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Polyploidy (alias whole genome amplification) refers to organisms containing more than two basic sets of
chromosomes. Polyploidy was first observed in plants more than a century ago, and it is known that such
processes occur in many eukaryotes under a variety of circumstances. In mammals, the development of
polyploid cells can contribute to tissue differentiation and, therefore, possibly a gain of function; alternately,
it can be associated with development of disease, such as cancer. Polyploidy can occur because of cell fusion
or abnormal cell division (endoreplication, mitotic slippage, or cytokinesis failure). Polyploidy is a common
characteristic of the mammalian liver. Polyploidization occurs mainly during liver development, but also in
adults with increasing age or because of cellular stress (eg, surgical resection, toxic exposure, or viral
infections). This review will explore the mechanisms that lead to the development of polyploid cells, our
current state of understanding of how polyploidization is regulated during liver growth, and its consequence
on liver function. (Am J Pathol 2014, 184: 322e331; http://dx.doi.org/10.1016/j.ajpath.2013.06.035)
Supported by an Institut National de la Santé et de la Recherche Médicale
(INSERM) grant, the Agence Nationale de la Recherche (ANR2010-
BLAN112302) grant, the Fondation ARC pour la Recherche sur le Cancer
grant (SFI20111203568), the Association Française pour l’Etude du Foie
grant, and the Laboratoire Janssen Cilag grant. G.G. is a recipient of DIM
Région Ile de France Cardiovasculaire-Obésité-Rein-Diabète.
This article is part of a review series on liver pathobiology.
Eukaryotic organisms usually contain two complete haploid
sets of homologous chromosomes (diploid, 2n), the diploid
state being a standard for sexually reproducing species. Poly-
ploidy refers to the presence of additional sets of chromosomes
(eg, 4n or 8n). These additional sets may originate from a single
species (autopolyploidy) or from different, generally closely
related, species (allopolyploidy). Polyploidy is most common
among plants, particularly angiosperms.1 These polyploid
species commonly arise from unreduced gametes by nondis-
junction of chromosomes in the germ line. Polyploidy is likely
to modify plant morphological, phenological, physiological,
and/or ecological characteristics and, thus, generates in-
dividuals that can flourish in novel habitats and fluctuating
environments, or outcompete progenitor species.2 Polyploidy is
also tolerated in animals3 (eg, fish and amphibians can form
interspecific hybrids of varying ploidy). In contrast, in birds and
mammals, whole-organism polyploidy is rare, and usually fatal,
with polyploids dying early in their development. In humans,
stigative Pathology.
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triploid and tetraploid fetuses are usually aborted or die soon
after birth because of multiple internal and external malforma-
tions.4,5 However, the supposed impossibility of polyploidy in
mammals has been disproved by the discovery of tetraploidy in
both red and golden viscacha rats.6

Polyploid cells can, however, be found at relatively high
frequency in much mammalian tissue (Figure 1). In physio-
logical conditions, the conversion fromdiploidy to polyploidy is
a part of development and differentiation programs.7 Poly-
ploidization is seen, for example, in skeletal muscle, heart,
placenta, liver, brain, and blood cells. In certain tissue, the
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Figure 1 Polyploidy during physiological and pathological processes. Polyploid cells are generated during physiological processes, such as embryogenesis
(placenta-trophoblast giant cells), postnatal development (heart-cardiomyocytes or liver-hepatocytes), and terminal differentiation (bone marrowe
megakaryocytes); and also during pathological processes, such as hypertension (vascular smooth muscle cells), virus infection (human papilloma virus), and
tumorigenesis (esophageal and colon cancers).

Polyploidization in Liver Tissue
genesis of polyploid cells is also linked to a variety of cellular
stressors (eg,mechanical ormetabolic stress). This has beenwell
documented for uterine smoothmuscle duringpregnancy,8 heart
muscle and vascular smooth muscle cells during aging and
hypertension,9,10 and thyroid cells in hyperthyroidism.11

Finally, unscheduled tetraploidy is observed in human
cancers.12 Tetraploidy constitutes a metastable intermediate
between healthy diploidy and neoplastic aneuploidy. Tetra-
ploidization has been observed, for example, in the early stages
of colon cancer, breast cancer, Barrett’s esophagus, and cervical
cancer. In short, in mammals, the genesis of polyploid cells in a
tissue can either contribute to differentiation and possibly a gain
of function or, on the other hand, be associated with the devel-
opment of diseases, such as cancer. Hepatic polyploidy is a
characteristic feature of mammalian liver and was discovered a
long time ago. Polyploidy is linked to postnatal development
and varies in adults in response to various stimuli and aggres-
sion. In this review, we will explore the mechanisms leading to
polyploidization inmammals and discuss how this process takes
place in liver parenchyma and, thus, the functional conse-
quences for liver proliferation and function.

Causes of Whole Chromosome Duplication

How does a diploid tissue become polyploid? In a physio-
logical or pathological context, there are several mechanisms
The American Journal of Pathology - ajp.amjpathol.org
that promote the genesis of polyploid cells: i) cell fusion, ii)
endoreplication, iii) mitotic slippage, and iv) cytokinesis
failure. The various mechanisms are described later.
Cell Fusion

Cell-cell fusion is the only mechanism that leads to the genesis
of a polyploid cell without the involvement of the cell cycle
(Figure 2) and allows the formation of tissues and also pro-
duces specific functions. This mechanism plays a contradictory
role, particularly involved in physiological development (eg,
muscle fiber formation), but also in pathological events (viral
infection), either linked to cancer development or unre-
lated.13,14 During the physiological process, cell fusion is
generally associated with terminally differentiated multinu-
clear cell formation.15 Cell fusion has been well conserved
through evolution, from yeast mating pairs to human muscle
development. Myoblast fusion during embryogenesis has been
extensively described thanks to in vivo studies in Drosophila.
Cell fusion involves two different cell types: muscle founder
cells and fusion-competent myoblasts. The mechanism can be
divided into several stages, beginning with an attraction-
recognition-adhesion stage,16 dependent on complexes con-
taining transmembrane proteins (with an immunoglobulin
domain), such as Dumbfounded/Roughest and Sticks/Stones,
expressed by the two cell types. These complexes allow actin
323
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cytoskeleton rearrangements with migration and filopodia
formation. The following stage involves actin accumulation at
the fusion site to form a ring structure, fusion-restricted
myogenic-adhesive structure. The last stage is associated
with membrane breakdown and the removal of fusion ma-
chinery to allow a next round of fusion until final muscle fiber
size is reached. Interestingly, experiments on cell plasticity
have revealed that stem cells can fuse with mature cells in
different tissues after transplantation (described later).

Cell-to-cell fusion is involved in pathological processes
after viral infection. Cell fusion was first observed in virus
infection in mouse cell culture infected with Sendai virus.
Since this discovery, numerous viruses have been charac-
terized to display fusogenic activity [eg, human papilloma
virus (HPV), Epstein-Barr virus, Kaposi’s sarcoma virus,
hepatitis B virus, and hepatitis C virus],17 in which cell-to-
cell fusion contributes to cancer pathogenesis. Cervical
cancer progression is strongly associated with HPV (HPV-
16 and HPV-18) infection, detected in nearly all cases of
cervical cancers. Expression of the oncoprotein HPV-16 E5
is sufficient for the formation of binucleated cells, a com-
mon characteristic of precancerous cervical lesions.18 In
association, HPV-16 E6 and E7 have been shown to inhibit
the function of p53 and pRb and promote chromosomal
instability.17

Endoreplication

Polyploid cells can be generated by a mechanism that
uncouples DNA replication from cell division (alias endor-
eplication).19 Endoreplication can occur through endocy-
cling, in which periods of S and G phases alternate with no
cell division, or through endomitosis, which displays fea-
tures of mitosis but lacks cytokinesis (Figure 2). In both
cases, mononuclear progeny are generated (Figure 2).
Figure 2 Mechanisms leading to the genesis of tetraploid cells.
Tetraploid cells can be generated by cell-to-cell fusion, or by abortive cell
cycles after DNA replication: endoreplication, mitotic slippage, or cytoki-
nesis failure. Although cell fusion and cytokinesis failure produce binuclear
progeny, endoreplication and mitotic slippage result in a mononuclear cell
(no karyokinesis). c, chromatid number; n, chromosome number.
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Endoreplication occurs in the life cycle of protozoa, plants,
flies, and mammals and often produces terminally differen-
tiated cells that remain physiologically active but non-
proliferating. This process has been extensively studied in
Drosophila, in which cells in most larval tissues, and in
many adult tissues, switch to endoreplication cycles. The
master regulator is cyclin E (CycE) protein, whose periodic
production activates CDK2 and promotes entry into the
endoreplication cycle. The periodic transcription of CycE is
controlled by the dimeric transcription factor, E2F1-DP, a
central component of the endoreplication transcriptional
oscillator.20 The principal target of cyclin E/Cdk2 is Fzr/
Cdh1, a positive regulator of the anaphase-promoting com-
plex/cyclosome (APC/C).21 The oscillatory activity of
cyclin 2/CycE generates anti-parallel oscillations of APC/C-
Fzr that are essential for both entry and progression through
successive endoreplication cycles. Developmentally,
endoreplication is rare in mammals, although one well-
characterized example is differentiation of trophoblast
stem cells into trophoblast giant cells. These cells are the first
cell type to terminally differentiate during embryogenesis
and are of vital importance for implantation and modulation
of postimplantation placentation. The DNA content of TG
cells generally ranges from 8N to 64N. In trophoblast stem
cells, the transition from mitotic cell cycles to endor-
eplication cycles occurs when fibroblast growth factor 4
deprivation induces expression of the Cdk inhibitor, p57.
Expression of p57 inhibits CDK1, allowing prereplicative
assembly. Subsequent endoreplication cycles are driven by
oscillation of cyclin E/Cdk2 and p57 activity.22,23 Interest-
ingly, recent data have highlighted the crucial role of E2F
transcription factors in regulating mammalian polyploidy in
TG cells and hepatocytes.
Numerous studies have shown a link between persistent

DNA damage response and endoreplication cycles that induce
polyploidy.7,24 More precisely, double-stranded DNA breaks,
accumulation of single-stranded DNA breaks, and telomere
shortening induce a G2/M block assumed by ataxia telangi-
ectasia mutated/ataxia telangiectasia-mutated and Rad3-
related, DNA damage sensor kinases. Irreparable damage can
induce an irreversible cell cycle arrest, leading to cell death or a
senescent state. However, in a p53�/� context, cells escape this
arrest and undergo polyploidization by repeating endor-
eplication cycles. In different systems, a clear link between
amplification of genomic instabilities and the endoreplication
process has been demonstrated.24 de Lange and collaborators
showed that persistent telomere damage in a p53�/� context
drives tetraploidization and enhances tumorigenic trans-
formation of mouse fibroblast cells.7,25

Mitotic Slippage

Polyploid cells can be formed after a prolonged arrest in
metaphase because of the activation of the spindle assembly
checkpoint (SAC) (Figure 2). The SAC prevents an advance to
anaphase until all of the chromosomes are properly attached to
ajp.amjpathol.org - The American Journal of Pathology
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kinetochores. In the presence of unattached or weakly attached
kinetochores, an inhibitory complex (Mad2, BubR1/Mad3, or
Bub3) sequesters Cdc20, the APC/C co-activator. Once all of
the chromosomes are attached, the SAC is silenced, leading to
APC/C activation. In this context, cyclin B1 and securin are
degraded, promoting anaphase onset and mitotic exit. Failure
to satisfy the SAC can lead cells to slip out of the arrest by a
phenomenon called mitotic slippage. Slippage is thought to
occur by gradual proteolysis of cyclin B1, which continues
slowly, even when the SAC is active.26 Cells that are derived
from mitotic slippage will contain a single tetraploid nucleus
(Figure 2). Mitotic slippage has been observed in cells after
prolonged mitotic arrest in response to spindle toxins.27 Drugs
that target microtubule dynamics (eg, taxanes, vinca alkaloids,
and epothilones) are active against a broad range of cancers,
activating the SAC. After many hours of SAC induction,
cancer cells either die during mitosis (mitotic catastrophe) or
exit mitosis by slippage into a tetraploid G1 state, from which
they die, arrest in G1, or initiate a new round of the cell cycle.
Mitotic slippage has been reported in adenomatous polyposis
coli (APC)edeficient cells. APCmutation is the most frequent
mutation found in human colorectal tumors, contributing to the
genetic instability required for the progression from benign
polyp to aggressive carcinoma. APC associates with mitotic
spindle microtubules, most notably at the plus ends of the
microtubules, which interact with kinetochores.28 Both RNA
interference-mediated depletion in cultured cells and condi-
tional knockout of APC in vivo induce mitotic slippage linked
to the genesis of a tetraploid contingent.29 Caldwell and
Kaplan28 have also demonstrated that APC mutations lead to
cytokinesis failure (described later).

Cytokinesis Failure

Cytokinesis is the final step in cell division, leading to the
physical separation of the sister cells. In mammals, it relies
on complex and coordinated cell shape changes associated
with membrane and cytoskeleton rearrangements.30 Cyto-
kinesis failure can arise through defects in any of the four
stages of the process: i) positioning of the division plane, ii)
ingression of the cleavage furrow, iii) formation of the
midbody, and iv) abscission.

Cytokinesis failure is likely the mechanism underlying
many of the ploidy changes that are observed in human
tumors.7,31 Tetraploid cells generated through cytokinesis
failure (Figure 2) are relatively unstable compared with their
diploid counterparts and frequently become aneuploid on
continued cell division. Successful cytokinesis requires the
interplay of several factors related to the cytoskeleton,
chromosome, cell cycle, lipid raft, vesicle, and membrane
trafficking factors.32 Inactivation or hyperactivation of many
of these factors has been shown to induce cytokinesis fail-
ure, leading to genesis of tetraploid binucleated cells.33 As
an example, amplification of Aurora A, Aurora B, and polo-
like kinase 1 generates polyploidy via cytokinesis failure,
with these proteins being overexpressed in different human
The American Journal of Pathology - ajp.amjpathol.org
tumors. Cytokinesis defects can also occur as the result of
chromosome missegregation (lagging or bridge chromo-
somes). In fact, 1% of somatic cell divisions produce mis-
segregation.34 This occurs because of dysfunctional
telomeres, DNA double-stranded breaks, or misregulated
chromosome cohesion or decatenation.35 During cytoki-
nesis, chromatin trapped during furrow ingression either
causes the cell to undergo apoptosis or inhibits cell abscis-
sion, producing tetraploid progenies in the latter case.
Interestingly, a recent study demonstrated that Aurora B
mediates an abscission checkpoint and delays completion of
division to protect against tetraploidization by furrow
regression.36

Finally, several diseases are associated with cytokinesis
failure and polyploidization. A recent review by Lacroix and
Maddox37 clearly exposed these data. Fanconi anemia is one
such genomic instability disorder characterized by bone
marrow failure and predisposition to cancer. In an elegant
study, Vinciguerra et al38 demonstrated that cells deficient in
Fanconi anemia proteins display high rates of polyploidy as
a result of cytokinesis failure.

Remarkably, the cytokinesis failure process can also be a
programmed stage in normal development, producing differ-
entiated polyploid progenies.7 An interesting case of ploid-
ization is the cardiac muscle cells. During prenatal
development, the development of the heart results in a pro-
liferation of cardiomyocytes (hyperplasia).39 After birth,
ventricular cardiomyocytes respond to an amplification of
blood flowwith an adaptive increase in volume (hypertrophy).
This transition from hyperplasia to hypertrophy is clearly
associated with tetraploidization.40 Different mechanisms
have been proposed for cardiomyocyte tetraploidization.
Cyclin G1 has been identified as an important component of
the molecular machinery controlling this process. Directed
expression of cyclin G1 in neonatal cardiomyocytes promotes
G1/S cell cycle transition but inhibits cytokinesis, thereby
promoting cardiomyocyte tetraploidy.41 Also, defective
localization of anillin in the midbody region causes abnormal
contractile ring formation.42 Likewise, a drastic postnatal
reduction of RhoA, Cdc42, Rac1, Rho-associated kinase I and
II, and p-cofilin, coupled with the formation of the actomyosin
ring, could account for defects in cytokinesis.43 A second
example of polyploidization involving cytokinesis failure is
megakaryocytes (MKs).44 In MK cells, anaphase and telo-
phase can occur, but cytokinesis fails because of a regression
of the cleavage furrow; polyploidization up to 128n can occur.
Numerous studies have shown that polyploidy in MKs is
regulated by a series of signaling pathways.44 MK cell lines
and primary MKs show decreased levels of cyclin B1 in
polyploid MKs.45 RhoA accumulation is also a key target in
MK polyploidization. Indeed, down-regulation of the guani-
dine exchange factor, ECT2, prevents RhoA activation and
cleavage furrow ingression in MK cells.46 Finally, cyclin E1
plays a key role in promoting megakaryocyte entry into S
phase and, hence, an increase in the number of cycling cells,
augmenting polyploidization.47
325
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Polyploidy in the Liver

The liver is an essential organ that performs multiple
functions essential for the maintenance of homeostasis. It
has a central role in the metabolism, synthesis, storage, and
redistribution of nutrients, carbohydrates, fats, and vitamins.
The liver is also the main detoxifying organ of the body, and
removes waste and xenobiotics by metabolic conversion and
biliary excretion. Although the liver is made up of various
types of cells, hepatocytes account for 78% of liver volume
and 70% of all liver cells48; the liver function is mainly
dependent on hepatocytes. Interestingly, hepatocytes have
unique functions according to their position along the por-
tocentral axis of the liver-cell plate (alias metabolic zona-
tion).49 Hepatocytes are quiescent and highly differentiated
polyploid cells with an average life span of 200 to 300 days.
During postnatal growth, the liver parenchyma undergoes
dramatic changes characterized by gradual polyploidization
during which hepatocytes of several ploidy classes
emerge.50e52 This process mainly generates tetraploid and
octoploid hepatocytes with one nucleus (mononuclear; eg,
4n or 8n) or two nuclei (binuclear; eg, 2 � 2n or 2 � 4n). In
fact, during liver development, most hepatocytes undergo a
conventional cell cycle that leads to the genesis of two
Figure 3 Liver parenchyma and hepatocyte ploidy. During postnatal developme
a cell cycle with karyokinesis, but failure of cytokinesis results in a binuclear tet
kinesis, leading to the genesis of mononuclear tetraploid hepatocytes, or fails ag
liver regeneration after partial hepatectomy, diploid and polyploid contingents
generating two daughter cells, and some escape mitosis (incompleted cell cycle), g
mononuclear hepatocytes, with the disappearance of the binuclear fraction. B:
hepatocytes can generate reduced polyploid progenies as the result of multipolar m
metaphase will either complete cytokinesis (genesis of near-tetraploid and nea
mononuclear and binuclear progenies)53 (C). c, chromatid number; n, chromosom
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diploid hepatocytes (Figure 3A). However, some of them
fail cytokinesis, leading to the genesis of binuclear tetra-
ploid hepatocytes. Mononuclear progenies are generated
after binuclear hepatocyte division (Figure 3A). When these
cells divide, during mitosis, centrosomes cluster to form
bipolar spindles, leading to the genesis of mononuclear
hepatocytes,52 followed by polyploidization to generate
tetraploids and octoploids with one or two nuclei
(Figure 3A). Remarkably, during postnatal development and
during the organism’s life, hepatocytes can also reduce their
ploidy by a process call ploidy reversal (Figure 3C).53

Octoploid and tetraploid hepatocytes undergo reductive
mitosis. In these cells, multipolar spindles (in most cases,
transient) are formed and, consequently, lagging chromo-
somes are observed in anaphase; they lead to the genesis of
aneuploid daughter cells that contain a near-tetraploid and
near-diploid chromosome number.55

The degree of liver polyploidization varies between
mammals.56 In rodents, hepatocyte polyploidization starts
at the time of weaning, related to commencement of
feeding,57e59 and continues throughout development and
aging. In adult rodents, the degree of polyploidy is high, up
to 85% in C57Bl mice and Wistar rats.53,60 In humans,
polyploid hepatocytes appear at an early age, but their
nt, polyploidization takes place. Diploid hepatocytes can mostly go through
raploid hepatocyte that reenters the cell cycle and either undergoes cyto-
ain, leading to the genesis of a binuclear octoploid hepatocyte (A). During
enter the cell cycle; some undergo cell division (completed cell cycle),
enerating only one daughter cell.54 These processes increase the number of
During postnatal development, and during the whole lifespan, polyploid
itosis. As an example, tetraploid hepatocytes after the formation of tripolar
r-diploid progenies) or incomplete cytokinesis (genesis of near-tetraploid
e number.
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number only increases slowly until the age of 50 years,
when polyploidization intensifies.61 In adults, approxi-
mately 30% to 40% of hepatocytes are polyploid.62

Increased cell size is the most obvious consequence of an
increase in ploidy, correlation between DNA content, and
cell volume having been well described during evolution in
distant eukaryotes.31 Different studies in human and mouse
liver cells have demonstrated that the volume of hepatocyte
nuclei approximately doubles with the doubling of DNA
content.52,63,64 In contrast, there is no significant difference
in the volume of polyploid hepatocytes containing one or
two nuclei (eg, tetraploid contingent: binuclear 2 � 2n and
mononuclear 4n).64

Hepatocytes in adult rodents and humans have a long life-
span and rarely divide under normal conditions. However,
these cells retain a remarkable ability to proliferate in response
to massive cellular injury from surgical resection, toxic expo-
sure, or viral infection. Under all these circumstances, the liver
polyploidy profile is modified. Liver regeneration induced by a
two thirds partial hepatectomy (PH) in rats and mice is asso-
ciated with a depletion of diploid and binuclear polyploids and
accumulation of mononuclear polyploid hepatocytes.51,65e67 A
recent study by Miyajima and collaborators analyzed ploidy
modification after 30% and 70% liver resection by using ge-
netic fate mapping and a high-throughput imaging system of
individual hepatocytes.54 During liver regeneration after 70%
PH, all hepatocytes (mononuclear and binuclear) entered the
cell cycle. However, not all hepatocytes completed cell divi-
sion, suggesting that an incomplete cell cycle occurs after PH.
The authors suggested that only a few hepatocytes entered the
M phase (Figure 3B). More important, if the binuclear
contingent progresses thoughmitosis, it undergoes cytokinesis,
generating twomononuclear daughter hepatocytes (Figure 3B).
Remarkably, regeneration after 30% PH is achieved solely by
cell hypertrophy without proliferation. In this case, the ploidy
of hepatocytes is not modified. In adults, hepatic polyploidy is
also clearly modified by cellular stress, such as metabolic
overload (iron or copper),68e70 telomere dysfunction,71 and
chronic hepatitis B and C infection.62,72 Oxidative injury may
play a role in liver polyploidy. Gupta and colleagues73 show
that hepatic polyploidy after two-thirds PHwas associated with
oxidative DNA injury. Interestingly, in transgenic mice over-
expressing antioxidant enzymes, PH-induced polyploidization
is decreased.74 Similarly, treatment with aminoguanidine,
which attenuates oxidative stress, decreased polyploidy.75 In
conclusion, extensive correlation exists between polyploidiza-
tion and a variety of cellular stresses in the adult liver; however,
themechanisms leading to the genesis of polyploid hepatocytes
and the consequence on liver parenchyma function are still
unknown.
How Hepatocytes Become Polyploid

Polyploidization mainly occurs through cytokinesis failure.
During postnatal growth, some hepatocytes accomplish
The American Journal of Pathology - ajp.amjpathol.org
karyokinesis but do not form a contractile ring.76,77 During
this process, the actin cytoskeleton is not reorganized into
the division plane in anaphase-telophase transition, impair-
ing cell elongation. In concert, microtubules fail to contact
the cortex and, therefore, molecular signals, essential for
furrow induction (eg, Aurora B and polo-like kinase 1), are
not delivered. Consequently, activation of RhoA (a cytoki-
nesis orchestrator) in the cortex is impaired, leading to the
genesis of binuclear progeny (Figure 3A). In rat liver, the
number of binuclear hepatocytes increases after weaning,
suggesting an important connection between liver physio-
logical characteristics and cytokinesis regulation.77 Rats
with low levels of circulating insulin exhibit reduced for-
mation of binuclear polyploid hepatocytes, whereas rats
injected with insulin exhibit an increase.58,78 Suckling-to-
weaning transition controls the initiation of cytokinesis
failure mediated by the increase of insulin levels at this
transiton.58 In mouse liver, polyploidization already initiates
around weaning,53 making suckling/weaning transition less
of a control factor than in the rat model. In fact, mice are
less dependent on maternal feeding, with an unscheduled
commencement of feeding (S. Celton-Morizur and C.D.,
unpublished data). How does insulin control polyploid
development? The phosphatidylinositol 3-kinase/Akt
pathway lies downstream of the insulin signal to regulate the
ploidization process. Targeting Akt activity is sufficient to
decrease the number of cytokinesis failure events.58,78

Interestingly, a role for the phosphatidylinositol 3-kinase/
Akt pathway has been described during the pathological
polyploidization process. Akt1 regulates ploidy levels in
vascular smooth muscle cells during hypertension.79 Recent
data demonstrate that E2F transcription factors are crucial
for liver polyploidization during postnatal development. The
E2F family contains both activator and repressor factors that
affect the cell cycle.80 Liver polyploidy is controlled
antagonistically by E2F8 (repressor) and E2F1 (activator)
factors.81,82 A deficiency in E2f8 prevents liver poly-
ploidization by promoting cytokinesis; in contrast, a defi-
ciency in E2f1 enhances this process by inhibiting
cytokinesis. E2F8 and E2F1 regulate antagonistically a
transcriptional program in which cytokinetic genes con-
trolling actin and microtubule networks are regulated.81 E2F
transcription factors have already been identified as key
factors for the polyploidy process in Arabidopsis and
Drosophila species.83 Remarkably, E2F factors also drive
an atypical cell cycle in mammalian cells, such as in
placenta tissues. In this case, trophoblast giant cell poly-
ploidization is dependent on two repressors, E2F7 and
E2F8, and one activator, E2F1.82

Interestingly, experiments on stem cells and therapeutic
applications have discovered that liver polyploidization can
also take place through heterotypic cell fusion. In fact, in vivo
fusion has been described as the main mechanism producing
bone marrowederived hepatocytes (BMDHs).84e86 This
process is promoted when there is liver damage and the
appearance of BMDHs has even been associated with the
327
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amelioration of hepatic dysfunction.87 The generation of
BMDHs is mainly the result of the fusion of a myeloid
hematopoietic cell lineage with hepatocytes.88 The exis-
tence of polyploid hepatocytes after homotypic cell fusion is
still controversial. Willenbring and coworkers87 looked for
hepatocyte-hepatocyte fusion in the Fah-null mouse model
of liver repopulation. In this model, hepatocyte-hepatocyte
fusion was present in <1 to 3 � 107 cells. By contrast,
Faggioli et al89,90 show that homotypic fusion is one of the
mechanisms contributing to hepatocyte polyploidy during
postnatal liver growth in a chimeric mouse model. In
principle, cytokinesis failure and cell fusion are not
mutually exclusive and, thus, can both participate in liver
polyploidization.

Finally, alteration of liver polyploidy has been observed
in different genetic mouse models by silencing/over-
expressing regulators of the cell cycle (Ccne1/Ccne2,
CDK1, p21, and Skp2),91e94 tumor-suppressor genes (p53
and pRB),95,96 DNA repair gene (ERC1),97 and proto-
oncogene (c-myc).98,99 In these models, alterations of liver
polyploidy take place; however, the mechanisms controlling
these alterations are still unknown.
Benefits and Costs of Being Polyploid

It is clearly demonstrated that hepatic tissue modifies its ploidy
profile during physiological and pathological events. Do
polyploid hepatocytes represent only a manifestation of liver
growth and/or liver injury or do these cells have a specific
function? What advantage does it give tissue to have a poly-
ploid, rather than a diploid, contingent? The first thing to
consider is plausible economy on energy resources by
escaping mitosis.56 This could be especially beneficial in
rapid-growing tissues (eg, in liver regeneration after partial
hepatectomy). Interestingly, in rat, the suckling-weaning
period, linked to high-energy consumption, is connected
with changes in hepatocyte proliferation and polyploidiza-
tion.58 Another theory often discussed is that liver poly-
ploidization is associated with terminal differentiation and
ageing.61,100,101 In rodents, the genesis of polyploid hepato-
cytes after PH is linked to senescence-type changes, such as
p21 and lipofuscin accumulation.66 Moreover, the replicative
activity of diploid and polyploid seems to differ in vitro. On
stimulation with hepatocyte growth factor, the primary culture
of diploid hepatocytes shows greater capacity for DNA syn-
thesis compared with the polyploid contingent.102 In contrast,
several groups have demonstrated that polyploid hepatocytes
are not engaged in senescence. For instance, tetraploid hepa-
tocytes are highly regenerative after partial hepatectomy.54

Moreover, E2f8�/� mice that have livers composed predom-
inately of diploid hepatocytes do not reveal any significant
differences in regenerative capacity compared with wild-type
livers.82 In mouse models used for repopulation (Fah�/� and
urokinase plasminogen activator/severe combined immuno-
deficiency models), after transplantation, the proliferative
328
capacity of the polyploid contingent is identical to the diploid
contingent.53,103,104 All these data suggest that liver poly-
ploidization, in contrast to that in other tissues, is not linked to
terminal differentiation. However, it would be interesting to
establish if a polyploid hepatocyte with DNA and centrosome
amplification performs DNA synthesis and completes cell
division as fast as a diploid contingent.
Several examples from the literature illustrate that a

polyploid state confers specific biological functions, as
recently shown for Drosophila. Polyploidy in subperineurial
glia is critical for the maintenance of the blood-brain barrier
during larval brain development.105 In mammals, mega-
karyocyte polyploidization is associated with up- and down-
regulation of multiple genes, most being genes involved in
terminal differentiation and platelet biogenesis.106 In the
liver, various studies have tried to establish whether poly-
ploidization governs specific hepatocyte functions. It is
generally known that hepatocytes specialize in a function
based on their position along the portocentral axis of the
liver lobule. This zonation of function mainly affects
ammonia detoxification, glucose/energy metabolism, and
xenobiotic metabolism.107 Results from several laboratories
have suggested the existence of polyploid zonation; peri-
portal hepatocytes exhibit a lower polyploidy contingent
than perivenous hepatocytes.101,108,109 However, discrepant
results have been reported, suggesting that similar pro-
portions of polyploid hepatocytes are present in both
areas.82,110 The impact of polyploidization on hepatocyte
functions has been characterized by comparing gene
expression profiles of diploid and polyploid contingents (4n
and 8n).111 Only 50 candidate genes from a wide range of
different biological processes were differently expressed.
These data fit well with results obtained in budding yeast, in
which only 17 genes showed significant ploidy-dependent
increases or decreases in gene expression.112 In the liver,
polyploidy, in a physiological context, seems not to confer
specific functions to hepatocytes. However, no studies have
clearly defined if polyploid hepatocytes are more tran-
scriptionally and/or post-transcriptionally active. Interest-
ingly, Vinogradov and coworkers have performed
comparative genome-scale analysis between liver tissues
that present different levels of polyploidization. They
observed a link between polyploidy and gene-controlling
cell survival, DNA damage, hypoxia, and oxidative
stress.113,114 Finally, as already described, polyploid hepa-
tocytes in mice and in humans generate aneuploid progenies
(near-diploid, tetraploid, and octoploid cells) by a ploidy
reversal process.53,115 These cells carry genetic diversity
that may operate as an adaptive mechanism to become more
resistant to xenobiotic or nutritional injury. Remarkably,
Duncan et al116 recently showed, in a genetic mouse model,
that aneuploidy is a mechanism of adaptation for hepatic
injury linked to a metabolic disorder.
Finally, there is a long-standing hypothesis that genome

multiplication is an adaptive response forming a buffer
against oxidative stress and genotoxic damage.31 This might
ajp.amjpathol.org - The American Journal of Pathology
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be especially important in tissue, such as the liver, that has a
primary function of metabolizing and eliminating toxic
compounds. To support this hypothesis, studies performed
in the 1980s demonstrated that, in rats treated with DNA
damageeinducing chemical carcinogens (diethylnitros-
amine and 2-acetyl-aminofluorene), an expansion of only
the diploid cell population prevails at the different stages of
hepatocyte transformation,76 suggesting that a polyploid
contingent buffers from genotoxic damage. Polyploidization
might also provide protection in cases of tumor-suppressor
gene loss (eg, p53 or Rb). Interestingly, loss of Rb and
p53 during mouse liver development increased polyploidy
content95,96; deletion of these two genes is not sufficient for
spontaneous tumorigenesis.117
Conclusion

The liver is a fascinating organ that, compared with other
tissues, can deal with a high proliferative capacity and the
presence of polyploid and aneuploid hepatocytes. Further
investigations will increase our understanding of the func-
tional consequences of hepatocyte polyploidy during
development and aging and should also offer insights into
hepatic pathological conditions, such as hepatocarcinoma.
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