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Abstract

Septic shock is a severe disease state characterised by the body’s life threatening response to infection. Complex
interactions between endothelial cells and circulating monocytes are responsible for microvasculature dysfunction
contributing to the pathogenesis of this syndrome. Here, we intended to determine whether microparticles derived from
activated monocytes contribute towards inflammatory processes and notably vascular permeability. We found that
endotoxin stimulation of human monocytes enhances the release of microparticles of varying phenotypes and mRNA
contents. Elevated numbers of LPS-induced monocytic microparticles (mMP) expressed CD54 and contained higher levels of
transcripts for pro-inflammatory cytokines such as TNF, IL-6 and IL-8. Using a prothrombin time assay, a greater reduction in
plasma coagulation time was observed with LPS-induced mMP than with non-stimulated mMP. Co-incubation of mMP with
the human brain endothelial cell line hCMEC/D3 triggered their time-dependent uptake and significantly enhanced
endothelial microparticle release. Unexpectedly, mMP also modified signalling pathways by diminishing pSrc (tyr416)
expression and promoted endothelial monolayer tightness, as demonstrated by endothelial impedance and permeability
assays. Altogether, these data strongly suggest that LPS-induced mMP have contrasting effects on the intercellular
communication network and display a dual potential: enhanced pro-inflammatory and procoagulant properties, together
with protective function of the endothelium.
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Introduction

Microparticles (MP) are a population of small vesicles derived

from host cell plasma membranes, ranging between 0.2–1 mm in

diameter. First described by Wolf in 1967 as ‘platelet dust’ [1],

these seemingly inert vesicles are present in the circulation of

normal healthy subjects and have since been proposed as

regulators of vascular homeostasis under physiological conditions

[2]. Their enhanced release is triggered by cell injury, activation or

apoptosis and various clinical studies have shown an association

between MP levels and disease severity [3–6].

The MP formation process, named vesiculation, is complex and

yet to be fully deciphered, with different agonists capable of

inducing different MP profiles. However, it is accepted that MP

bear a negatively charged outer leaflet with exposed phosphati-

dylethanolamine and phosphatidylserine (PS), and a positively

charged inner membrane leaflet where phosphatidylcholine and

sphingomyelin almost exclusively reside [7,8]. Being released from

a range of different cell types, MP display phenotypic and cytosolic

compositions that tend to mirror those of their mother cell. This

could account for their active, procoagulant and inflammatory

nature often observed in vascular functional studies [9–12].

Increased levels of circulating MP have been measured in many

disease states and are closely associated with disease severity. For

example, increased levels of MP derived from monocytes were

found in patients with cancer, diabetes and hypertension [3,13]

compared to healthy individuals. Acting as intermediate messen-

gers, monocytic MP (mMP) are able to transfer biologically active

molecules such as IL-1b and caspase-1 to target cells, subsequently

altering the functional capacity of the latter [14,15]. mMP are

capable of inducing endothelial oxidative stress and upregulating

tissue factor and von Willebrand factor expression to trigger

downstream thrombotic events [16]. Additionally, recent studies

have reported that mMP are capable of inducing endothelial

nitrosative stress [17]. Whilst many studies implicate a deleterious

role for mMP, the actual mechanism describing such a role

remains to be confirmed.
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The elevated level of mMP in infectious diseases such as sepsis is

well established yet their participation in the pathophysiology of

sepsis is still being investigated [18,19]. One of the most important

nosocomial diseases, sepsis encompasses a diverse array of

pathological sequelae leading to a death rate of up to 70% in

the USA and 30% in Australia [20,21]. This severe disease state is

attributed more to the dysregulated inflammatory response to

infection than to the infection itself. One of the major neurological

complications is septic encephalopathy, which, in close association

with mortality, can occur in 8 to 71% of patients with sepsis [22–

24]. Despite extensive research in the area of sepsis, severe sepsis

and septic shock, the pathophysiological mechanisms of this

disease state remains poorly understood as evinced by continued

new strategies proposed for sepsis treatment [25,26].

Under normal conditions, the blood vessels have an important

role in maintaining homeostasis by regulating inflammatory

mediators and controlling responses such as vascular tone

modulation and thrombus formation. During sepsis, the endothe-

lium –including that of the blood brain barrier - can undergo

changes in blood flow, permeability and leukocyte trafficking in an

attempt to maintain homeostasis (reviewed in [27]). Under

inflammatory conditions, disturbances to the blood-brain barrier

can alter the conformation of tight junctions leading to a

functionally compromised barrier. Such modifications affecting

monolayer integrity and thus changes in endothelial permeability

lead to the influx of cells, proteins and excess fluids as is observed

in sepsis [28]. The subsequent formation of oedema has the

potential to further compromise microvascular viability and tissue

perfusion, exacerbating the severity of the disease [29]. In addition

to vascular changes during inflammation, circulating blood cells

undergo a series of responses to inflammatory stimuli. Large

numbers of circulating activated monocytes and their ability to

traverse the blood-brain barrier contribute to the pathogenesis of

this disease [30]. Multiple studies indicate that the excessive

release from monocytes and macrophages of pro-inflammatory

cytokines such as IL-1b, IL-6 and TNF [31] is an important

propagating factor in septic shock and may contribute to multiple

organ failure [32]. As monocytes can trigger the inflammatory

response, MP released by them could also participate in the

pathogenesis of septic shock. The pathophysiological role of

monocytes has long been linked with inflammation, especially

through alteration of the endothelial monolayer although their

exact involvement or that of mMP in the disease process has not

been clarified. Additionally, there is limited information on

whether their MP progeny may serve as intermediate mediators

of cell-cell communication and amplify the endothelial cell

response to monocytic activation.

Therefore, we compared mMP with monocytes for contribu-

tions to inflammatory processes. We hypothesised that mMP

generated by endotoxin stimulation of monocytes could directly

elicit significant endothelial changes. In particular, we evaluated

whether mMP disrupted the blood brain barrier and investigated

the subsequent downstream events.

Materials and Methods

Reagents
TNF was obtained from Peprotech (London, UK), LPS (from

Escherichia coli O111:B4) and cytochalasin D from Sigma (Saint

Louis, MO, USA). The following monoclonal antibodies for flow

cytometry were obtained from Beckman Coulter Immunotech

(Marseille, France): anti- human CD54, CD11b and CD14.

Antibodies to HLA-DR were from eBioscience, to CD31 and

those to tissue factor from BD Pharmingen (San Diego, CA, USA).

Annexin V-FITC was from Beckman Coulter. Rabbit anti-pSrc-

family (Tyr416) and mouse anti-Src antibodies were from Cell

Signalling Technologies; mouse-anti-GAPDH (clone 6C5) anti-

body was from Millipore; rabbit anti-ZO-1 antibody was from

Invitrogen and rabbit anti-VE-Cadherin was from Sigma (Saint

Louis, MO, USA). Secondary anti-rabbit IgG conjugated to

DyLight 800 and anti-mouse IgG conjugated to Dylight 680 were

from Cell Signalling Technologies. For microscopy goat-anti-

rabbit Alexa-Fluor 546 IgG and Pro-long mounting medium

containing DAPI were from Invitrogen.

Cell culture
The immortalised monocytic cell line Mono Mac-6 (MM6), a

human cell line with characteristics of mature monocytes, was a

kind gift from Ziegler-Heitbrock [33] and the monoblastic cell line

THP1 was a kind gift from Saunders [34]. Both monocytic cell

lines were maintained in RPMI medium (Invitrogen) supplement-

ed with 10% heat inactivated foetal calf serum (FCS) (Bovogen) at

37uC in 5% CO2.

The human brain microvascular endothelial cell line hCMEC/

D3 [35] was cultured in endothelial cell basal medium-2 (Lonza)

supplemented with 5% FCS, recombinant long R insulin-like

growth factor-1 (R-IGF-1), vascular endothelial growth factor,

ascorbic acid, hydrocortisone, epidermal growth factor human

recombinant and human fibroblast growth factor-B (all from

Lonza). The cells were seeded onto 0.3% collagen coated flasks

and grown at 37uC in 5% CO2.

MP production
Endothelial cells were seeded onto a 0.3% collagen coated 24-

well plate at 66104 cells/ml and grown for 48 hours until 80%

confluence was reached. To better mimic inflammatory conditions

during endotoxic shock, endothelial cells were then stimulated

with TNF (0.2 to 100 ng/ml) for 18 hours.

MM6 and THP1 monocytes were washed and resuspended in

fresh RPMI culture medium, counted and seeded onto a 6-well

plate (16106 cells/ml) and treated with LPS at100 ng/ml for

18 hours at 37uC. Cell viability was assessed by trypan blue assay.

To harvest either endothelial MP (eMP) or monocytic MP

(mMP), supernatant medium from each cultured cell line was

centrifuged at 500 g for 5 minutes at 25uC to pellet cells and the

resulting supernatant was re-centrifuged at 1,200 g for 5 minutes

to remove cell debris. The final MP pellet was obtained after two

further centrifugations at 18,000 g for 45 minutes at 16uC
conducted with washes in between. MP purity was assessed by

flow cytometry.

eMP were labelled with anti-CD105-PE and mMP were stained

with either anti-CD31-FITC or annexin-V-FITC for 45 minutes

in 106 binding buffer and enumerated by flow cytometry on the

Beckman Coulter FC500 using Flow-CountTM fluorospheres as an

internal standard (Beckman Coulter). The MP region was defined

using a FSC-SSC dot plot as previously described [36]. Briefly, the

upper MP region was set using 0.8–1.1 mm latex beads and the

number of fluorescent of events lying within this MP gate was

measured.

Endotoxin detection in MP preparations
Purified MP were analysed for the presence of endotoxin using a

Limulus Amebocyte Lysate Endotoxin Assay Kit purchased from

Lonza. Samples were run according to manufacturer’s instruc-

tions.
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Phenotyping of monocytes and their derived MP
After LPS stimulation, MM6 and THP1 monocytes were

counted, washed and labelled for CD54, CD11b, HLA-DR,

CD14, CD31 and tissue factor expression according to manufac-

turer’s instructions. Isotype-matched controls were used for each

antibody. Following incubation, excess unbound antibodies were

washed away and the cells were suspended in RPMI for flow

cytometry analysis. Mean fluorescence intensity and percentage of

cells positive for each marker were compared to the values

obtained in resting, unstimulated monocytes.

After purification, equal numbers of mMP derived from resting

and LPS-stimulated cells were incubated with 3 mL of antibody

against CD54, CD11b, HLA-DR, CD14, CD31 or tissue factor

for 45 minutes at room temperature in the dark. Isotype-matched

control antibodies were also used. Samples were subjected to flow

cytometry (Beckman Coulter FC500) and results analysed using

CXP software.

Characterisation of monocytes and mMP cytosolic
content

Total RNA from each monocyte or mMP preparation was

extracted using the RNeasy Mini Kit (Qiagen) instructions

followed by incubation with random primers (10% v/v) (Fermen-

tas) at 70uC for 10 minutes. Reverse transcription was performed

using a M-MLV Reverse Transcriptase RNase H- kit (Solis

BioDyne) according the manufacturer’s instructions with the

addition of dNTP (1 mM) (Fermentas) and RNase OUT (2.5% v/

v) (Invitrogen) followed by enzyme heat inactivation for 5 minutes

at 92uC. The resulting synthesised cDNA were probed with

Sensimix (Quantace) and the following RT-PCR primers:

RPL13A (sense: 59-CGCCCTACGACAAGAAAAAG, antisense:

59-CCGTAGCCTCATGAGCTGTT), CD80 (sense: 59-GGA-

CATGAATATATGGCCCG, antisense: 59-CAACACACTCG-

TATGTGCCC), CD86 (sense: 59-ACAGCAGAAGCAGCCA-

AAAT, antisense: 59-CTTGTGCGGCCCATATACTT), tissue

factor (sense: 59- CCGAACAGTTAACCGGAAGA, antisense: 59

-CTTCACAATCTCGTCGGTGA), ICAM-1 (sense: 59-CTCC-

TCTGCTACTCAGAGTT, antisense: 59-CAT ACACCTTC-

CGGTTGTTC), VCAM-1, (sense: 59-ATGCCTGGGAAGAT-

GGTCG, antisense: 59-TCTGGGGTGGTCTCGATTTTA), IL-

6 (sense: 59-TGTAACCATGGACCCAATATTTACC, antisense:

59-AAGACAGTAACAGCTTAAACCTGGAAA), IL-8 (sense:

59-GGAATTGAATGGGTTTGCTAGAAT, antisense: 59-TGT-

GGATCCTGGCTAGCAGACT), TLR-4 (sense: 59-CCAG-

GATGAGGACTGGGTAA, antisense: 59- TACCAGCACGAC-

TGCTCAG), TNF (sense: 59- AGGGCCTGTACCTCATCTA-

CTCCC, antisense: 59-ACCTTGGTCTGGTAGGAGACGGC),

HLA-DR (sense: 59-CCGAGGATTTCGTGTACCAG, anti-

sense: 59- GCACGACCTCTTCTCGGTTA).

The samples were amplified with 40 cycles of denaturation at

94uC for 60 seconds, annealing at 54uC for 45 seconds followed

by an extension at 72uC for 2 minutes using a Rotorgene PCR

machine (Corbett Research).

Clot time measurement
Control normal pooled plasma (Stago Diagnostica, #0678) and

neoplastin (Stago Diagnostica, #0665) were solubilised according

to manufacturer’s instructions. MP derived from non-stimulated

and LPS-treated monocytes were counted and equal numbers

were added to control plasma before being loaded onto the semi-

automated #STart4 coagulometer (Stago Diagnostica). After

30 seconds of incubation at 37uC, an equal volume of neoplastin

was added and the clot formation time was measured.

Co-culture of mMP with human brain endothelial cells
MP derived from either resting or LPS-stimulated MM6 and

THP1 were co-incubated with a confluent monolayer of either

resting or TNF-primed endothelial cells (0.2 ng/ml) at a ratio of

10 mMP: 1 endothelial cell for 18 hours at 37uC for all conditions

unless otherwise stated. mMP supernatants from final ultracentri-

fugations were used as an additional control. eMP were stained

with anti-CD105-PE mAb and quantitatively analysed by flow

cytometry as previously described.

Protein analysis of human brain endothelial cells
Western blots were performed to observe changes in endothelial

protein expression resulting from incubation with mMP. Briefly,

after denaturation in lysis buffer, endothelial cell lysates were

separated on an 8% polyacrylamide gel by electrophoresis and

transfer blotted onto nitrocellulose membrane (Amersham).

Membranes were incubated in Odyssey blocking buffer for 1 hour

at room temperature before being probed for pSrc-family (Tyr

416), Src, ZO-1, VE-cadherin and GAPDH overnight at 4uC. The

membranes were then washed and incubated with fluorescently

conjugated secondary antibodies for 1 hour at room temperature.

Fluorescent protein expression was analysed using the Odyssey

Imaging System (LICOR). pSrc was expressed as the relative

fluorescence after normalisation to Src total. ZO-1 and VE-

cadherin were both normalised against GAPDH.

Impedance studies
Electrode arrays (Applied BioPhysics, #8W1E) were pre-treated

with L-cysteine (10 mM) (Sigma) for 15 minutes, washed twice in

sterile water and then coated with 0.3% collagen for 1 hour.

Endothelial cells were seeded at 1.56105 cells/ml and loaded into

the electrical cell-substrate impedance sensing (ECIS) morpholog-

ical biosensor (Applied Biophysics) at 37uC for a minimum of

48 hours. Once confluence was attained, endothelial cells were

incubated with TNF (0.2 ng/ml) at 37uC for 18 hours. Equal

numbers of mMP purified from resting or LPS (100 ng/ml)

treated monocytes were added to each endothelial cell condition

and loaded onto the ECIS. Impedance readings of the endothelial

monolayer were taken at 10 minute intervals for 48 hours.

Measurement of 70 kDa Dextran Permeability
Endothelial cells were seeded onto 0.4 mm pore size, collagen

coated Transwell inserts in 24 well plates at 36104 cells/ml and

grown until confluent. The experimental inserts were stimulated

with a low dose of TNF (0.2 ng/ml) overnight at 37uC. MP

purified from resting or LPS-treated monocytes were then added

and co-cultured with the endothelial cells for 24 hours at 37uC.

Overnight treatments of hCMEC/D3 with TNF (100 ng/ml) or

1 hour treatments with cytochalasin-D (10 mg/ml) were used as

positive controls for loss of monolayer integrity.

Endothelial culture medium was replaced with 70 kDa FITC-

dextran (1 mg/ml) (Invitrogen) diluted in DMEM without phenol

red (Gibco) in the upper chamber. After gentle resuspension of the

lower chamber, 50 ml samples were removed at times = 0, 45, 90,

150 and 240 minutes and the fluorescence intensity measured on a

Fluostar Optima (BMG Labtech).

Visualisation of endothelial junctions
Purified MP from resting and LPS-stimulated monocytes were

co-cultured with confluent resting or TNF-pre-stimulated endo-

thelial cells at a ratio of 10 mMP:1 endothelial cell overnight at

37uC. Unbound mMP were then removed and endothelial cells

were washed in PBS before fixation with 1% paraformaldehyde

Monocytic Microparticles in Endotoxic Shock
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for 30 minutes at room temperature. Cells were then permeabi-

lised in 0.1% Triton X-100/PBS for 5 minutes, washed and

blocked with 2% BSA/0.1% Triton-X-100/PBS for 1 hour.

Samples were incubated with primary antibodies a-VE-cadherin

or a-ZO-1(1:200 dilution in blocking buffer) for 40 minutes,

washed and fluorescently labelled with Alexa Fluor-546 (1:800

dilution in blocking buffer) overnight at 4uC. Cells were then

washed and mounted in Pro-long gold antifade reagent containing

DAPI. Samples were viewed using the Olympus IX71 deconvolu-

tion fluorescence microscope for wide field images and the Zeiss

LSM 510 Meta Spectral Confocal microscope.

Statistics
Results are shown as mean 6 S.D and were analysed using

GraphPad Prism 5 software. For statistical analyses, the one way

ANOVA followed by the Tukey post-test and the Kruskall Wallis

followed by the Dunn’s test were used. Comparative statistical

analyses between two groups were performed using the Mann

Whitney test.

Results

Enhancement of endothelial and monocytic MP
production by TNF and LPS

Overnight stimulation of endothelial cells with TNF resulted in

a dose-dependent increase in the number of eMP released

(Figure 1A). These endothelial cells shed 1800161645 MP under

resting conditions while stimulation with TNF at 10 ng/ml

significantly increased endothelial vesiculation. Maximal levels of

eMP were induced by TNF 100 ng/ml. In contrast, TNF 0.2 ng/

ml did not significantly modify eMP release levels from basal levels

but was sufficient to upregulate adhesion molecules such as

ICAM-1 and VCAM-1 (personal data and [37,38]). Thus this sub-

optimal concentration was chosen to prime the endothelial cells

without inducing significant eMP release.

LPS treatment of both monocytic cell lines MM6 and THP1

enhanced the release of mMP as detected using anti-CD31 mAb

(Figure 1B, 1D). As all three doses elicited a significant response

from the monocytes, the dose of LPS 100 ng/ml was chosen as a

sufficient concentration for mMP release without significantly

compromising cell viability, as assessed by the trypan blue

exclusion method (data not shown). After MP purification, a

two-fold increase of basal vesiculation was still observed after LPS

stimulation and the final supernatant was mostly free of MP

(Figure 1C). Similarly, LPS treatment of the monocytic cell line

THP1 significantly enhanced mMP release at all three doses tested

(Figure 1D). The dose of LPS 100 ng/ml induced up to a six-fold

increase of basal vesiculation and was chosen as the optimal dose

for mMP release without significantly compromising cell viability.

Surface and cytosolic content profiling of monocytes and
mMP

Endotoxin levels were measured in MP samples purified from

LPS-treated monocytes using a Limulus amebocyte lysate endo-

toxin assay. The level of endotoxin in MP purified from both

resting and LPS-stimulated monocytes were below the detectable

threshold. We also tested several concentrations of LPS between

1 ng/ml and 1 mg/ml, of which the concentration used for

monocytic activation (100 ng/ml) was significantly higher than the

maximum standard provided (1 EU).

After overnight treatment with LPS, MM6 and their derived

MP were characterised for surface antigen expression by flow

cytometry (Figure 2). We observed that similarly to monocytes,

mMP expressed low or non-detectable levels of HLA-DR or

CD106 (VCAM-1, used as a negative control), respectively,

whether or not they were stimulated with LPS. In contrast,

although monocytes had low surface protein expression of PS

indicated by annexin-V binding, up to 45% of mMP were PS-

positive by annexin V labelling. Compared to the surface antigens

tested, monocytes expressed intermediate levels of CD11b, tissue

factor (TF) and CD14. LPS treatment did not significantly

upregulate these antigens, although a higher percentage of LPS

stimulated cells were positive for them compared to unstimulated

monocytes (35% vs. 42% for CD11b, 56% vs. 74%, for TF, 36%

vs. 40% for CD14, respectively for unstimulated vs. LPS treated

monocytes, data not shown). CD80 and CD86 were detected on

16% and 46% of resting monocytes, respectively. Despite the

increased percentage of monocytes expressing CD80 (27.48%) and

CD86 (69%), quantitative expression levels were not modulated by

LPS stimulation. Virtually all (98.3360.19%) monocytes exhibited

high CD31 expression as did their MP progeny. Interestingly,

there was no significant change in the numbers of MP positive for

CD80 and CD86 between MP harvested from resting monocytes

or from LPS stimulated monocytes. The number of CD31-

postitive mMP also did not change with LPS stimulation. LPS was,

however, able to increase the percentage of CD54-positive cells

from 86% to 97%, and to significantly upregulate monocytic

expression of CD54. Moreover, higher numbers of mMP were

CD54-positive when derived from LPS stimulated cells. Similar

results were observed in the more monoblastic THP1 cell line (see

Fig. S1).

The modulation of transcripts for cytokines and surface

molecules upon LPS stimulation was then tested in MM6 and

their derived MP (Figure 3). Amplification of IL-6, IL-8, TLR4,

TF and CD86 mRNA from MM6 cells revealed a significant

accumulation of these mRNAs 18 hours after LPS. mRNAs from

TNF, CD80 and ICAM-1 were detected but no significant

increase in LPS-stimulated cells was observed. The cells did not

contain detectable levels of HLA-DR or VCAM-1, the latter taken

as a negative control (Figure 3A).

Similarly, in MM6- derived mMP, amplification of IL-8, TNF,

CD86 and ICAM-1 mRNA revealed significantly increased levels

of the mRNA sequences upon LPS stimulation of the monocytes.

No significant change was observed between non-stimulated and

LPS-stimulated mMP for IL-6, TF and CD80. TLR4 mRNA

expression appeared to be down regulated in LPS induced mMP.

These mMP also did not express any sign of HLA-DR or VCAM-

1 (Figure 3B).

mMP are procoagulant
MP purified from resting and LPS-stimulated monocytes were

subjected to a prothrombin time assay. Under standard conditions,

normal pooled plasma clotted in 12.760.05 seconds (Figure 4).

The addition of mMP reduced clotting time in a concentration-

dependent manner. More notably, fewer LPS-induced mMP were

needed for a significant reduction in clotting time - 800 MP/ml

(p,0.01) - with further shortening when 8000 MP/ml were added

to the assay system (p,0.01). In contrast, more MP from non-

stimulated monocytes were needed i.e. 8000 MP/ml, before a

significant reduction in clotting time was observed. (p,0.05). At

low MP numbers, i.e. 400 MP/ml, no significant difference was

observed between the procoagulant potential of non-stimulated

and LPS-induced mMP.

mMP bind to endothelial cells and induce their
vesiculation

Supernatant media from unstimulated, TNF-primed or TNF-

stimulated endothelial cell monolayers were analysed for eMP

Monocytic Microparticles in Endotoxic Shock
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release to define the baseline vesiculation levels prior to co-

incubation with mMP. As expected, stimulation of cells with TNF

100 ng/ml significantly increased the numbers of eMP released

while no change was observed in TNF-primed cells (Figure 5A).

Following an overnight incubation with MM6 mMP, the

number of eMP from non-stimulated, TNF-primed and TNF-

stimulated endothelial cells cumulatively rose (Figure 5B). Al-

though adding mMP to resting endothelial cells produced no

change in eMP release compared with untreated endothelial cells,

the co-incubation of mMP with TNF-primed endothelial cells

enhanced the number of eMP shed in comparison to release after

TNF priming alone. As a control, supernatant media from both

non-stimulated and LPS-stimulated mMP final purifications did

not significantly change the number of eMP released compared to

the medium alone. Stimulation of endothelial cells with mMP

from THP1 revealed similar results whereby enhanced eMP

release was observed in all conditions, and was significantly

enhanced when endothelial cells were TNF-primed and treated

with mMP derived from LPS treated THP1. (See Fig. S2).

Effect of mMP on brain endothelium integrity
Protein content of endothelial cells was examined to determine

whether mMP influenced certain endothelial translational or

phosphorylation events. The cytosolic tyrosine kinase Src is known

to be involved in multiple signalling pathways, including control of

endothelial permeability. Therefore we probed for its activated

and phosphorylated form in our endothelial cells. Exposure of

endothelial cells to TNF at 0.2 ng/ml increased pSrc expression

by 20% while TNF at 100 ng/ml increased pSrc expression by

35%. Co-incubation of endothelial cells with mMP resulted in a

diminished expression of pSrc protein in both the resting and TNF

primed conditions (Figure 6). It was also observed that under

resting conditions, non-stimulated mMP limited pSrc expression

more than did LPS-induced mMP; the reverse was true for TNF-

primed endothelial cells.

After endothelial cells reached confluence, the impedance of the

unstimulated endothelial monolayer remained constant for

36 hours (Figure 7A). Upon the addition of mMP (whether or

not LPS-stimulated), the impedance of the monolayer began

increasing after approximately 8 hours of co-incubation. As

expected, TNF pre-stimulation of endothelial cells was associated

with a reduction in impedance within 24 hours (Figure 7B).

Interestingly, the addition of mMP to TNF pre-treated endothelial

cells also increased the impedance level before the TNF began to

take effect, subsequently causing the impedance to gradually drop

at the same rate as the control after approximately 24 hours.

In conjunction with the impedance assay, a permeability assay

was performed. Endothelial cells, with or without TNF, were

incubated either with non-stimulated or LPS-induced mMP before

FITC-dextran 70 kDa was added. The 18 hour incubation of

either non-stimulated or LPS-induced mMP with resting endo-

thelial cells did not change the trans-monolayer passage of dextran

suggesting no detrimental effect on endothelial monolayer integrity

(Figure 7C). Similarly, pre-stimulation of the endothelial mono-

layer with ‘‘priming’’ doses of TNF (Figure 7D) did not change

permeability to dextran. Treatment with TNF (100 ng/ml)

induced a 25% increase in permeability, compared to an 80%

change induced by the positive control cytochalasin D.

Finally, we investigated the potential modification of candidate

junctional proteins by mMP. After co-culture with endothelial

cells, Western blot analysis revealed that there were no significant

Figure 1. Determining optimal agonist concentrations on hCMEC/D3 and monocytes. Endothelial cells and monocytes were stimulated
overnight with varying doses of TNF and LPS, respectively. Induced eMP were measured by flow cytometry using PE-anti-CD105 mAb (A). MP released
from monocytes were counted directly from the cell suspension prior to any purification process using labelling with FITC-anti-CD31 mAb (B). Post
purification, MP from non-stimulated (NS) and LPS-stimulated monocytes were enumerated and the supernatant (SN) from the final centrifugation
process was also checked to ensure clearance of mMP (C). Experiments were performed at least 3 times in triplicates. Data are expressed as mean 6
SD. *p,0.05, **p,0.01 ***p,0.001.
doi:10.1371/journal.pone.0091597.g001
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Figure 2. Monocyte and mMP surface antigen phenotype. Both unstimulated and LPS-stimulated MM6 were stained with anti-CD106, HLA-
DR, CD80, CD86, CD11b, TF, CD14, CD31, CD54 mAb and annexin-V. The mean fluorescence intensity was measured and compared to isotype-
matched controls (left column). mMP were also stained for the same surface antigens to check inheritance from the parent cell. Positively stained MP
were counted and expressed as the number of MP per 106 monocytes (right column). Monocytes with MFI between 0–1, 1–5, and above 10 were
considered as low expressors (top panel), medium expressors (middle panel) and high expressors (bottom panel) respectively. Experiments were
performed at least 3 times in duplicates. Data are expressed as mean 6 SD. *p,0.05, **p,0.01.
doi:10.1371/journal.pone.0091597.g002

Figure 3. Cytosolic mRNA profiling of monocytes and mMP.
RNA was extracted from resting (open bars) or stimulated (black bars)
monocytes (A) and their induced MP (B) and the sequences were
amplified using RT-qPCR. Results were taken as the level relative to
expression at resting levels. Experiments were performed at least 3
times in duplicates. Data are expressed as mean 6 SD. *p,0.05,
**p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0091597.g003

Figure 4. Procoagulant potential of mMP. mMP from resting and
LPS-stimulated cells were added to normal plasma pool and the change
in clotting time measured. Low doses of mMP did not induce any
changes in clotting time. However, higher numbers of mMP induced a
significant reduction in plasma clotting time. LPS-induced MP (black
bars) also appeared to be more procoagulant than MP from resting
monocytes (open bars). Results are representative of 3 independent
experiments performed in duplicates. Data are mean 6 SD. *p,0.05,
**p,0.01.
doi:10.1371/journal.pone.0091597.g004
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changes in the translation of VE-Cadherin protein, whether or not

endothelial cells were treated with mMP (Figure 8A). However,

when the same cell lysates were probed for ZO-1, we observed an

increased expression of ZO-1 protein in endothelial cells treated

with mMP (Figure 8B). This was particularly significant in resting

endothelial cells treated with mMP from LPS stimulated

monocytes. Enhanced ZO-1 expression was also observed in

TNF primed endothelial cells treated with mMP and independent

of whether the mMP were derived from resting or activated

monocytes.

Fluorescence microscopy revealed that confluent endothelial

cells display smooth, continuous and homogenous junctional

staining at the cell-cell contact when stained for VE-Cadherin in

resting conditions (Figure 8C). Treatment with mMP, whether

from resting or LPS-activated monocytes, showed increased

staining in some areas (arrow) and almost no evident of junctional

VE-Cadherin in others (arrow head), despite the endothelium

remaining intact, suggesting a redistribution of the protein rather

than a de novo synthesis. When observing ZO-1 expression,

untreated endothelial displayed a low yet finely defined junctional

staining pattern. Treatment with mMP mildly enhanced the

staining in junctional areas but was noticeably stronger in the

nuclear and cytosolic areas of the endothelial cells, which together

with Western blot data, is suggestive of an increase in ZO-1

protein synthesis.

Discussion

Current literature suggests that MP displaying a particular

phenotype, whether pro- or anti-inflammatory, can transfer these

properties onto their target cells. Based on the data generated in

this work, we propose an alternate view to that of circulating MP

exacerbating disease severity. Our goal was to investigate the

properties of mMP and how they induce functional changes in

brain microvascular endothelial cells in the context of inflamma-

tion and sepsis. By characterising the surface and mRNA profile of

monocytic cell lines and their MP using flow cytometry and RT-

qPCR, we built on this to decipher the functional outcome of the

interactions with human brain microvascular endothelial cells

using flow cytometry, confocal microscopy and trans-endothelial

electrical resistance. This work addresses the vesiculation of these

monocytes in relation to endothelial reactivity and demonstrates

that mMP are inducing differential endothelial gene expression

involved in a pathway considered anti-inflammatory rather than

pro-inflammatory.

Numerous studies have showed that activation of cells instigates

the release of MP [39,40]. Our experimental data confirms that

key stimulants such as TNF and LPS are capable of increasing

release of MP from human brain endothelial and monocytic cell

lines respectively. We then characterised the surface antigens and

cytoplasmic content of mMP to determine whether they had

similar or different properties from the activated mother cell. By

studying a selection of molecules involved in adhesive, coagulatory

and inflammatory processes capable of eliciting downstream

endothelial cell dysfunction, we were able to extend on

Bernimoulin et al.’s observation in the monoblastic THP1, that

different stimuli could induce unique MP proteomic profiles [41].

A surface antigen phenotype comparison between THP1 and

MM6 revealed a similar surface profile between the two cells lines.

LPS treatment of MM6, maturer and phenotypically closer to

circulating monocytes than the monoblastic THP1 [33], enhanced

their expression pro-inflammatory surface markers such as CD80,

CD86 and CD54 as well the expression of pro-inflammatory

RNAs for IL-6, IL-8 and TNF. Examination of MP progeny from

activated MM6 revealed a more pro-inflammatory profile that,

with the exception of IL-6 and TLR4, mirrored their parent cells.

These qualitatively different mMP thus carry potentially important

Figure 5. Interaction and effect of mMP on eMP vesiculation.
Endothelial cells were primed or activated with TNF overnight and the
levels of MP released were checked before co-incubation with mMP to
ensure cells were optimally responsive (A). After co-incubation with
mMP, controls levels of eMP rose cumulatively (B). Non-stimulated mMP
and final SN did not induce any significant changes. Data represents
duplicates of 4 independent experiments. Data are expressed as mean
6 SD. *p,0.05.
doi:10.1371/journal.pone.0091597.g005

Figure 6. mMP induced protein expression in endothelial cells.
Endothelial protein expression of pSrc (Tyr416) and Src were examined
after treatment with mMP. GAPDH was used as a loading control. Non-
stimulated mMP had a more pronounced effect on resting (top left)
rather than TNF-primed endothelial cells (top right). LPS mMP
significantly decreased pSrc expression in both resting and TNF primed
endothelial cells. Neither SN from the final NS or LPS induced mMP
pellet had any effect. Non-stimulated (NS), TNF primed (TNF 0.2 ng/ml)
and activated (TNF 100 ng/ml) endothelial cells are represented by
open, grey and black bars respectively. Actual protein expression of
pSrc, Src and GAPDH are shown in lower panels. Data represent three
independent experiments. Data are mean 6 SD. *p,0.05, **p,0.01.
doi:10.1371/journal.pone.0091597.g006
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biological properties. In the same way an activated monocyte

profile can trigger activation of various target cells, the display of

the very same markers by mMP equips them to also trigger

downstream events caused by receptor-ligand interactions. More-

over, the bearing of mRNA by mMP suggests that after binding

with their target cells, MP can act as intermediates of cell-cell

communication and serve to amplify the effect caused solely by the

parent cell [42]. Additionally, recent studies have also described

that not only can MP transfer functional proteins [43], but that

they are even able to convert proteins from the inert to its

inflammatory form [44]. Furthermore, MP have also been

described as a potential protective mechanism by which parent

cells utilise against RNAse degradation to ensure the successful

deliverance of intact microRNAs to target cells [45]. It is

important to note that whilst it is possible that as transport

vehicles, MP could also serve as a platform for further

dissemination of endotoxin in vivo, the MP samples prepared in

this in vitro study were free from detectable endotoxin demonstrat-

ing that the effects we observe are solely due to the MP and not

due to the presence of LPS carried by the MP.

TF is well known to be highly expressed on the surface of

activated monocytes and an important initiator of the coagulation

cascade [9,46,47]. We found that TF was expressed on MM6 and

was up-regulated by LPS stimulation (both surface protein and

mRNA), however the corresponding MP showed little surface

expression but did contain mRNA. We therefore aimed to assess

whether TF and PS could synergistically increase the procoagulant

potential of mMP derived from MM6. The effect on the clotting

time was modestly enhanced by mMP derived from activated cells

compared to resting cells, emphasising the importance of TF in

coagulation. Our data shows that mMP are indeed procoagulant,

however, this procoagulant potentials seems to be mainly TF-

independent and more reliant on the presence of PS at the surface

of the MP.

Of particular interest to this study, was the functional effect

imparted by mMP onto endothelial cells. Various soluble agonists

(including cytokines and other mediators) can augment cell

vesiculation. Enhanced eMP production is known to be a hallmark

of endothelial cell activation [39,48][49]. However, to our

knowledge this study is the first to demonstrate that mMP

themselves, can promote endothelial vesiculation. The higher

numbers of eMP observed here in our in vitro model of brain

inflammation was consistent with increased release of MP during

inflammation observed in clinical studies [3–5]. Previous studies in

vivo have also described worsening of pulmonary and capillary leak

when treated with high numbers eMP [50]. The fact that LPS-

induced mMP can activate endothelial cells and increase their

eMP production to levels higher than those obtained with a

maximal dose of TNF alone, provides further evidence that MP

are not simply inert bystanders, but biologically active communi-

cators that capable of modifying the response of their target cell.

This is also supported by our data (not shown) and other’s [51]

showing that mMP can up-regulate adhesion molecules at the

surface of endothelial cells.

We originally had hypothesised that interactions between MP

produced by activated monocytes and endothelial cells would

consequently result in endothelial cell dysfunction. However, in

our experiments, while endothelial cells showed activation – as

assessed by enhanced eMP release – under the influence of mMP,

measurement of the endothelial impedance showed that these

mMP may produce stabilization rather than breakdown of the

endothelial monolayer. Previous work by Aharon et al. has

demonstrated that ‘microvesicles’ consisting of MP together with

exosomes, are capable of inducing endothelial apoptosis [52].

Figure 7. Effect of mMP on endothelial cell monolayer. Co-incubation of mMP with resting endothelial cells induced an increase in monolayer
impedance (A). Similarly, co-culturing mMP onto pre-stimulated endothelial cells induced raised impedance of the endothelial monolayer whereas
stimulation with TNF alone (or with SN) decreased TEER (B). The SN did not have any effect. After overnight co-culture, mMP did not alter the passage
of FITC-dextran through either resting (C) or TNF-primed endothelial monolayers (D) over 4 hours. Data shown are representative of three
independent experiments. FITC-dextran permeability assays were performed in triplicates and expressed as means 6 SD.
doi:10.1371/journal.pone.0091597.g007
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Such findings, together with our work, suggest that these different

effects could be attributed to the differences between exosomes

and MP – that they are not only distinguishable by size (40–

100 nm vs. 0.1–1 mm) and origin (a-granule secreted vs. plasma

membrane), but also by their effects on target cells. To our

knowledge thus far, the only other MP capable of increasing

impedance are those derived from platelets [53]. Monocytes on

the other hand triggered a decrease of the TEER, suggesting a

monolayer disruption and an opening of endothelial junctions.

The tightening of cell-cell junctions observed here suggests that

mMP, instead of amplifying the inflammatory response as

expected, may be counteracting the deleterious effects of its

mother cell to reduce the severity of endothelial injury. Both

impedance and permeability results complementarily suggest that

the mMP as applied here did not damage the endothelial cell

monolayer.

In conjunction with the increase of impedance, mMP lowered

the endothelial expression of activated Src without affecting levels

of total Src. Src, a member of the non-receptor Src family tyrosine

kinases is expressed in endothelial cells and regulates physiological

functions such as cell adhesion, proliferation and migration [54].

Recent studies have found a strong correlation between the

activation of Src and increased endothelium permeability [55,56],

whereby inhibition of Src prevented junctional protein phosphor-

ylation and thus reduced permeability [57]. By modifying proteins

involved in cell-cell junctions such as zonula occludens-1 and VE-

cadherin, Src can cause gap formation leading to leaky vessels

[58,59]. In our case, mMP lowered the expression of activated Src,

which seems consistent with the increase in impedance suggestive

of a tightening of the monolayer. Such alteration of endothelial Src

expression by mMP demonstrates that the aforementioned change

in endothelial integrity is not solely the result of a direct contact

but also of a signal transduction triggered within the endothelial

cell. Aside from the Src modification demonstrated here, other

studies have also shown that MP derived from LPS-treated

monocytes can alter endothelial expression of signalling proteins

such as ERK1/2 and NF-kB [51]. Src activation controls vascular

permeability whereby a decrease of this activity by mMP is

associated with reduced endothelium permeability.

Looking further downstream, we determined that mMP

modification of endothelial permeability could indeed be attrib-

uted to the assembly or reorganisation of tight junctional proteins.

Whilst no significant changes were observed in ZO-1 expression at

the plasma membrane of cell-cell junction, treatment with mMP

resulted in an accumulation of cytosolic ZO-1. Gilleron et al.

suggest that the Src/ZO-1 relationship may be in part modulated

by connexin 43, a transmembrane gap junction protein [60]. They

report the recruitment of Src to the plasma membrane enhanced

connexin 43/Src interactions whilst simultaneously driving the

dissociation of connexin 43/ZO-1 complexes. Our work suggests

that the mMP-induced diminishment of pSrc allows the retain-

ment of ZO-1 localised at tight junctions whilst also prompting the

protein synthesis of ZO-1. The contributory role of this enhanced

cytosolic ZO-1 is still yet to be determined.

Previous studies have described Src inhibition leading to an

impaired internalisation of VE-Cadherin and thus reduced

permeability [57,61]. Our data suggest that mMP prevent Src

activation, and do not enhance VE-cadherin production. Rather,

Figure 8. mMP modifies endothelial junctional protein expression. After overnight treatment of endothelial cells with mMP, no changes
were observed in the levels of VE-Cadherin protein expression (A). Resting endothelial cells treated with mMP from resting monocytes (NS MP) and
TNF primed endothelial cells treated with mMP from both resting and activated monocytes (LPS MP) displayed significantly higher levels of ZO-1
protein (B). Confocal microscopy revealed a redistribution of VE-Cadherin (C) and upregulation of cytosolic ZO-1 (D) upon mMP treatment. Data
shown are representative of three independent experiments. Bar graphs are expressed as mean 6 SD. Scale bars = 20 mm. *p,0.05, **p,0.01.
doi:10.1371/journal.pone.0091597.g008
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mMP trigger junctional protein redistribution with some areas of

the endothelium displaying weaker VE-cadherin signals and others

showing strong recruitment of VE-cadherin at cell peripheries to

reinforce tight junctions, which, in part, could explain the

observed reduction in permeability. Together, our data suggest

that the Src regulated assembly and disassembly of tight junctions

as reported by Dwyer et al. could be a pathway instigated by mMP

[62].

In conclusion, this study is the first in the field of monocyte

biology to indicate that mMP have a protective role despite being

released by monocytes activated within a pathogenic environment.

More broadly, aside from the traditional view of MP as amplifiers

of the pro-inflammatory response, this study has found that LPS-

induced mMP may actually display a dual potential by having a

deleterious intrinsic phenotype but showing beneficial potential by

preventing further inflammatory damage. Whether both potentials

are active at the same time or sequentially and whether the

protective or deleterious effect is dominant remains to be

determined. Though further studies are required to appreciate

where MP stand in the pathophysiology of septic shock, it is clear

these circulating bioactive vesicles have contrasting effects in the

intercellular communication network and in the subsequent

protective function of the endothelium.

Supporting Information

Figure S1 Resting and LPS-stimulated THP1 were
stained with anti-CD106, HLA-DR, CD80, CD86,

CD11b, TF, CD14, CD31, CD54 mAb and annexin-V.
The mean fluorescence intensity was measured and compared to

isotype-matched controls. Monocytes with MFI between 0–1, 1–5,

and above 5 were considered as low expressors (top panel),

medium expressors (middle panel) and high expressors (bottom

panel) respectively. Experiments were performed three times in

duplicates and expressed as mean 6 SD. **p,0.01.

(TIF)

Figure S2 Endothelial cells were TNF-primed or acti-
vated with high dose of TNF overnight and the levels of
MP before treatment with mMP from either resting of
LPS-stimulated THP1. mMP did not significantly alter eMP

release in resting endothelial cells. However, mMP derived from

LPS-stimulated THP1 significantly enhanced eMP release from

TNF-primed endothelium. Non-stimulated mMP did not induce

any significant changes in TNF primed endothelial cells.

Experiments were performed five times in duplicates or triplicates.

Data are mean 6 SD. **p,0.01.

(TIF)
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