
HAL Id: inserm-01068813
https://inserm.hal.science/inserm-01068813

Submitted on 26 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Common and rare variant analysis in early-onset bipolar
disorder vulnerability.

Stéphane Jamain, Sven Cichon, Bruno Etain, Thomas W. Mühleisen,
Alexander Georgi, Nora Zidane, Lucie Chevallier, Jasmine Deshommes, Aude

Nicolas, Annabelle Henrion, et al.

To cite this version:
Stéphane Jamain, Sven Cichon, Bruno Etain, Thomas W. Mühleisen, Alexander Georgi, et al.. Com-
mon and rare variant analysis in early-onset bipolar disorder vulnerability.. PLoS ONE, 2014, 9 (8),
pp.e104326. �10.1371/journal.pone.0104326�. �inserm-01068813�

https://inserm.hal.science/inserm-01068813
https://hal.archives-ouvertes.fr


Common and Rare Variant Analysis in Early-Onset
Bipolar Disorder Vulnerability
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Abstract

Bipolar disorder is one of the most common and devastating psychiatric disorders whose mechanisms remain largely
unknown. Despite a strong genetic contribution demonstrated by twin and adoption studies, a polygenic background
influences this multifactorial and heterogeneous psychiatric disorder. To identify susceptibility genes on a severe and more
familial sub-form of the disease, we conducted a genome-wide association study focused on 211 patients of French origin
with an early age at onset and 1,719 controls, and then replicated our data on a German sample of 159 patients with early-
onset bipolar disorder and 998 controls. Replication study and subsequent meta-analysis revealed two genes encoding
proteins involved in phosphoinositide signalling pathway (PLEKHA5 and PLCXD3). We performed additional replication
studies in two datasets from the WTCCC (764 patients and 2,938 controls) and the GAIN-TGen cohorts (1,524 patients and
1,436 controls) and found nominal P-values both in the PLCXD3 and PLEKHA5 loci with the WTCCC sample. In addition, we
identified in the French cohort one affected individual with a deletion at the PLCXD3 locus and another one carrying a
missense variation in PLCXD3 (p.R93H), both supporting a role of the phosphatidylinositol pathway in early-onset bipolar
disorder vulnerability. Although the current nominally significant findings should be interpreted with caution and need
replication in independent cohorts, this study supports the strategy to combine genetic approaches to determine the
molecular mechanisms underlying bipolar disorder.
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Introduction

Numerous genome-wide association (GWA) studies have

recently been performed on bipolar disorder (BD), but few signals

were replicated and meta-analyses identified only a couple of

associated genes, such as CACNA1C, ODZ4 and NCAN, with a

small effect size [1–4]. Although convergent evidences argue in

favour of a role for these genes in vulnerability to BD [5–9], more

extensive studies suggest it might be involved in other psychiatric

disorders [3,10,11]. The difficulty to identify susceptibility genes

specific to BD could be due to the ethnic heterogeneity, as a

consequence of the huge number of patients and controls required

to get genome-wide significant signals, or to the clinical and a

genetic heterogeneity of the DSM-IV ‘‘bipolar disorder’’ entity.

In the current study, we focused on patients with BD selected

with an early age at onset, a clinical characteristic known to

identify a subgroup of patients with a higher morbid risk for BD in

relatives [12–17]. We then compared these data to those observed

in two previously published GWA studies of BD, conducted by the

Wellcome Trust Case Control Consortium (WTCCC) [18] and

the Genetic Association Information Network Bipolar Sample

(GAIN-BP) [19]. Finally, we screened our regions of interest for

rare variants, suspected to have a larger effect size, and suggested

the importance of combined approaches in the identification of

vulnerability genes to BD.

Materials and Methods

Ethics Statement
Protocols and procedures were approved by the research ethics

board of the Pitié-Salpêtrière Hospital in Paris for the French

sample and the ethics committees of the Faculties of Medicine at

the Universities of Bonn and Mannheim/Heidelberg for the

German sample. Written informed consent was obtained from all

subjects prior to study participation.

Sample
French sample. Two hundred and twenty patients of French

descent with at least three grandparents from mainland France

were collected through a French national network for mental

health (Fondation FondaMental) in three university-affiliated

psychiatry departments (Paris-Créteil, Bordeaux and Nancy) as

previously described [12]. All patients met DSM-IV criteria [20]

for BD type I (N = 172), type II (N = 46) or BD not otherwise

specified (N = 2) before the age of 22. The age at onset was defined

by the first mood episode (depressive, manic or hypomanic) and

was retrospectively assessed using medical case notes and

information obtained with the Diagnostic Interview for Genetic

Studies (DIGS) [21]. The threshold of 22 was chosen on the basis

of previous admixture analyses [16,22–25].

German sample. One hundred and sixty-seven German

patients were recruited from consecutive admissions to the

psychiatric inpatient units of the Central Institute of Mental

Health in Mannheim and the Department of Psychiatry and

Psychotherapy of the University of Bonn (BOMA bipolar study).

These patients received a lifetime diagnosis of BD type I based on

DSM-IV criteria and had an age at onset lower than 22.

Control population. Genotyping data from 1,823 French

controls and 629 German controls were provided by the Centre
National de Génotypage (CNG, Evry, France). These samples were

previously collected and were not screened for psychiatric

disorders. They have been genotyped for association and

population studies as described elsewhere [26] and permission to

use them were obtained from the original investigators. DNA from

380 additional German controls were collected in the above

mentioned German hospitals. An additional sample of 293

unaffected French controls screened for personal history of

psychiatric disorders using the DIGS has been screened for

mutation in the PLCXD3 exon 2, in order to determine the

specificity of the p.R93H mutation.

DNA extraction and genotyping
DNA was isolated from lymphocytes either directly from venous

blood sample or after transformation by Epstein Barr virus.

Isolation was performed by salting-out with saturated sodium

chloride solution [27]. French and German cases were genotyped

at the CNG, using HumanHap550 or Human 610-Quad

BeadArrays and the Infinium II assay (Illumina, San Diego, CA,

USA). Control samples were genotyped on HumanHap300

(N = 2,503) or on HumanHap550 BeadArrays (N = 380). In order

to determine whether the use of multiple arrays might result in a

population stratification, we performed a multidimensional scaling

analysis based on pairwise identity-by-state distance between pairs

of individuals. The good clustering of all individuals showed that

there was no stratification due to the use of multiple arrays (Figure

S1 in File S1).

Quality control criteria
All samples were passed through the standard quality-control

procedures followed at the CNG for GWA studies, as described

elsewhere [26]. For the French population, the quality control was

performed using the PLINK toolset [28] on a total of 317,131

commons SNPs genotyped in 2,043 DNA samples (Table S1 in

File S1). We removed monomorphic SNPs, as those with a minor

allele frequency (MAF) lower than 0.01 and SNPs with a call rate

lower than 0.97. We performed a missing chi-square test that

compares, for each SNP, missingness between cases and controls

and excluded SNPs with P,1023. Then, we removed SNPs that

did not show Hardy-Weinberg proportions in controls, using a

significant threshold at P,1023. In parallel, we removed male

samples with more than 0.5% or female samples with less than

20% heterozygous markers on the X chromosome and individuals

with a call rate lower than 0.97. We estimated the average

genome-wide identity-by-state (IBS) sharing between individuals

and analysed the clustering using a multidimensional scaling

(MDS) plot. Hence, we excluded 15 individuals (3 cases and 12

controls) with a low level of identity. After pruning, the final data

set consisted in 261,525 SNPs genotyped in 1,930 individuals (211

cases and 1,719 controls) that were used for association study.

Identical quality control criteria were used for the replication

sample from Germany (Table S1 in File S1) and MDS plot showed

6 controls to be removed. This led to a final data set of 288,167

SNPs and 1,157 individuals (159 patients and 998 controls).

Association analysis
Basic case/control association analyses were performed using

the PLINK software v1.07 [28]. A haplotype analysis was

performed on the two most associated regions using sliding

windows of two to five SNPs shifting by one SNP at a time. We

tested for case/control haplotype-based association using a chi-

square test with one degree of freedom. Only window with best P-

values are reported for each region. Imputation data were based

on the 3,967,651 SNPs genotyped in 90 subjects of the CEU

population of the HapMap project (http://www.hapmap.org).

Imputation was performed using PLINK and consisted in

estimating the allele frequencies of an ungenotyped SNP based

on its surrounding haplotypic background.
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Genotyping data from the WTCCC [18] and the GAIN-TGen

collection [19] were provided for BD patients with an age at onset

lower than 22 and for controls. In the WTCCC, BD was defined

according to Research Diagnostic Criteria [29] and included BD

type I, type II, schizoaffective disorders and manic disorders. The

WTCCC sample was genotyped on Affymetrix 500K array,

containing only few SNPs in common with the Illumina arrays

used in other samples. Thus, the genotype correlation data were

obtained for SNPs within a 1 Mbp window, based on individuals

and SNPs in the CEU HapMap filtered set (http://www.hapmap.

org) and the 2,938 WTCCC control sample combined [18]. An

association test between 764 early-onset patients and 2,938

controls was performed, using SNPs with a genotyped correlation

higher than 0.2 with associated SNPs at P,561025 identified

through the meta-analysis.

All patients from the GAIN-TGen cohort met DSM-IV criteria

for BD type I. Imputed data from the GAIN-TGen bipolar case-

control sample [30] were obtained, using the MACH software

with phased haplotypes from the 60 HapMap-CEU founders

(release 22). Allele frequencies of 15 SNPs out of the 16 associated

SNPs at P,561025, were compared between 1,524 patients with

an early age at onset and 1,436 controls.

A flow chart summarizing all steps of the genetic analysis is

shown on the Figure S2 in File S1.

Detection of copy number variations
Copy number variations were detected by fluorescence level

comparison through the chromosome, using the SnipPeep

software (R. Toro, Pasteur Institute, France). The deletion in

PLCXD3 was confirmed by quantitative PCR analysis using one

internal and two external couples of primers and Mesa Green

qPCR master mix plus (Eurogentec, Liege, Belgium). PCR were

performed and run in a Mastercycler ep realplex2S (Eppendorf,

Hamburg, Germany) for the deleted patient and two unaffected

controls, known to have no deletion in the regions under study.

Each real-time PCR was performed in triplicate and assessed by

comparing Ct at a determined threshold between the three

amplicons and the three individuals.

Mutation screening in PLCXD3
The PLCXD3 coding regions were amplified for 334 French

subjects with BD, sequenced by the Sanger’s method using the

BigDye terminator v3.1 cycle sequencing kit (Life Technologies,

Carlsbad, CA, U.S.A.) and run on a 16-Capillary ABI PRISM

3130xl genetic analyzer. The PLCXD3 exon 2 was sequenced for

293 unaffected French controls. All primers used for PCR

amplifications and sequence analyses are available on request.

Results

Analysis of a French cohort
We carried out an association study on 211 patients with early-

onset BD of French origin and 1,719 matched controls, who have

been genotyped on an Illumina platform with 261,525 single

nucleotide polymorphisms (SNPs) passing quality control. The

estimation of an inflation factor [31] showed a good genetic

homogeneity in our sample (l= 1.03), suggesting that no

correction for genomic control was needed. According to the

genome-wide significance threshold of P = 561028, no significant

difference in allele frequencies was observed in our sample, but 17

SNPs showed a nominal P,561025 (Table S2 in File S1),

suggesting these loci may be associated with vulnerability to early-

onset forms of BD. Interestingly, the lowest P-value (rs10096683,

P = 4.1161026, OR = 2.26), was observed for a SNP located on

chromosome 8p22, a region that has previously been associated

with schizophrenia [32–35] and suicide behaviour in patients with

recurrent major depression [36].

Replication on a German cohort
Next, we selected 14,037 SNPs with a P,0.05 to perform a

replication study on an independent sample of 159 German

subjects with an early-onset BD and 998 matched controls (Table

S1 in File S1). Again, a good genetic homogeneity (l= 1.04) was

observed after quality control for this sample. Out of the 14,037

SNPs previously selected, 13,734 were genotyped in the German

sample, and 739 showed a P,0.05, showing a significant over-

representation (P,0.03) of nominally significant P-values. The

most associated SNP in the German sample was located on

chromosome 12 upstream to the PLEKHA5 gene (rs2970836,

P = 5.361026, OR = 1.76).

Meta-analysis on the French and the German cohorts
We subsequently performed a meta-analysis, combining data

from the French and the German cohorts, yielding a sample of 370

patients with early-onset BD and 2,717 controls. Again, no locus

reaches the genome-wide significant threshold. The largest

difference in allele frequencies between cases and controls was

observed for chromosome 12 (rs2961365, Pmeta = 1.661026,

ORmeta = 1.57) with no evidence of heterogeneity between the

two cohorts (Q = 0.94, 1 degree of freedom, I2 = 0). In this region,

5 SNPs showed a difference in allele frequencies at P,561025 in

355 Kbp (Figure 1, Table 1). These SNPs span two genes,

PLEKHA5 and AEBP2. The second strongest association with

no heterogeneity (Q = 0.59, 1 degree of freedom, I2 = 0) was

observed for chromosome 5p13 (rs10512793, Pmeta = 2.761026,

ORmeta = 1.61), in which two SNPs, spaced by 196 Kbp, showed a

difference in allele frequencies at P,561025 (Figure 1, Table 1).

These two SNPs were located in the OXCT1 gene, and upstream

to PLCXD3. In order to further explore the associated peak in

these two regions, we used a three-SNP sliding window and

performed a haplotype analysis. Whereas no further significant

difference, as compared to single SNP analysis, was observed on

chromosome 12p12, a more significant difference between patients

and controls was observed on chromosome 5p13 for the

combination of rs624097-rs316762-rs10512793, for which an

overall Pmeta = 2.661027 was observed (Figure 1).

Imputation data
In order to refine the association signal in these two regions, we

imputed data for ungenotyped SNPs in the French and the

German cohorts based on the 3.9 million SNPs genotyped in the

CEU population of the HapMap project. The results of the two

populations were then combined to perform an association study.

After imputation, we observed an increased signal for chromosome

12 with the lowest estimated P-value for rs10743315
(P = 2.161027, OR = 1.61) located in PLEKHA5 (Figure 1). On

the contrary for chromosome 5, the lowest P-value was observed

for the genotyped SNP, rs10512793.

Replication studies on the WTCCC and the GAIN-TGen
cohorts

We analysed the top-16 SNPs (P,561025) out of the meta-

analysis in two additional samples of early-onset bipolar patients,

already genotyped on different platforms through the WTCCC

and the GAIN and performed a mega-analysis including the four

samples (Table S3 in File S2). Only 4 SNPs, genotyped in a

subsample of 764 early-onset bipolar patients and 2,938 matched
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controls from the United Kingdom out of the WTCCC, were

either directly or in strong linkage disequilibrium (r2.0.99) with

SNPs genotyped in the WTCCC sample. None of them showed a

nominal P-value (P,0.05). However, two SNPs on chromosome

5p13 in lower linkage disequilibrium (r2 = 0.65) with rs822135
showed a nominal P-value (rs625487, P = 0.02, OR = 1.15 and

rs633407, P = 0.02, OR = 1.15) (data not shown). Both were

located approximately 55 Kbp upstream to PLCXD3 and 165

Kbp downstream to OXCT1. In addition, one SNP (rs2565666),

located on chromosome 12p12, 21 Kbp downstream to PLE-
KHA5 and 42 Kbp upstream to AEBP2, also showed a nominal

P-value (rs2565666, P = 0.03, OR = 1.22) (data not shown). We

Figure 1. Genome-wide association results and detailed peak association regions. (A) Manhattan plot of the meta-analysis performed on
early-onset bipolar patients and controls from France and Germany. Physical position is shown along the x axis and –log10(P-value) is shown along
the y axis. (B) Detail of the two most associated regions on chromosomes 5p13 and 12p12. Allele frequency differences are represented by –log10(P-
values) for the French (open grey circles), the German (open grey squares) and the meta- (open red diamonds) analyses. Grey crosses represent –
log10(P-value) for imputed ungenotyped SNPs. The most associated SNP for each region is shown with orange circle. On chromosome 12p12, the
lowest P-value (P = 2.161027) was observed for an imputed SNP (rs10743315). On chromosome 5p13, the lowest P-value (P = 2.661027) was observed
for a three-SNPs window haplotype (light blue line) located downstream to OXCT1 and upstream to PLCXD3 (rs624097-rs316762-rs10512793). The
genome-wide significant threshold (P = 561028) is indicated by the blue dash line and the dot black line shows a threshold at P = 561025. The largest
differences in allele frequencies are represented with filled diamonds. Gene position and annotation (http://genome.ucsc.edu/) are symbolised by
green arrows. Linkage disequilibrium (r2) estimated according to HapMap CEU population SNPs (release 3) is symbolised in the bottom part of each
figure. Darker red indicates higher values.
doi:10.1371/journal.pone.0104326.g001
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also compared a sample of 1,524 early-onset bipolar patients with

1,436 controls out of the combined GAIN-TGen cohorts. None

out of the 15 tested SNPs showed a nominal P-value (Table S3 in

File S2). The mega-analysis showed a high heterogeneity between

the samples from France and Germany and the two samples from

U.K. and U.S.A. This analysis resulted in a low signal on

chromosomes 5p13 and 12p12 (rs10512793, Pmega = 5.0561022,

ORmega = 1.38 and rs3752823, Pmega = 5.7961022, OR-

mega = 1.43, respectively). The strongest association observed in

the mega-analysis for SNPs tested in at least three of the four

populations was observed on chromosome 7q36.3 in a gene desert

(rs4716990, Pmega = 3.7861022, ORmega = 1.25).

Structural abnormalities in region of interest
Fluorescence level of genotyped SNPs was only available for a

subsample of early-onset patients of French and German origin

(N = 321). We analysed this fluorescence level in the two 1.5 Mbp

regions of interest on chromosome 5p13 and 12p12. On

chromosome 5p13, we identified, in a French patient who

manifested a first mood episode by the age of 17, a 90-Kbp

deletion removing the PLCXD3 promoter region as well as the

first coding exon of the gene (Figure 2), whereas no copy number

variation has been previously reported in this region in the

database of genomic variations (http://projects.tcag.ca/variation/).

Although DNA was not available for first-degree relatives of this

patient, the deletion was confirmed using quantitative PCR analysis

(data not shown). In order to determine whether independent family

specific mutations might be frequently found in bipolar patients, we

screened all coding exons of PLCXD3 in 334 French subjects (204

patients with early-onset BD and 130 patients with late-onset BD).

Three synonymous variations (p.V58, p.A130 and p.P251) were

found in these patients, and one amino acid change (p.R93H) was

identified in one subject with early-onset BD type I and obsessive

compulsive disorder. This variation was not found in 293 unaffected

matched controls. This amino acid is highly conserved through

evolution and, according to PolyPhen-2 [37], this variation is

predicted to strongly affect the function of the protein. Further

analysis of the available DNA sample in this family showed that this

variation was transmitted from the father (Figure S3 in File S1). The

patient manifested first mood symptoms by the age of 19. Although

his father did not meet criteria for mood disorder according to

DSM-IV, his first cousin manifested major depressive disorder by

the age of 65. Unfortunately, no DNA was available for this subject.

Discussion

The important clinical heterogeneity of BD has probably

hampered the identification of vulnerability genes so far. After

tumultuous starts, GWA studies have enabled the identification of

robust and replicable genetic findings of weak effect, in regions of

CACNA1C, ODZ4 and NCAN, but without disease specificity [4].

In this study, we conducted a genome-wide approach on a highly

heritable phenotype, focusing on patients with an early age at

onset. Based on the genotyping data of 261,525 SNPs, we did not

identify SNPs that reached the genome-wide significant threshold

in our patients and controls of French origin. This was most likely

due to the small sample size of our cohort. We calculated the

statistical power of our study, using the CaTS software [38] and

estimated that we had 80% chance to detect only SNPs with a

genetic risk factor higher than 1.7 (Figure S4 in File S1). However,

recent data from larger cohort studies showed a polygenic

component in BD [3,39], consistent with a combine vulnerability

resulting from many variants of weak effect. We thus conducted a

replication study on a German cohort of patients with early-onset

BD and performed a subsequent meta-analysis. Although it did

not reach the genome-wide significant threshold, the most

associated region in our meta-analysis was located on chromosome

12p12. This region has been previously associated with bipolar

disorder [40–42] and more specifically when patients had an early

age at onset of mania [40]. Five SNPs in this region showed a

difference in allele frequencies between patients and controls,

spanning two genes, PLEKHA5 and AEBP2. The genetic

refinement using imputed data showed the lowest P-value for a

SNP located in PLEKHA5 (rs10743315, P = 2.161027). PLE-
KHA5 encodes a protein containing a pleckstrin homology

domain, which interacts with phosphatidylinositol 3-phosphate

[43]. Few elements are known about this gene except its

ubiquitous pattern of expression, including foetal and adult brains.

Nevertheless, there is compelling evidence for the implication of

the phosphatidylinositol signalling pathway in the etiopathogeny of

BD and the two most effective mood stabilisers for BD (lithium

and valproate) directly inhibit this pathway [44]. Further

exploration of response to mood stabilizer in regards to the

PLEKHA5 genotypes might help in understanding the difference

observed according to the patients’ age at onset [15].

The second most associated region in our meta-analysis was

located on chromosome 5p13. In this region, the highest difference

in allele frequencies between patients with early-onset BD and

controls was observed for rs10512793. This SNP was located in

OXCT1, which encodes a 3-oxoacid CoA transferase 1. This

enzyme catalyzes the reversible transfer of CoA from succinyl-

CoA to acetoacetate and is thus the first step of ketone body

utilization, the main source of lipid-derived energy for the brain

Figure 2. Copy number variation identified on chromosome
5p13. (A) Fluorescence level of SNPs of the region for the deleted
patient visualized using SnipPeep. Red dots represent fluorescence level
of SNPs and green dots correspond to the SNP heterozygocity. (B)
Chromosomal position of the deletion. Gene position and annotation
(http://genome.ucsc.edu/) are symbolised by green arrows. Deletions
reported in the Database of Genomic Variants (http://projects.tcag.ca/
variation/) are represented with blue bars. No duplication has been
reported in this region. A red bar represents the deletion identified in
the patient with early-onset BD.
doi:10.1371/journal.pone.0104326.g002
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[45]. Mutations in this gene are associated with succinyl CoA:3-

oxoacid CoA transferase (SCOT) deficiency, characterised by

episodes of severe ketoacidosis [46,47], which can also emerge

during treatment with some atypical antipsychotics [48]. However,

the haplotype analysis of this region suggested that the associated

peak might be located more likely downstream to OXCT1 and

upstream to PLCXD3. This result is consistent with the 90 Kbp-

deletion reported in one of the French patients and that removed

the promoter region and the first coding exon of PLCXD3.

Further exploration of this gene revealed a mutation predicting to

change the amino acid sequence of the protein (p.R93H) and

transmitted from his father, who had a first cousin with major

depressive disorder. Interestingly, this gene encodes a phosphati-

dylinositol-specific phospholipase C, strengthening the involve-

ment of the phosphoinositide-signalling pathway in vulnerability to

BD. Note that tricyclic antidepressants (e.g. desipramine), which

are known to induce rapid cycling or induce manic or hypomanic

episodes in some patients with BD [49], stimulate phospholipase C

activity and the production of the second messenger inositol 1,4,5-

trisphosphate [50]. In addition, experiments performed using rat

cultured hippocampal neurons revealed that desipramine rapidly

enhanced the spontaneous SNAP25-dependent vesicular release of

glutamate [51]. This Ca2+ dependent mechanism is consistent with

our previously reported association between SNAP25 and early-

onset BD [12] and with the strong associations observed between

SNPs located in CACNA1C and BD [1,3].

The main limitation of our study is not to reach the stringent

genome-wide threshold. Although this might translate an absence

of common genetic variations for a clinical subgroup based on an

early age at onset, this is also a direct consequence of the small

sample size and the loss of power inherent to the subphenotype

analysis. Similar study on larger sample should be performed to

confirm our data and valid the relevance of such approach.

Nevertheless, results observed in our French subsample with an

early age at onset have been replicated in a German sample and

supported by the data from the WTCCC with similar phenotype

criteria.

Another possible cause of the loss of power in our analysis is the

categorical exploration of the age at onset. Despite a widely valid

threshold for the age at onset [16,17,22–25], a continuous

exploration of this variable would allow to determine whether

specific loci might lead to various age at onset, which would result,

under multiplicative or additive models, in an overall early age-at-

onset in patients. Such hypothesis is supported by the recent

observation of the International Schizophrenia Consortium, which

showed the molecular genetic evidence for a substantial polygenic

component to the risk of BD involving thousands of common

alleles of very small effect [39]. Similar analysis should thus be

performed according to the patients’ age at onset, but this should

require larger samples for the study and the replication analysis.

In conclusion, although we did not reach the genome-wide

significant threshold in our association study, we report here

convergent data between our GWA study on early onset BD, the

structural abnormality observed in one patient and a missense

mutation reported in one family with early-onset BD. The

difficulties to reach the stringent genome-wide significant thresh-

old suggest that larger samples should be included, which will also

help in better defining the most convenient strategy to take into

account the age at onset of patients. Although the current

nominally significant findings should be interpreted with caution

and need replication in independent cohorts, our results displayed

that the combined exploration of common and rare variants in BD

can reveal identical pathways suggesting both approaches should

be systematically used in further genetic exploration of this

disorder. Using these approaches, we provided evidence that

variations in phosphoinositide secondary messenger signalling

pathway, and for the first time, that the PLEKHA5 and PLCXD3
genes, might confer vulnerability to early-onset BD. Further

exploration of these mechanisms might be used to better identify

markers of prognosis and help the development of innovative

treatment for these severe forms of the disease.
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