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mouse model highlights the importance of
microglial activation in Alzheimer’s disease
Véréna Landel1*, Kévin Baranger1,2, Isabelle Virard1, Béatrice Loriod3,4, Michel Khrestchatisky1, Santiago Rivera1,

Philippe Benech1† and François Féron1†

Abstract

Background: The 5XFAD early onset mouse model of Alzheimer’s disease (AD) is gaining momentum. Behavioral,

electrophysiological and anatomical studies have identified age-dependent alterations that can be reminiscent of

human AD. However, transcriptional changes during disease progression have not yet been investigated. To this

end, we carried out a transcriptomic analysis on RNAs from the neocortex and the hippocampus of 5XFAD female

mice at the ages of one, four, six and nine months (M1, M4, M6, M9).

Results: Our results show a clear shift in gene expression patterns between M1 and M4. At M1, 5XFAD animals

exhibit region-specific variations in gene expression patterns whereas M4 to M9 mice share a larger proportion of

differentially expressed genes (DEGs) that are common to both regions. Analysis of DEGs from M4 to M9 underlines

the predominance of inflammatory and immune processes in this AD mouse model. The rise in inflammation,

sustained by the overexpression of genes from the complement and integrin families, is accompanied by an

increased expression of transcripts involved in the NADPH oxidase complex, phagocytic processes and IFN-γ

related pathways.

Conclusions: Overall, our data suggest that, from M4 to M9, sustained microglial activation becomes the

predominant feature and point out that both detrimental and neuroprotective mechanisms appear to be at play in

this model. Furthermore, our study identifies a number of genes already known to be altered in human AD, thus

confirming the use of the 5XFAD strain as a valid model for understanding AD pathogenesis and for screening

potential therapeutic molecules.
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Background
Significant progress has been made uncovering the role

of specific genes in Alzheimer’s disease (AD), yet little is

known about the global molecular changes leading to

neurodegeneration and brain dysfunction. One drawback

comes from the fact that brain tissue from AD patients

only becomes available post mortem, i.e. at very late

stages of the disease. For this reason, transgenic AD

mouse models are precious tools to gain insight into the

spatio-temporal changes that may affect molecular cas-

cades involved in disease progression.

The 5XFAD mouse model used in this study bears five

mutations linked to familial forms of AD and recapitulates

in a few months the main features of AD [1]. All these

mutations act in an additive manner to boost the pro-

duction of β-amyloid (Aβ) peptides, resulting from the

processing of amyloid precursor protein (APP), in particu-

lar the 42 amino acid form, Aβ42 [2-6]. Compared with

other models, 5XFAD mice display AD features much

earlier. Though they do not present a clear tau pathology,

they develop cerebral amyloid plaques and gliosis as early

as 2 months of age [1]. Electrophysiological studies
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detected hippocampal synaptic dysfunctions in M6 5XFAD

animals, concomitant with synaptic loss and memory defi-

cits [7-22]. Progressive neuronal death has been described

from M9 onwards in cortical layer 5 neurons and subicu-

lum of 5XFAD mice [12,23], a characteristic that is absent

in most AD mouse models.

How these pathophysiological alterations correlate

with global spatio-temporal changes in gene expression

remains to be thoroughly evaluated. Few prior trans-

criptomic studies examined AD mouse models, usually

at a single time point or in a single brain region [24-29].

Only two studies investigated the transcriptome of

5XFAD mice, one using RNA-seq in frontal cortex and

cerebellum of 7 week-old transgenic mice [30], the other

using whole-brain next-generation sequencing to com-

pare young (M3-6) versus old (M12) mice from 5XFAD

and Tg4-42 strains [31].

Here, we carried out a longitudinal transcriptomic

study on two major brain regions affected in AD, the

hippocampus and the neocortex, obtained from 5XFAD

female mice at presymptomatic (M1), prodromal-like

(M4) and symptomatic stages (M6 and M9) of the pa-

thology. We investigated how genes with a modulated

expression are involved in functional networks through

the use of two text-mining based softwares (Ingenuity

and PredictSearch). Among the genes involved in these

networks, a bibliographic search was performed to iden-

tify those reported in AD patients.

Our results indicate a tremendous shift in the tran-

scriptional profile between M1 and M4 in both the

cortex and hippocampus of 5XFAD mice, mainly charac-

terized by an increase in inflammatory and immune

markers. Moreover, they emphasize the predominant

activation of microglia and transcriptional activities

induced by interferon-γ (IFN-γ), likely through the

expression of interferon regulatory factor 8 (IRF8),

which stands out as a key transcriptional regulator in

our study. The main IRF8 target pathways include anti-

gen processing, antigen presentation and phagosome

maturation, associated with a modulation of GTPase sig-

naling. Interestingly, a high number of dysregulated

genes are associated to AD, confirming that the 5XFAD

model mirrors, at an early age, many aspects of this neu-

rodegenerative disease.

Results and discussion
Temporal distribution of dysregulated genes reveals

dramatic changes from M4 onwards

Figure 1 summarizes the global screening of gene ex-

pression analysis of cortex and hippocampus from

5XFAD compared with wild type mice at M1, M4, M6

and M9. The number of differentially expressed genes

(DEGs) increases with age in both tissues (Figure 1A)

with a drastic increase between M4 and M6 when

considering the number of up- and down-regulated

genes (Figure 1A and B).

At M1, twice as many genes are dysregulated in the

hippocampus as in the cortex (Figure 1A), suggesting

that distinct alterations occur in these two regions at

that early stage, as described at the histological level [1].

Additionally, we observed many shared DEGs between

cortex and hippocampus (Figure 1B), in particular at

M4, when nearly 50% of the DEGs are common to both

brain regions. By contrast, at M1, only 12% of the genes

modulated in hippocampus overlap with those found in

cortex (Figure 1B).

In order to evaluate the specificities at each studied

stage, we looked at overlapping and non-overlapping

DEGs in transgenic animals, from M1 to M9, separately

in cortex and hippocampus. Interestingly, the expression

of only 23 genes from the cortex and 55 from the hippo-

campus (Figure 1C and D, white areas) is modulated

across all ages (Additional file 1: Table S1). Strikingly,

the expression of an important number of genes (293 for

the cortex; 278 for the hippocampus; Figure 1C and D,

light orange areas) is altered through M4 to M9. Among

those, 183 DEGs at M4, M6 and M9 are common to

both tissues (Additional file 2: Table S2). Most of these

genes are upregulated; only 3 of these DEGs show de-

creased expression at all three ages and in both regions,

while 176 display an increased expression and 4 are in-

consistently either up- or down-regulated in cortex or

hippocampus (Additional file 2: Table S2).

DEG-related functions support alterations in inflammation

pathways and behavior

To investigate whether these quantitative changes might

reflect alterations of specific processes and/or pathways

contributing to disease progression, we looked at the most

upregulated genes in both tissues over time (Figure 2)

using Ingenuity Pathway Analysis (IPA). Six out of the top

ten upregulated genes from the cortex and four from the

hippocampus at M4 also appear among the top ten upreg-

ulated genes at M6 and M9 (Figure 2). Inflammation and

immunomodulation are the main affected processes in

these tissues, as illustrated by changes in expression of

Clec7a (coding for the dectin-1 protein), Cst7 (cystatin F),

Itgax (Cd11c) and genes encoding chemokines Ccl3, Ccl4,

Ccl6 and the glial fibrillary acidic protein (Gfap) (Table 1).

In contrast to these overlaps, the top ten upregulated

genes in M1 animals are fundamentally distinct from

those found in older animals (Figure 2). Only the trans-

thyretin (Ttr) gene, encoding a transporter of thyroxin

and retinol, is strongly upregulated in the cortex at both

M1 and M4 (Figure 2). Ttr, previously identified as up-

regulated in the frontal cortex of young, presymptomatic

5XFAD mice [30,31], is able to bind and sequester Aβ

peptide, thereby preventing its aggregation and plaque
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formation [32-34]. The finding that high levels of Ttr pre-

cede plaque deposition is corroborated by another study

performed on Tg2576 transgenic mice, a model in which

plaque deposition does not occur until M12 [35]. More-

over, Ttr was identified as a physiological target of APP,

since its expression is increased by soluble extracellular

APP processed products [34]. Interestingly, Klotho (Kl),

encoding a hormone involved in aging processes such as

oxidative stress and calcium homeostasis [36-38], was

similarly dysregulated. Both genes exhibit a similar ex-

pression profile in our transcriptomic study (Table 1), con-

firming that Ttr and Kl are co-regulated APP targets. In

the cortex, their expression decreases progressively from

M4 to M6 to reach, at M9, expression levels below those

of wild type mice. Conversely, in the hippocampus of

5XFAD mice, their expression is repressed at M1 and up-

regulated at M9. Such differential expression patterns may

highlight distinct temporally-regulated protective capaci-

ties, as observed in cultures of oxygen- and glucose-

deprived astrocytes from cortex and hippocampus [39].

IPA was then undertaken to investigate the most af-

fected networks during the time course of disease pro-

gression. When considering all DEGs at M4, M6 and

M9 (after the onset), processes associated to the dys-

regulated genes mainly relate to inflammatory and im-

mune responses (Figure 3A). As an example, Figure 3B

maps some genes associated to the complement, major

histocompatibility complexes (MHCs) and toll-like re-

ceptors (TLRs).

Such a presence of immune markers in the hippocampus

and cortex of the 5XFAD mice is not surprising since they

are produced in neurons, astrocytes and resident microglia.

In a healthy brain, they illustrate the “neuro-immune”

system that exists in the central nervous system, where, for

instance, complement cascade tags neurons destined to

destruction [40]. With age and repeated insults, these

processes may spiral out of control and lead to degene-

ration. Through the upregulation of inflammatory/immune

markers, the 5XFAD brain recapitulates the dysfunction of

the resident immune network seen in AD [41,42].

Figure 1 Overview of gene expression profiles in cortex and hippocampus of 5XFAD mice, at 4 different ages, reveals a shift in

expression patterns between M1 and M4. (A) Number of up- (red) and down- (green) regulated genes in cortex and hippocampus of 5XFAD

mice compared with wild type animals at M1, M4, M6 and M9. Total number of DEGs for each brain region at each age is reported in brackets.

(B) Number of overlapping and non-overlapping DEGs in cortex (blue) and hippocampus (yellow) at M1, M4, M6 and M9. The center of the Venn

diagram (green) illustrates the proportion of shared DEGs between both brain regions. (C and D) Number of shared and specific DEGs across all

ages in cortex (C) and hippocampus (D). Analysis was based on the total number of DEGs, both up- and down-regulated at each age. Fold

change (FC) cut-off used for above analyses was −1.5 > FC > 1.5 when comparing signals from 5XFAD mice with wild type controls.
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Figure 2 The top ten most up-regulated genes at each age, in cortex and hippocampus, illustrate the alteration of inflammatory and

immune processes from M4 onwards. Venn diagrams representing the top ten up-regulated genes in cortex (A) and hippocampus (B) of

5XFAD mice at M1 (blue), M4 (yellow), M6 (green) and M9 (red). Genes are listed by rank of fold change, the cut-off for analysis being FC > 1.5

when comparing gene probe signals from 5XFAD with wild type mice. Note that only Ttr dysregulation is present at both M1 and M4 in the

cortex while the other 9 genes are specific to M1. However, at M4, M6 and M9, 60% and 40% of these genes are consistently dysregulated in the

cortex and the hippocampus, respectively.

Table 1 Upregulated genes with their fold change related to inflammation and immune processes in the cortex and

hippocampus of 5XFAD mice at M1, M4, M6 and M9

Cortex Hippocampus

Gene Probe M1 M4 M6 M9 M1 M4 M6 M9

Clec7a A51P246653 0.8 12.1 35.0 30.9 1.1 15.9 32.2 32.5

Cst7 A51P137419 1.0 74.7 63.5 140.2 1.3 100.5 118.4 145.8

Itgax A51P303424 0.7 16.3 13.4 19.6 0.8 16.1 14.8 23.2

Ccl3 A51P140710 1.0 15.8 14.7 15.4 0.6 11.3 7.3 17.3

Ccl6 A51P460954 1.4 12.4 9.4 13.4 1.4 13.7 10.8 9.7

Gfap A55P2157245 1.1 3.4 6.1 4.4 1.1 2.2 3.0 5.4

Gfap A52P52303 1.1 5.2 8.4 5.0 1.1 2.8 3.1 4.5

Gfap A55P2157250 1.2 8.1 8.6 11.8 0.9 4.0 8.0 3.5

Ccl4 A51P509573 0.9 9.0 7.3 9.9 0.9 12.7 10.7 11.3

Ttr A65P19832 12.2 8.7 2.5 0.7 0.2 1.2 1.0 1.5

Kl A52P439358 2.9 3.0 1.2 0.5 0.2 1.2 0.6 2.2

Fold changes are indicated in bold when FC > 1.5.
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Figure 3 (See legend on next page.)
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In addition to inflammatory and immune changes, IPA

identified functional links between genes affected from

M6 onwards and neurological and psychological diseases

(Figure 3A). Changes in genes associated with impaired

cognitive functions are found to be a significant feature

of M9. This is consistent with published studies repor-

ting abnormal behaviors in 5XFAD mice starting at M6

and strongly consolidated by M9 [7,12,13,19,20,43,44].

These observations suggest that disrupting the intri-

cate balance between neurons and surrounding immune

cells may lead to neuronal dysfunction and cognitive de-

terioration [45,46].

Establishment of neuroinflammation through activation

of complement

A dramatic increase in inflammation stands out as the

most striking transcriptomic result. Neuroinflammation

is a well-known hallmark of AD and is characterized by

the activation of astrocytes and microglia, which appears

in the 5XFAD mouse model near and concomitantly to

amyloid plaques [1]. In various types of brain insults,

peripheral leukocytes infiltrate the injured brain [47-49]

and intensify the neuroinflammatory response through

pro-inflammatory mediators, free radicals, lipid peroxi-

dation and oxidative stress [50-52]. Their infiltration is

mediated, in part, by CD11/CD18 integrins expressed in

neutrophils and monocytes/macrophages.

In our study, in addition to Cd11c-encoding gene

Itgax, genes such as Itgam, Itgb3, and Itgb2, encoding re-

spectively Cd11, Cd61 and Cd18, are all overexpressed

in the 5XFAD mice (Table 2). Most of these integrins

are transcriptionally induced by IL-1β and/or Aβ

through TLR2-mediated signaling [53]. In keeping with

this, we found an upregulated expression of Tlr2 at M4,

M6 and M9 (Table 2). Increases in transcript levels of

inflammatory markers such as Cd11b, Il-1β, Tnf-α and

Tlr2 have already been observed in 6 months old 5XFAD

mice [54].

Moreover, the expression of several members of the

complement, known immune effectors, is also upregu-

lated, such as C3, C4, C1qa, C1qc and C1qb, which are

all overexpressed in the cortex of AD patients [55].

CD18 interacts with CD11b or CD11c to form the C3

receptor (CR3) and C4 receptor (CR4), respectively. C3

and C4 ligands bind to their cognate receptors, C3R

and C4R (Figure 4). Activation of these receptors is

reportedly part of the complement-induced inflam-

mation in AD mouse models and patients [56-61] and

influences microglia to adopt protective or deleterious

phenotypes in AD [31,62].

On the whole, our results point to a major raise in in-

flammation in the 5XFAD brain, linked to complement

activation and presumably to immune cell infiltration,

reminiscent of similar findings in AD patients and other

mouse models [63-68].

Altered expression of interferon gamma-induced genes

In a second approach, we applied more stringent criteria

for gene selection (see Materials and methods) to iden-

tify functional networks highly modulated in our model:

we focused on genes upregulated in both hippocampus

and cortex, from M4 to M9 or at consecutive time

points (M4/M6 and M6/M9). We then explored the

published data on these dysregulated genes to map out

the molecular and cellular players at stake. To this end,

we used IPA as well as PredictSearch, another software

for the design of functional networks [69-74]. This com-

bined analysis reveals numerous IFN-γ-induced genes,

which belong to a larger set of genes known as inter-

feron stimulated genes or ISGs (Figure 5). However, we

did not observe any change in IFN-γ gene expression in

our study. Although post-transcriptional regulation can-

not be excluded, we can postulate that IFN-γ transcrip-

tion occurs either transiently in brain cells or outside

(See figure on previous page.)

Figure 3 Metabolic pathways associated to gene dysregulation in 5XFAD cortex and hippocampus at M4, M6 and M9: common

versus age-specific processes. Biological functions and metabolic pathways associated to gene expression dysregulation were identified using

Ingenuity Pathway Analysis (IPA). (A) Data from both the cortex and hippocampus were analyzed as one dataset and the main metabolic

pathways affected were clustered according to age (M4, blue; M6, yellow; M9, red). The metabolic pathways affected across all three ages are

represented in white and are related to inflammatory and immune responses. (B) The main metabolic pathway affected at M4, M6 and M9

relates to infectious disease, cellular function and antigen presentation.

Table 2 Upregulated genes related to complement

activation in the cortex and hippocampus of 5XFAD mice

at M1, M4, M6 and M9

Cortex Hippocampus

Gene Probe M1 M4 M6 M9 M1 M4 M6 M9

Itgam A55P1977929 0.9 1.5 1.2 1.9 1.1 2.0 1.8 1.6

Itgb2 A51P262208 1.0 2.5 2.6 3.4 1.0 2.3 2.4 2.5

Itgb3 A52P553890 0.9 1.3 2.0 1.5 0.9 1.8 1.9 3.0

Tlr2 A51P452629 1.0 2.7 3.6 3.3 0.6 3.2 3.6 5.1

C3 A51P110301 1.6 1.0 3.5 1.6 0.9 1.2 5.2 6.3

C4b A55P2078633 1.1 2.6 9.0 3.7 0.8 2.6 4.0 5.6

C1qa A51P181451 1.1 2.6 3.2 4.0 1.0 3.0 3.8 4.7

C1qb A51P351860 1.0 2.3 2.9 3.2 1.0 2.6 5.1 2.9

C1qc A51P102789 1.0 2.8 2.0 5.7 1.2 3.0 4.6 4.2

Fold changes are indicated in bold when FC > 1.5.
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Figure 4 The complement-induced inflammation pathway: an important mediator of neuroinflammatory processes from M4 onwards.

This functional network was designed using the text-mining software, PredictSearch, based on more stringent criteria than for the above

figure: only upregulated DEGs (with a FC > 1.5) found in both the cortex and hippocampus and at consecutive time points (M4/M6; M6/M9 or

M4/M6/M9) were considered for analysis. Top right corner: legend for Figures 4, 5, 6, 7.

Figure 5 A large proportion of upregulated genes belong to the family of IFNγ-induced genes: engagement of inflammatory, immune,

autophagic and phagocytic pathways. Legend for this figure is located in the top right corner of Figure 4.
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the brain, in peripheral blood cells. IFN-γ can be pro-

duced in the brain by glial cells [75]. However, several

reports argue in favor of T cell infiltration in AD [63,64].

In post mortem AD brain, peripheral T cells cluster

around plaques in areas of important gliosis [76-78].

Disruption of the blood-brain barrier has been reported

in M8 5XFAD mice [79]. A recent study also demon-

strates that a significant infiltration of T cells occurs in

the brain of APP/PS1 transgenic mice and that these

cells secrete IFN-γ [80]. In the same study, transferring

Aβ-specific Th1 cells to APP/PS1 mice increased micro-

glial activation and Aβ deposition and worsened cog-

nitive performances in the Morris water maze. These

observations warrant more studies to test the hypothesis

that, in the 5XFAD brain, infiltrated T cells may poten-

tially release IFN-γ, activate microglia and stimulate ex-

pression of IFN-γ induced genes.

As described below, these genes are involved in the

regulation of different processes, including immunity, in-

flammation and GTPase signaling (Figure 5).

Concerning the potential role of the immune system,

major histocompatibility complex (MHC) genes are

expressed in microglia upon cytokine stimulation in the

inflamed brain [81] and both MHC class I and II are

known to be upregulated in sporadic forms of human

AD [82]. A role for MHC class II genes in the 5XFAD

mice is supported by the parallel increase in the expres-

sion of Cd74 (Figure 5), which acts both as chaperone

for MHC class II molecules and as receptor for MIF

(macrophage migration inhibitory factor). CD74 is also

increased in AD cases compared with age-matched con-

trols, notably in neurofibrillary tangles-bearing neurons,

amyloid plaques and microglia [83]. Thus, expression

of MHC class II genes highlight the predominance of

microglia activation in the 5XFAD mice. In response to

IFN-γ, a rise in microglial MHC class II genes may

enhance antigen presentation to T cells, which, in turn,

might contribute to immune-mediated damages to neu-

rons. Interestingly, at least at a certain stage of the dis-

ease, Cd74 expression may also denote a protective

effect. Indeed, interaction of CD74 with MIF promotes a

cell survival pathway and its interaction with APP blocks

Aβ production [84,85].

In our analysis, a second large cluster of genes induced

by IFN-γ and dysregulated in 5XFAD brain encodes pro-

teins with GTPase activity (Figure 5), such as Irgm1 and

Irgm2 (members of the Immunity-Related GTPase fam-

ily M [86]), Igtp/Irgm3 (IFN-γ induced GTPase), and

Iigp1/Irga6 (interferon induced GTPase 1). Moreover,

the expression of another GTPase gene, Gvin1 (very

large interferon inducible 1) and two members of the

guanylate-binding protein genes, Gbp2 and Gbp3, is also

higher in 5XFAD animals. GBPs belong to another fam-

ily of GTPases and are the most abundant proteins that

accumulate in fibroblasts or macrophages in response to

IFN-γ stimulation [87]. A number of other GTPases, not

described to be regulated by IFN-γ, but related to TGF-β

activity, are also overexpressed in our model.

GTPases such as Irgm1 regulate, during ischemic

stroke, survival and neuronal autophagy [88], a process

that eliminates dysfunctional cell components using ly-

sosomes. Irgm1 exacerbates experimental auto-immune

encephalomyelitis by promoting disruption of the blood-

brain and blood-cerebrospinal fluid barriers [89]. In

addition to controling cell death or survival [90-92],

murine IRGs affect protein aggregate formation and

clearance [93,94] and altogether, these functions engage

the autophagic pathway [91].

A possible involvement of autophagy in 5XFAD animals

is also supported by the increased expression of known tar-

gets of Tfeb, a transcriptional factor involved in lysosomal

biogenesis [95,96]. These Tfeb targets include Gusb (beta-

glucuronidase), Naglu, Hexa, Hexb, and Ctsd [95,97], which

are greatly expressed in the 5XFAD mice from M4 to M9

in both cortex and hippocampus (Table 3). Interestingly,

the expression of Gusb was upregulated in Aβ-resistant

cells and might illustrate a protective effect against Aβ

toxicity [98]. Moreover, a role for presenilins in regulating

lysosomal function has been demonstrated [97] and several

lines of evidence suggest that endosomes/lysosomes are in-

volved in Aβ production [99,100]. Thus, our results high-

light the possible activation of the endosomal/lysosomal

system in the 5XFAD brain, in keeping with observations in

this model [101] and in human AD brains [102].

Potential role of IRF8 in the expression of interferon

gamma-regulated genes

We next explored in more detail which pathways were ac-

tivated immediately downstream of IFN-γ in the 5XFAD

brain. As detailed below, we discovered an unexpected

downstream effector of IFN-γ: Interferon Regulatory

Factor 8 (IRF8). Induction of MHC class I genes by IFN-γ

generally depends on the JAK/STAT pathway that targets

the ISRE (Interferon Stimulating Response Element) motif

[103]. By contrast, the expression of MHC class II genes

requires that the transcriptional factor CIITA forms a

complex with DNA-binding factors targeting the MHC

class II promoter [104]. The increased expression of both

MHC class I and II genes observed in 5XFAD mice sug-

gests that the two IFN-γ-signaling pathways are altered.

However, among the factors known to participate in these

pathways, only Stat3 and Socs3 display a significant upreg-

ulated expression in both tissues of 5XFAD mice, and not

before M9. Therefore, it can be assumed that novel path-

ways explain the major rise in IFN-γ-induced genes.

Among interferon-stimulated genes, it is noteworthy

that genes encoding transcription factors Irf5 and Irf8

are highly upregulated in the 5XFAD mice, from M4 to
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M9 (Figure 5). Irf8 stands out as a particularly inte-

resting effector of IFN-γ. Expressed predominantly in

hematopoietic cells and further increased upon treat-

ment with IFN-γ [105-107], Irf8 is required to propagate

pro-inflammatory signals and to activate microglia [108].

IRF8 also instructs myeloid progenitors to become

mononuclear phagocytes [109,110]. A combination of

genome-wide methods already confirmed the crucial

role of IRF8 in regulating early immune response, in-

cluding phagosome maturation, antigen processing and

presentation [111,112]. Interestingly, 5XFAD mice over-

express most of the Irf8 target genes supporting these

processes (Figure 5). This strongly suggests that Irf8 ac-

counts for the IFN-γ regulated processes described here

and therefore represents a key player in the 5XFAD

pathology.

Alternatively, IRF8 expression can also be induced

through TGF-β [113], which is highly overexpressed in

5XFAD mice, along with transcripts for its receptors,

Tgfbr1 and Tgfbr2 (Table 3). This pathway inhibits mac-

rophages and suppresses microglial expression of MHC

antigens [114,115], and its activation in 5XFAD brain

might therefore be a protective response against sus-

tained microglial activation.

Involvement of NADPH oxidase (NOX) complex in

microglial activation

The NOX complex contributes to persistent microglial

activation and reactive oxygen species production, which

leads to an increase in oxidative stress, regarded as an

early sign of AD pathophysiology [116,117]. Moreover,

studies on different AD mouse models, including

5XFAD mice, reported increased levels of oxidative

damage, which appear before Aβ deposition and there-

fore constitute an early event in disease pathogenesis

[24,44,118,119]. Actually, a recent proteomic analysis re-

vealed that the most affected biological processes in M4

5XFAD hippocampus include cell redox homeostasis

and response to oxidative stress [120].

In our study, most of the genes encoding NOX compo-

nents as well as NOX associated factors, Fc receptors, Vav

and Rac2, are overexpressed as early as M4 in 5XFAD

mice (Figure 6). Of note, genes encoding the NOX sub-

units as well as Fcgr1a/CD64 (Fc fragment of IgG recep-

tor, high affinity 1a) are regulated by IFN-γ [107,121-123].

Their co-expression is in line with the observation

that clustering of Fcγ receptors activates VAV proteins

(Rho/Rac guanine nucleotide exchange factors), leading to

robust superoxide generation through NOX [124-126].

Several studies provide strong evidence for the in-

volvement of NOX and its downstream oxidative sig-

naling pathway in the toxic effects elicited by Aβ. In AD

brains, Aβ is thought to act on NOX in microglial cells,

which produce neurotoxic superoxide [127]. Aβ also in-

duces oxidative stress in hippocampal astrocytes through

a mechanism sensitive to NOX inhibitors [128].

According to these observations, NOX activation can

occur in either microglia or astrocytes. However, it is

likely that, in our model, NOX is predominantly acti-

vated in microglia. Indeed, in addition to MHC class II

Table 3 Upregulated genes, fold changes, and associated functional categories for genes consistently dysregulated

from M4 to M9

Cortex Hippocampus

Gene Probe M1 M4 M6 M9 M1 M4 M6 M9

Gusb A51P211491 0.9 2.5 3.2 3.2 1.1 3.0 3.6 3.9

Lysosomal biogenesis

Naglu A52P504361 1.0 2.1 2.1 2.2 0.8 1.7 2.2 2.0

Hexa A51P282667 1.1 1.9 2.0 2.3 1.2 1.7 2.3 2.4

Hexb A51P453111 1.0 2.5 2.0 3.2 0.9 2.8 2.0 3.3

Ctsd A65P13209 1.1 3.0 4.4 2.4 0.9 2.8 3.8 3.1

Tgfb1 A51P390715 1.1 1.8 1.7 2.3 0.8 2.3 2.6 1.6

TGF-β signalingTgfbr1 A51P2137206 1.1 1.5 1.7 1.7 0.8 1.6 1.4 1.9

Tgfbr2 A51P450573 1.0 1.9 2.1 2.3 1.0 2.2 2.0 3.7

Aif1 A51P400543 1.0 2.1 2.4 2.2 1.0 2.5 2.3 2.9

Markers of microglial activation
Ptprc A55P1990324 1.0 2.0 1.7 2.0 1.0 2.0 2.1 2.5

Cd86 A55P1971951 0.9 1.8 2.3 2.5 1.1 2.5 3.0 3.5

Cd14 A51P172853 1.0 2.7 3.2 3.8 1.0 2.6 3.6 3.3

Igf1 A55P2031631 0.9 2.6 2.0 5.1 1.0 3.0 3.0 4.2

Protective activitiesOsmr A51P319460 0.9 1.6 2.7 3.1 0.7 2.5 3.0 5.3

Grn A51P192800 0.9 2.5 2.3 2.6 1.1 2.2 3.0 2.5

Fold changes are indicated in bold when FC > 1.5.
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genes and Cd74, markers of microglial inflammation

are strongly overexpressed in 5XFAD mice (Table 3),

notably Aif1/Iba1, Ptprc/Cd45, Cd68, Cd86 and Cd14

[83,129-131]. In line with the microglial origin of NOX

activation, expression of the Fcγ receptor-encoding

genes is found around senile plaques and in ramified

microglia, throughout the cortex and the white matter

of normal and AD brains [132]. Furthermore, RAC2,

which controls NOX activation by preferentially inter-

acting with the NCF2/p67(phox) NOX subunit [133], is

largely predominant in human phagocytes [134].

Microglial phagocytosis

Microglia/brain macrophages constitute about 12% of the

cells in the central nervous system, and, in addition to

antigen presentation, exhibit phagocytosis. Microglia can

phagocytose Aβ fibrils in vitro and in vivo [135]. Never-

theless, Aβ phagocytosis is inefficient in AD brain despite

the presence of abundant activated microglia [136]. One

possible explanation may be that exposure of microglia to

fibrillar Aβ in vitro can induce mechanisms distinct from

those used by classical phagocytic receptors, FCGR1 and

FCGR3, or complement receptors (Figure 7). This novel

Figure 6 Increased expression of genes involved in the NADPH oxidase complex. Legend for this figure is located in the top right corner

of Figure 4.

Figure 7 Increased microglial activation and induction of associated neuroprotective signaling pathways. Legend for this figure is

located in the top right corner of Figure 4.
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phagocytosis would require the interaction of microglia

with CD36, ITGB6, and CD47 [137].

Phagocytosis of Aβ by microglia can be also mediated

by CD14 [138], which is detected in brains of AD patients,

or by CSF1 (macrophage colony stimulating factor 1) and

its receptor, CSF1R (Figure 7). Interestingly, Csf1r sig-

naling in injured neurons facilitates protection and sur-

vival [139]. The Csf1/Csf1r complex co-signals through

Tyrobp, which, together with its receptor, Trem2, activates

signal transduction leading to brain myelination and in-

flammation [140]. The signaling involving Csf1/Csf1r/

Trem2/Tyrobp likely plays a role in the 5XFAD physio-

pathology since all the corresponding genes are strongly

upregulated from M4 to M9 in cortex and hippocampus

(Figure 7). Moreover, recent reports show that rare

TREM2 variants predispose to AD [141,142] and Trem2

mRNA and protein are increased in a transgenic mouse

model of AD [141]. It has been proposed that these

changes represent a response to rising levels of Aβ [141].

Localized to microglia around plaques and neurons in AD

models, Trem2 controls two signaling pathways that regu-

late the reactive phenotype in microglia (Figure 7). The

first of these pathways couples increases in Trem2 expres-

sion on microglia with enhanced phagocytosis [143-145].

This could lead to the removal of cell debris and the clear-

ance of Aβ in AD and promote the alternative “protective”

activation state of microglia. The second Trem2 signaling

pathway suppresses inflammatory reactivity and represses

cytokine production and secretion [144], notably TLR-

and FcR-induced TNF production [146,147]. Thus, in

addition to its protective role by activating phagocytosis of

apoptotic neurons and Aβ, the predominant role of the

TYROBP/TREM2 complex might be to inhibit, rather

than to activate, the innate immune system.

Altogether, these transcriptional changes indicate that,

in 5XFAD mice, microglial activation and the resulting

phagocytosis are predominant processes, which are

already initiated at M4 and maintained at least until M9.

Other neuroprotective activities

The 5XFAD transcriptomic data identified numerous

genes involved in neuroprotective pathways. In addition to

those already discussed, we found an upregulation of genes

encoding Igf1 (insulin growth factor 1), Osmr (oncostatin

M receptor) and Grn/Pgrn (granulin) (Table 3).

Insulin and IGF1 signaling is disturbed in AD brain and

in 5XFAD hippocampus [120,148,149]. Igf1 can either

protect or increase LPS-induced damage in the developing

rat brain [150]. A possible explanation for these apparently

contradictory observations may be that modulation of

the cellular response to oxidative stress by Igf1 is cell-

dependent [151]. Contrary to what has been observed in

neurons [152], astrocyte-specific overexpression of IGF-1

protects hippocampal neurons [153].

Neuroprotection can also be elicited through OSM

(oncostatin M), a cytokine with anti-inflammatory activ-

ities. In response to IL-1β or TNF-α, astrocytes produce

prostaglandin E2, which then induces Osm expression in

microglia [154]. Upon binding to a complex formed be-

tween its receptor, OSMR, and gp130 [155], OSM can in

turn attenuate expression of IL-1β or TNF-α [156]. There-

fore communications between microglia and astrocytes

may account for the balance of protective and destructive

actions by these cells. Although Osm expression levels

were similar in 5XFAD and wild type mice, elevated

expression of Osmr might increase the constitutive Osm

activity detected in neurons, astrocytes and microglia

[154]. Besides, the protective effect of Osm on neuronal

cell death is mediated by the Jak/Stat3 signaling pathway

[157]. In the 5XFAD brain, this neuroprotective effect may

be attenuated through the OSM-induced upregulation of

Socs3, a known inhibitor of Jak/Stat signaling [157].

Finally, GRN/PGRN, an AD marker [158], is involved in

the modulation of the neuroinflammatory response. Sup-

porting this role, microglia display increased Grn/Pgrn ex-

pression following a variety of acute and chronic insults to

the central nervous system [159]. Grn/Pgrn can increase

endocytosis of extracellular peptides such as Aβ and af-

fects microglial proliferation, recruitment, differentiation,

activation and phagocytosis [159]. Grn/Pgrn is a potent in-

hibitor of TNF-α and promotes the upregulation of anti-

inflammatory cytokines such as Il-4, Il-10 and Il-5 [159].

Direct interaction of GRN/PGRN with the TNF receptor

also blocks the pro-inflammatory actions of TNF-α [160].

However, GRN/PGRN can be cleaved by extracellular

proteinases such as MMP-9, −12 and −14 to produce

granulin/GRN peptides, which increase the expression of

IL-1β, IL-8 and TNF-α [161,162]. Therefore, a balance

between PGRN and its processed form GRN may deter-

mine the contributions of certain cell types or subtypes to

neuroprotection or neuroinflammation and their impact

on the 5XFAD pathophysiology.

Limitations of the study

The aim of this study was to provide an overview of the

main networks affected in 5XFAD brain, as revealed by

intensive data mining on dysregulated genes observed in

transcriptomic profiles. Such a global approach deter-

mines tendencies based on the design of networks rather

than confirms individual gene modulation at the tran-

script or protein levels. Given the stringent criteria

chosen to filter our data, most of the genes within the

described networks are significantly modulated in both

hippocampus and cortex from M4 to M9. Investigating

the role of non-shared DEGs at given time points and

analyzing specificities of each brain region is beyond the

scope of this study, but deserves further investigation in

order to elucidate the precise molecular mechanisms at
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play. Importantly, many DEGs and several signaling

pathways, associated to AD, have been found to be mis-

expressed in the 5XFAD model by two independent

studies [30,31].

Further understanding of the signaling pathways af-

fected in this mouse model, with the aim to link it to

human AD, would entail broadening the study to ad-

ditional brain regions. The entorhinal cortex, for in-

stance, is known to be the site of early neuron loss in

human AD and has recently been shown to be affected

by amyloid deposition, as early as 2 months of age in

both female and male 5XFAD mice [163].It would there-

fore be of great interest to investigate the transcriptomic

profile of this brain region in future studies.

The study would also benefit from a comparison of

transcriptomic profiles between female and male mice.

Female 5XFAD animals are more affected at the histo-

logical and behavioural levels than male mice [9,163],

possibly as a consequence of decreased estrogen levels.

Variations in estrogen levels can directly impact on tran-

scriptomic profiles through modulation of the genome

and signaling pathways. In the current study, IPA ana-

lysis revealed a large proportion of DEGs potentially reg-

ulated by estrogens and one of their receptors, ESR1

(data not shown). We also observed a dysregulated

expression of genes directly linked to the effects of

testosterone, reinforcing the idea that differential gene

modulation during the time course of the disease could

occur between male and female mice. Future studies

should take hormonal impact into consideration.

Finally, based on the data presented here and in pre-

vious studies, there is no doubt that a fine understanding

of pathogenesis necessitates deciphering early molecular

events. As a result, it would be of great importance to

enlarge the current study to a finely tuned time window

that spans for M1 to M4, when histological markers

start developing.

Despite such considerations, the data presented here

offers, for the first time, the possibility to understand

time-dependent variations in the inflammatory and im-

mune pathways of the 5XFAD model. Altogether, these

data confirm that this transgenic model, along with

the generated dataset, is a valuable public resource for

screening potential therapeutic molecules targeting dys-

regulated functions in AD.

Materials and methods
Animals

We used 5XFAD transgenic mice, which overexpress

two transgenes bearing five mutations linked to familial

AD: human APP (Swedish mutation K670N, M671L;

Florida mutation I716V; London mutation V717I) and

human presenilin 1 (PSEN1 M146L, L286V), under tran-

scriptional control of the mouse Thy1 promoter. 5XFAD

lines from the B6SJL genetic background were main-

tained by crossing hemizygous transgenic mice with

B6SJL F1 breeders. These mice exhibit AD-related symp-

toms earlier than other animal models and amyloid de-

position starts in the cortex and subiculum at 2 months

of age [1]. Heterozygous female 5XFAD transgenic ani-

mals and wild type controls were obtained after breeding

of progenitors purchased from the Jackson Laboratory.

Genotyping was performed by PCR analysis of tail DNA

in order to detect the human APP gene. Animal experi-

ments were approved by the Ethics Committee of the

Medical Faculty of Marseille and were carried out in ac-

cordance with the guidelines published in the European

Communities Council Directive of November 24, 1986

(86/609/EEC). All efforts were made to reduce animal

suffering and the number of mice.

RNA isolation

Brain tissues were collected from wild type and trans-

genic 5XFAD mice (n = 3 per group). At different

Table 4 RT qPCR results for two genes known to be upregulated in 5XFAD mice: comparison with the microarray

results

qPCR Microarray

Age Gene Wt 1 Wt 2 Wt 3 Tg 1 Tg 2 Tg 3 Fold change Tg/Wt Wt Tg Fold change Tg/Wt

M1 Aif1 1.3 0.9 0.8 1.3 1.3 0.9 1.2 2098.9 2010.3 1.0

Gfap 1.5 0.9 0.7 1.3 1.4 0.8 1.2 6320.3 6827.6 1.1

M4 Aif1 1.1 1.1 0.9 2.8 1.7 1.3 3.1 2171.1 5335.4 2.5

Gfap 0.9 1.3 0.9 5.5 6.1 5.1 5.5 5381.9 15329.9 2.9

M6 Aif1 0.9 1.0 1.2 2.8 1.7 1.3 1.9 2427.4 5530.1 2.3

Gfap 1.1 1.0 0.9 3.9 5.6 4.2 4.5 5694.4 17759.7 3.1

M9 Aif1 1.4 0.9 0.8 2.6 2.0 2.3 2.3 2551.1 7422.3 2.9

Gfap 1.5 0.8 0.9 5.0 7.0 5.9 5.9 5172.5 23062.3 4.5

Before performing the microarray experiment, RNA from each wild type (Wt) and each transgenic (Tg) (n = 3 for each group) animal was tested independently by

RT-qPCR for two genes known to be upregulated in 5XFAD mice: Aif1 and Gfap. This table compares results obtained by qPCR from each mouse with results

obtained from the pooled RNA for all three animals in the microarray study. The qPCR and microarray gave similar fold changes, shown here in bold.
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designated time points (beginning of M1, M4, M6 and

M9), mice were anesthetized with isoflurane and sacri-

ficed to extract brain tissue. Hippocampus and neo-

cortex samples were dissected, snap-frozen in liquid

nitrogen and stored at −80°C until use. Total RNA was

then isolated from frozen hippocampi and cortices using

RNeasy Mini kit (Qiagen, Courtaboeuf, France), ac-

cording to the manufacturer’s instructions. RNA con-

centration was determined using a Nanodrop 2000

spectrophotometer (Thermo Scientific, ThermoFisher

Scientific, Villebon sur Yvette, France) and RNA integ-

rity assessed on an Agilent 2100 Bioanalyzer (Agilent

Technologies, Les Ulis, France).

Real-time quantitative PCR (qPCR)

Before performing microarray experiments, RNA samples

extracted from the hippocampus of all animals (n = 3) in

each group were tested with qPCR in order to quantify

the expression of known markers of inflammation in

5XFAD mice. Total RNA (1 μg) was subjected to reverse

transcription reaction to synthetize cDNA using oligo dT,

RNase Out and M-MLV RT enzyme (Invitrogen, Thermo-

Fisher Scientific, Villebon sur Yvette, France) according

to the manufacturer’s instructions. Two genes, Gfap and

Aif1, related to astrocytic and microglial activation re-

spectively, and one housekeeping gene, Gapdh, were

selected for pre-validation of samples.

Real-time qPCR experiments were carried out with the

7500 Fast Real-Time PCR system (Applied Biosystems,

ThermoFisher Scientific, Villebon sur Yvette, France),

using TaqMan® Fast Universal PCR Master Mix (2X)

and the three TaqMan® Gene Expression Assays (Gfap,

Mm01253033_m1; Aif1, Mm00479862_g1 and Gapdh,

Mm99999915_g1). Experiments used 7.5 ng of previously

prepared cDNA and samples were run in triplicates. Rela-

tive expression levels were determined according to the

ΔΔCt method where the expression level of the mRNA of

interest is given by 2-ΔΔCT where ΔΔCT = ΔCT target

mRNA − ΔCT reference mRNA (Gapdh) in the same

sample. Results are reported in Table 4 and compared to

microarray data for these two genes of interest.

Microarray assay

Following qPCR pre-validation of individual animals for

each time point and condition, RNA samples were

pooled (n = 3) for microarray hybridization. Sample

amplification, labeling, and hybridization were per-

formed in line with the Agilent one-color microarray-

base analysis (low input quick amp labeling) protocol

(Agilent Technologies). Briefly, total RNA was reverse-

transcribed into cDNA using the T7 promoter primer.

The reaction intending to synthesize cyanine-3-labeled

cRNA from cDNA was performed in a solution con-

taining dNTP mix, T7 RNA polymerase and cyanine

3-dCTP and then incubated at 40°C for 2 hours. Labeled

cRNA was purified and fragmented before hybridiza-

tion on Agilent 8×60k Mouse Gene Expression Arrays

(Agilent Technologies, ref: G4852A), containing 62 975

oligonucleotide probes, at 65°C for 17 hours. Raw micro-

array signals were scanned and extracted using Agilent

Feature Extraction Software (Agilent Technologies). AgiND

R package was used for quality control and normalization.

Quantile methods and a background correction were

applied for data normalization. Microarray data are avail-

able in the ArrayExpress database [164] under accession

number E-MTAB-1937.

Microarray data analysis

Biological interpretation of the data was performed using

two different programs. First, Ingenuity Pathway Analysis

(IPA, Ingenuity Systems [165]) was used to identify bio-

logical functions from the lists of DEGs associated to

transgenic animals. The main criteria to validate a dif-

ferentially expressed gene was a fold change over 1.5 or

under −1.5 when considering expression values in the

transgenic group relative to the wild type control group.

Upregulated and downregulated genes were analyzed in

the same datasets to obtain the biologically relevant func-

tion categories. Right-tailed Fisher’s exact test was used to

calculate a p-value determining the top statistically signifi-

cant biological functions assigned to the data set.

Secondary analysis of the main metabolic pathways and

their potential dysfunctions was performed using the Java/

Perl software Predictsearch® (Laboratoire Genex [166]),

which has been previously described [69,74]. This software

characterizes the pathways and functional networks in

which the selected genes found to be up- or down-

regulated are involved. For this mechanistic analysis, only

genes not differentially expressed across all time points

in wild type animals (ratio between 0.85 and 1.2) but up-

regulated in transgenic animals (ratio over 1.5) were

considered. Predictsearch was then used to generate func-

tional networks based on the total number of differentially

expressed genes in both cortex and hippocampus.

Additional files

Additional file 1: Table S1. Lists of genes and associated fold changes

commonly dysregulated at M1, M4, M6 and M9 in (A) cortex and (B)

hippocampus.

Additional file 2: Table S2. Common DEGs in cortex and hippocampus

at M4, M6 and M9.
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FAD: Familial Alzheimer’s disease; FC: Fold change; GTPases: A large family of

hydrolase enzymes that can bind and hydrolyze guanosine triphosphate

Landel et al. Molecular Neurodegeneration 2014, 9:33 Page 13 of 18

http://www.molecularneurodegeneration.com/content/9/1/33

http://www.biomedcentral.com/content/supplementary/1750-1326-9-33-S1.pdf
http://www.biomedcentral.com/content/supplementary/1750-1326-9-33-S2.pdf
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