIM software for efficiently designing trials while reducing the number of samples per subject,

which can be very important both ethically and practically when performing studies in patients.
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