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Abstract. In recent years, there have been many Multiple Sclerosis
(MS) studies using longitudinal MR images to study and characterize
the MS lesion patterns. The intensity of similar anatomical tissues in
MR images is often different because of the variability of the acquisition
process and different scanners. This paper proposes a novel methodol-
ogy for a longitudinal lesion analysis based on intensity standardization
to minimize the inter-scan intensity difference. The intensity normaliza-
tion maps parameters obtained using a robust Gaussian Mixture Model
(GMM) estimation not affected by the presence of MS lesions. Experi-
mental results demonstrate that our technique accurately performs the
task of intensity standardization. We show consequently how the same
technique can improve the results of longitudinal MS lesion detection.

1 Introduction

Multiple Sclerosis (MS) is an acquired inflammatory, demyelinating disease which
causes disabilities in young adults and it is very common in the northern hemi-
sphere. Quantitative analysis of longitudinal Magnetic Resonance Images (MRI)
of subject taken at different time points provides a time varying analysis of the
brain tissues which may lead to the discovery of new biomarkers of disease evolu-
tion. In MS, White Matter (WM) lesions are also present in addition to healthy
brain tissues. Lesions can remain stationary, change volume, or disappear in later
time points depending upon the state of MS. Due to protocol variations in the
scanners, following the evolution of tissue intensities in a patient, e.g. changing
appearance of lesions, makes quantitative evaluation of lesions difficult. In order
to alleviate this problem, intensity normalization is necessary.

Histogram matching is a widely used technique in intensity standardization.
In their seminal work, Nyul et al. [7] proposed landmark based methods. It con-
sists of matching the input image histogram landmarks onto standard histogram
landmarks, obtained in a training phase, performing a linear interpolation of in-
tensities between the positions. The technique in [7] uses percentile landmarks,
which is simple yet powerful. Jager et al. [5] extended this principle to two or
more jointly used MRI sequences (e.g., T1-w and T2-w), matching multidimen-
sional joint histograms with nonlinear registration. With this method, no prior
registration of the reference and normalized MR images is required. An algo-
rithm proposed by Wang et al. [12] expands or shrinks a windowed part of the



input image histogram with a multiplicative factor, found by minimizing the
bin-count difference between the source and moving images histograms. The
window is used to include only voxels of interest and exclude the background.
This makes the technique linear in the intensity range of interest. Other tech-
niques use parametric models, such as the technique proposed by Hellier [4].
It models histogram of a reference image and of the standardized image with
two GMMs and aligns their means through a polynomial correction function.
Weisenfeld et.al. [13] have proposed to estimate a multiplicative correction field
that alters the intensity statistics of an image or set of images to best match
those of a model. In that paper, the Kullback-Leibler divergence between the
source and moving images is minimized iteratively to estimate the parameters
of a model, thus histograms are equalized. All these methods may be affected
by the presence of white matter lesions.

We propose a longitudinal intensity normalization algorithm for multichannel
MRI in the presence of MS lesions, which provides consistent and reliable lon-
gitudinal detections. The tissue intensities from multichannel MRI are modeled
with parametric transform using a robust GMM estimation based on v diver-
gence, thereby keeping the lesions unaffected. The proposed technique is built
on ideas similar to Hellier [4] but taking into account the presence of pathologi-
cal tissues in the intensity transformation function. It provides a technique that
(1) uses tissue-specific intensity information by modeling them using a robust
GMM; (2) provides a consistent intensity normalization between longitudinal
images. Subsequently, we demonstrate its crucial role for further lesion analysis.

This paper is organized as follows. The modeling and parameter estimation
of multi-sequence MRI with + divergence followed by intensity normalization are
reviewed in Section 2. The details of experiments and their results on longitudinal
MS patients are discussed in section 3.

2 Methodology

Given two MR images of a single MS patient at time instant t; and ¢y, we seek
to estimate a correction factor such that corresponding anatomical tissues adopt
the same intensity profile. We model the image intensities of a healthy brain with
a 3-class GMM, where each Gaussian represents one of the brain tissues White
Matter (WM), Gray Matter(GM) and Cerebrospinal fluid (CSF). We consider
the m MR sequences as a multidimensional image with n voxels. Each voxel ¢ is
represented as x; = [2;1...%;m]. The probability of intensity x; is calculated as
follows:

3
f(xil0) = > mN (pws X) (1)
k=1
where the mean py and covariance Xy define the parameters N (ug, X% ) of each
Gaussian of the model along with their mixing proportions 7 merged into pa-

rameter 6. If the proportions were known, 6 could be estimated through the
Maximum Likelihood Estimator (MLE):



n
0 = argmax L(0) = argmax H f(x;]0) (2)
0 o 5
Where x; are considered as i.i.d. samples. However, as 7 are unknown, an Ex-
pectation Maximization (EM) algorithm [3] is used to estimate the parameters.

2.1 ~-loss Function for the Normal Distribution

The parameter estimation with classic MLE for GMM can deviate from its true
estimation in presence of outliers. In MS patients, such outliers may be of crucial
importance as they may denote appearing or disappearing lesions. Notsu et al. [6]
proposed a modification of the MLE in order to make it more robust to outliers.
The basic idea is to maximize (2) in the form of v divergence. We consider the
~-loss function for the Normal distribution with mean vector p and covariance
matrix 3.

L (1, 2) = | 577057 | 3 exp (= 36— 1) 27 (i — ) (3)

Where |.| indicates the determinant. The bounded influence function of an esti-
mator is an indicator of robustness to outliers. The influence function for GMM
with v loss function is bounded whereas the one for regular GMM is unbounded.
As 7 grows larger, bounds become tighter. For a sufficiently large ~, (y > 0.1),
the estimating equation has little impact from outliers contaminated in the data
set. Equation (3) can be casted to yield an EM style algorithm as follows.

Ezpectation Step. In the case of a GMM, the latent variables are the point-to-
cluster assignments k;,7 = 1,...,n, one for each of n data points. The auxiliary
distribution ¢(k;|x;) = gix is a matrix with nx K entries. Each row of ¢; can be
thought of as a vector of soft assignments of the data points x; to each of the
Gaussian modes.

mrexp (— 2 (x; — ) T2 (%0 — e
o = 72 (= 30 = )2 s ) "

121 meexp (= 3(xi — )T (% — )

Mazimization Step. The maximization step estimates the parameters of the
Gaussian mixture components and the mixing proportions 7y, given the auxiliary
distribution on the point-to-cluster assignments computed in the expectation
step. The mean uj; of a Gaussian mode is obtained as the mean of the data
points assigned to it (accounting for the strength of the soft assignments). The



other quantities are obtained in a similar manner, yielding to:

n
i—1 dikXi
,U/kr = Z’L nl 7 T (5)
> i1 ik
Z?;l Qik(xi - ,Uk)(xi — Uk

2?21 qik

)T
Yr=01+7)
2?21 qdik

n K
D im1 21 il

T =

2.2 Selection of Parameter v

The estimation of power index ~ plays a critical role in our approach, since ~y
affects the estimated parameters in presence of outliers. Notsu et al. [6] suggested
the selection of + as a model selection problem based on Akaike information
criterion (AIC). Let K be the number of clusters, p be the total numbers of
parameters of a model and (ug, Xx), k = 1,.., K be the means and the covariance
matrices of the clusters respectively. From (1), the AIC is defined as follows:

. 3

AICV:—2ZIng7(xi|9)+2{Kp(p;)+K—1} (8)
i=1

The value of v which minimizes AIC is used as the optimal . For various values

of 7, equation (8) is evaluated in cross validation manner and the v which results

in minimum value is chosen for the experiment.

2.3 Intensity Correction

We obtain the means and covariances of tissues for the source and target images
using the procedure mentioned above. We chose a linear correction function such
that g(x) = X;8;x;. The coefficients 3; are estimated to minimize the following
cost function: Elliil(g(,usource,k) - .utarget,k)Z. This function can be solved by
linear regression. Using the results of the linear regression, the intensity profiles
of the two images are normalized by mapping the intensity of the source image
to the target image. The resulting correction function is smooth and interpolates
the intensity correction.

3 Experiments and Results

3.1 Dataset and Preprocessing

Whole-brain MR, images were acquired on 18 MS patients. T1-w MPRAGE, T2-
w and FLAIR modalities were chosen for the experiment. Expert annotations
of lesions were carried out by an expert radiologist on all MS patients. The
volume size for Tl-w MPRAGE and FLAIR is 256x256x160 and voxel size is
1x1x1 mm3. For T2-w, the volume size is 256 x256 x44 and voxel size is 1x1x3



mm3. All imaging experiments for this study were performed on a 3T Siemens
Verio (VB17) scanner with a 32-channel head coil. MR images from each patient
are de-noised [2], bias field corrected [11] and registered with respect to T1-
MPRAGE volume [9,1]. All the images are processed to extract intra-cranial
region using BET (Brain Extraction Tool) [10].

We show the effect of longitudinal intensity normalization followed by detec-
tion on both normal tissues and lesions for 18 MS subjects, having 4 time-points
each, approximately separated by a period of three to six months. The first time
point is considered as the reference point to which the subsequent time points
(moving ones) are aligned using intensity normalization. First, the parameters
of reference and moving images are estimated using v likelihood estimator as
described in section 2.1. Secondly, voxels of moving image are aligned with re-
spect to reference image using the procedure in section 2.3. Each patient and
each time point t = 2, ..., t,,, are rigidly registered to the T1-w MPRAGE of first
time instance. The obtained difference image is processed further to obtain a soft
detection by using heuristic thresholding iteratively (1) by Otsu’s threshold [8];
(2) erosion of image by one voxel. The detections from this difference image are
compared with difference image of ground truth at corresponding time points.

3.2 Intensity Correction Evaluation

To evaluate the quality of intensity normalization, we compare the histograms
of reference, moving and intensity normalized moving image using chi-squared
distance given by X%,y = % > % Lower values of this distance indicate bet-
ter alignment of intensities. Table 1 reports the chi-squared distance for various
imaging sequences. Different methods are compared against the proposed one.
We report the mean x? distance for our method as 0.18(£0.045), 0.28(=+0.037)
0.32(£0.038) for T1-w MPRAGE, T2-w and FLAIR respectively, outperforming
other state of the art methods.

Table 1. Chi-squared distance analysis for histogram matching

Before Normalization After Normalization
Modality Proposed Hellier Nyul
T1-w 0.56 (£0.03)| 0.18 (£0.045)|0.35 (£0.029)| 0.3 (£0.019)
T2-w 0.62 (£0.029)| 0.28 (£0.037)|0.414 (£+0.03)(0.315 (+0.042)
FLAIR 0.56 (£0.027)| 0.32 (£0.038)|0.45 (+0.051)| 0.39 (£0.045)

Figure 1 shows the intensity correction results for T1l-w MPRAGE, T2-w
and FLAIR images. Three time points and their corresponding MR modalities
of a subject are shown before and after normalization. Each row represents the
imaging modality and each column depicts the first time point, second time
point, the absolute difference image without and with intensity normalization
respectively. This figure demonstrates visually the ability of our approach to
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Fig. 1. Intensity correction

normalize intensities. As seen from the difference image of the first and second
time points, intensity alignment reduces significantly the difference in intensities
without affecting the lesion appearance. It will be easier to automatically detect
evolving lesions on the images in the last column.

3.3 Longitudinal Lesion Detection

To show the quantitative improvement for identification of lesions, we report in
Table 2 the precision (Positive Predicted Value) and recall (Sensitivity) of lesion
detection averaged across the 18 patients for various overlap thresholds. The
lesion is said to be detected if RCQifTGT > p where R., Rgr and ¢ are respectively
the candidate region in the image, the ground truth and a threshold. Table 2
reports values of precision and recall for various thresholds. As from the figures,
our approach outperforms other methods. We have a very high recall of 0.90 at
¢ =0.2 and 0.82 even at ¢ = 0.4.

Figure 2 depicts the detected lesions for a representative image. The green
label shows new lesions at t3, orange shows stationary lesions which are also a



Table 2. Performance analysis for lesion detection.

=02

©=0.3

p=04

Method

Precision

Recall

Precision

Recall

Precision

Recall

Nyul
Proposed
Hellier

0.631+0.01
0.73£0.04
0.65+0.02

0.60+0.02
0.90£0.05
0.74£0.03

0.61£0.04
0.68+0.03
0.64+0.06

0.67+0.02
0.85+£0.04
0.68+0.04

0.5840.03
0.63+£0.03
0.62+0.03

0.6440.03
0.82+0.01
0.5940.05

part of ¢1; blue shows false positive detections. We are able to accurately detect
appearing and disappearing lesions thanks to the proposed method.

Fig. 2. Lesion detection examples. For top and bottom, from left to right: Slice of
FLAIR for to,ts, |to — tg(Norm(,,Mzed)\, ground truth and lesions detected by our algo-

rithm.



4 Discussion and Conclusion

We proposed a new intensity normalization technique based on a robust GMM
estimation with « divergence. The efficacy of our method was evaluated through
histogram matching distance method and longitudinal lesion detection. Com-
pared to Nyul and Hellier method, our methodology is more suitable for longitu-
dinal MS lesion analysis because of its ability to preserve the intensity variations
caused by pathological changes. Our system relies heavily on a robust paramet-
ric modeling of tissue intensities based on v divergence. The resulting system
is both efficient and accurate, outperforming the state of the art methods. This
performance suggests that it can provide valuable assistance in detecting the
longitudinal MS lesions in clinical routine with high reliability. Our models are
already capable of detecting highly variable lesion patterns, but we would like
to move towards richer models. The framework described here allows for explo-
ration of additional MR sequences with or without contrast agents. For example,
one can consider infusing T1-w Gadolinium and DTI.
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