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Abstract— Brain functions are based on interactions be-

tween neural assemblies distributed within and across distinct 

cerebral regions. During cognitive tasks, these interactions are 

dynamic and take place at the millisecond time scale. In this 

context, the excellent temporal resolution (<1 ms) of the Elec-

troencephalographic –EEG- signals allows for detection of 

very short-duration events and therefore, offers the unique 

opportunity to follow, over time, the dynamic properties of 

cognitive processes.  

In this paper we propose a new algorithm to track the func-

tional brain connectivity dynamics. During picture recognition 

and naming task, this algorithm aims at segmenting high reso-

lution (hr) EEG functional connectivity microstates. The pro-

posed algorithm is based on the K-means clustering of the 

connectivity graphs obtained from the Phase Locking Values 

(PLV). Results show that the algorithm is able to track the 

brain functional connectivity dynamics during picture naming 

task. 

Keywords—High resolution EEG, PLV, K-means, functional 

connectivity dynamics. 

I. INTRODUCTION  

A key challenge in neuroscience is  to identify distinctive 

networks underlying specific brain functions, from data 

provided by neuroimaging techniques, which can be either 

structural (diffusion imaging, DTI) or functional (electroen-

cephalography, -EEG magnetoencephalography –MEG- or 

even functional magnetic resonance imaging fMRI-). These 

neuroimaging techniques can be used to identify brain net-

works involved in normal brain functions(behavioral re-

sponse to stimulus, learning , memory) as well as in neuro-

logical disorders like epilepsy, Alzheimer, 

Schizophrenia[1]. 

In this context, fMRI has significantly evolved over the 

past two decades and is now commonly used to characterize 

brain connectivity. However, the short duration of cognitive 

processes (~500ms for the picture naming, for example) 

requires the use of techniques that have a very high time 

resolution (on the order of ms), which is not the case of 

fMRI (~1s), although it has the advantage of having excel-

lent spatial resolution. 

Several studies have indicated that the use of electroen-

cephalography (EEG) –which provides scalp signals at 

excellent temporal resolution (sub-millisecond) - combined 

with appropriate signal processing techniques can bring 

relevant information about normal networks activated dur-

ing cognitive activity[2] or about disturbed networks asso-

ciated for instance with tumors[3]. 

This excellent temporal resolution allows us to analyze 

the dynamic properties of the cognitive process, a challeng-

ing issue so far addressed in a few studies only. In[4, 5], 

proposed algorithms were based on the Event Related Po-

tentials (ERPs) amplitude. However, these algorithms do 

not take into account the connectivity between signals (elec-

trode space) or brain regions (source space). Other methods 

rely on the decomposition of EEG measurements into to-

pographic and time-frequency elements. These methods 

based on frequency analysis, show that a large set of data 

can be represented by a small number of topographic distri-

butions [6].Again, these methods ignore the connectivity 

aspects. 

Regarding the results based on the connectivity analysis, 

most of reported methods make use of a constant time win-

dow to track the EEG dynamic connectivity. This window is 

chosen empirically or based on a priori information about 

the analyzed task [2]. A few attempts have been recently 

reported to avoid this constraint [7, 8].However, most of the 

proposed algorithms are not adequate to track changes over 

very short durations (as in the case of responses evoked by 

visual stimuli). 

 In this paper, we propose a new algorithm to track the 

brain functional connectivity dynamics during picture nam-

ing task. The proposed algorithm is based on the K-means 

clustering of the connectivity graphs obtained by the trial by 

trial Phase Locking Values (PLV) method. 

II. MATERIALS AND METTHODS 

A. DATA 

Six subjects were shown pictures on a screen using E-

Prime 2.0 software (Psychology Software Tools, Pittsburgh, 

PA). They were asked to name the displayed objects. The 
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148 images were selected from a database of 400 pictures 

standardized for French[9] and were used during two ses-

sions (about eight minutes each) of 74 stimuli. The brain 

activity was recorded using an hr-EEG system (256 elec-

trodes, EGI, Electrical Geodesic Inc.). EEG signals were 

collected at a 1 kHz sampling frequency and were band-

pass filtered between 3 and 45 Hz. Each trial was visually 

inspected, and epochs contaminated by eye blinking, 

movements or any other noise source were rejected and 

excluded from the analysis performed using the EEGLAB 

open source toolbox[10]. This study was approved by the 

National Ethics Committee for the Protection of Persons 

(CPP), (conneXion study, agreement number 2012-A01227-

36, promoter: Rennes University Hospital). We excluded 

the electrodes located on the face as well as the few elec-

trodes showing too high impedance. Overall, in our hr-EEG 

montage, 180 (over 256) electrodes were retained as provid-

ing excellent quality signals over all subjects. 

B. Functional connectivity measure  

    Functional connectivity is defined as the temporal corre-

lation (wide sense) among the activity of different neuronal 

assemblies. Several methods have been proposed to charac-

terize the brain functional connectivity. In this paper we 

used the phase locking value (PLV) method proposed by 

Lachaux et al. [11]to measure synchronization on a trial by 

trial basis. For each channel pair, x and y, at time t, and for 

all the trials (n=1…N), PLV is defined as:  
 

 (1) 

 

Where and are the unwrapped phases of signals x and 

y respectively.  We applied a normalization procedure so 

that the values were compared with the 200ms base-

line preceding the presentation of the image. Let  

and  be the mean and standard deviation computed from 

a 200ms pre-stimulus baseline. The normalized PLV is then 

computed as . The connectivity matrices 

are computed in the low gamma frequency band (30 Hz - 45 

Hz). A thresholding procedure is then applied on the func-

tional connectivity values in order to retain a small fraction 

(10%) of the strongest functional connections, as discussed 

in [12]. 

C. Segmentation algorithm  

The proposed algorithm can be summarized as follows: 

1- Compute the adjacency matrices for each subject 

using PLV to obtain T connectivity graphs. The in-

stantaneous averaged connectivity PLV (t) is com-

puted over all the subjects. 

2- Select randomly K graphs (K varies from 3 to-10) 

from the T graphs. To avoid the choice of very close 

graphs , an additional constraint has been added 

which consists in  rejecting the K graphs if the time 

interval between two graphs in any pairs  is less than 

30 ms. 

3- Calculate the spatial correlation (sC) between each 

of the K and T graphs. sC is computed based on 

PLV(t). For two pairwise PLV P and Q, at instant t, 

sC(t) is defined as: 

  

  (2) 

 

Where M is the number of combinations (180x(180-

1)/2). 

4- From these spatial correlation values, the Global 

Explained Variance (GEV) is calculated as defined 

in[5]. While GEV is unstable (i.e. doesn’t reach its 

highest value over the iterations), the template maps 

are redefined averaging all the graphs yielding to the 

same cluster. When reaching the highest GEV, K+1 

template maps are then selected and all the above 

procedure is repeated. To choose the optimal number 

of template graphs, we use a method based on the 

Cross Validation (CV) criterion as introduced in[5] 

which is the ratio between GEV and the degrees of 

freedom for a given set of graphs. Its minimum gives 

the optimal number of segments. Finally, an addi-

tional constraint is used to prevent the small clusters, 

a given connectivity graph must “survive” for at 

least 30ms. 

5- The result obtained in the averaged data is then 

compared with the moment-by-moment connectivity 

graphs of individual subjects PLVs. Each time point 

is labelled according to the graph with which it best 

correlates, yielding a measure of graph presence.  

This procedure referred to as ‘fitting’ allows for es-

tablishing how well a cluster map explains individ-

ual activity and its duration. 

III. RESULTS  

To start with, after the random selection of the template 

graphs, we compute the spatial correlation between these 
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template maps and all the graphs. An example of the sC 

curves (at each instant) is shown in Fig. 1 for 3 random 

different instants. The figure shows how sC is able to de-

tect the spatial correlation between graphs. We can notice 

also that around the highest correlation peak, the correla-

tion values are higher than temporary distant graphs. 

 This step is followed by the computation of GEV for 

different template graphs. In our study the number of 

clusters varies from 3 to 10 clusters. The lowest CV val-

ue is obtained for a number of clusters equal to 6. 

We then choose this number of clusters to identify the 

spatiotemporal behavior of the connectivity graphs ob-

tained with the algorithm. 

Results are exemplified in Fig. 2. The figure shows the 

segmentation of ERP signals (180 channels) into 6 clus-

ters.  The first cluster corresponds to the period from 

0(onset) to 116 ms. In this cluster, we can observe a net-

work located in the occipital lobe. 

A shorter graph is then observed between117 and 153ms 

with also strong connections at the occipital and temporal 

lobe. The 3
rd

cluster is located at 154 -190 ms where 

strong connections appear in the temporal and parietal 

lobes. A network appears in the cluster 191-316ms with 

the presence of connectivity in frontal regions, followed 

by a cluster (317-480 ms) with dense connectivity in 

frontal and occipital regions. 

 
Fig1.Spatial correlation (sC) of 3 templates (t=120, t=300, t=450) with 

all the others graphs (T). 

 

The networks (481-620 ms) then become denser in tem-

poral left and frontal regions. 

Table 1 shows the results obtained after the ‘fitting’ 

process which consists in testing the inter-subject variabil-

ity. The map presence values are presented in column, the 

templates (T3, T6) have high values of maps presence be-

tween subjects (73%, 78%) and low values in the template 

(T1, T4). 

 

 

  
Fig 2.Event Related Potentials (180 electrodes) for the picture naming task and temporal distribution of the functional connectivity graphs revealed by 

spatio-temporal segmentation algorithm detailed in the paper. Connectivity graphs and their specific time windows are showed by each rectangle. 
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Table1 

Mean and standard deviation of the map presence after the fitting step. 

 T1 T2 T3 T4 T5 T6 

Map  

presence 31%±16 41%±38 73%±30 23%±28 39%±22 78%±32 

IV. DISCUSSION 

Preliminary results were presented to demonstrate that 

the proposed algorithm can be used to track the dynamics of 

the brain functional connectivity. Very interestingly, results 

are qualitatively consistent with the state of the art of the 

analyzed task regarding the activation starting in the occipi-

tal lobes during picture recognition followed by activation 

in the temporo-frontal regions[13].One of the challenge 

faced by our study is to specify the maximal number of 

clusters. The increase of the maximal number of clusters 

increases the computation cost. In our study we used 10 

clusters. A classical and still unsolved difficult question 

relates to the setting of threshold values applied on the con-

nectivity matrices. In our study, the chosen threshold value 

was 10%, [12]. Other approaches can be explored like those 

based on surrogate data[2], although requiring an even 

higher computation time. Finally, this algorithm is a good 

start to then compare  the dynamics of the brain connec-

tivity for two different cognitive tasks such as the difference 

between spelling[14] and naming task which is our ongoing 

work. Also the algorithm will be applied on EEG source 

connectivity graphs to track brain functional connectivity 

dynamics at cortical source level.  

V. CONCLUSION 

In this paper we proposed a new algorithm to track the 

functional brain connectivity dynamics and segment hr-

EEG signals recorded during picture recognition and nam-

ing task using K-means clustering of the connectivity 

graphs. This algorithm shows good performance to demon-

strate the stability of the functional brain connectivity overs 

some short periods of time and to segment the cognitive 

process into functional connectivity microstates.  
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