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Abstract 
 
 
 
Subthalamic nucleus (STN) deep brain stimulation (DBS) is an effective surgical therapy to treat 

Parkinson’s disease (PD). Conventional methods employ standard atlas coordinates to target the 

STN, which, along with the adjacent red nucleus (RN) and substantia nigra (SN), is not well 

visible on conventional T1w MRIs. However, the positions and sizes of the nuclei may be more 

variable than the standard atlas, thus making the pre-surgical plans inaccurate. We investigated 

the morphometric variability of the STN, RN and SN by using label-fusion segmentation results 

from 3T high resolution T2w MRIs of 33 advanced PD patients. In addition to comparing the 

size and position measurements of the cohort to the Talairach atlas, principal component analysis 

(PCA) was performed to acquire more intuitive and detailed perspectives of the measured 

variability. Lastly, the potential correlation between the variability shown by PCA results and the 

clinical scores was explored.  
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Introduction 
 

Chronic deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective 

alternative treatment for Parkinson’s disease (PD) patients that have adverse responses or 

resistance to the pharmaceutical treatment (Kleiner-Fisman et al., 2003; Vingerhoets et al., 

2002). Often the therapeutic benefits of DBS in reducing motor-function-related symptoms are 

closely related to the precise placement of the DBS electrode to the motor sub-region of the 

STN, while avoiding adjacent nuclei (e.g. substantia nigra) and white matter tracts as their 

simulation can cause undesired side effects (Montgometry, 2010). Classical pre-surgical 

targeting for STN DBS relies on indirect inference of the nucleus location, based on the locations 

of other neuroanatomical landmarks, such as the anterior commissures (AC) and posterior 

commissures (PC) seen in the patient’s T1w MRI or ventriculography. For better targeting 

quality, many groups (Acar et al., 2007; Guehl et al., 2007; Lanotte et al., 2002; McClelland et 

al., 2005) promoted using the mid-point of the AC-PC line, or the middle commissure (MC) 

point as the reference landmark instead of the AC and PC points. The relative spatial relationship 

between the STN and the landmarks is often derived from brain atlases such as the Talairach 

(Talairach and Tournoux, 1988) or Schaltenbrand (Schaltenbrand and Wahren, 1977) atlases. 

Since both of these atlases have shorter AC-PC lines, some groups infer the location of the STN 

by scaling the atlas to align the AC and PC points (Guehl et al., 2007; Nowinski et al., 2004). 

During surgery, the precise stimulation site is refined with physiological micro-electrode 

recording (MER), which may require creating multiple parallel electrode insertion trajectories. 

Evidently, an accurate pre-surgical plan is instrumental to reduce the number of re-insertions, 

and thus reduce the surgical time and risks. Although such indirect inference can be helpful in 

identifying the STN, which, together with substantia nigra (SN) and red nucleus (RN), are not 

readily visible on standard clinical T1w MRIs, the assumption that their sizes and locations with 

respect to brain landmarks stay fairly fixed may not hold across different individuals. This can be 

particularly true for patients with advanced PD, which may introduce further global and local 

morphological changes to the brain (Camicioli et al., 2003; Hutchinson and Raff, 2000; Nagano-

Saito et al., 2005) in addition to normal aging (den Dunnen and Staal, 2005; Keuken et al., 2013; 

Kitajima et al., 2008; Murphy et al., 1992; Scahill et al., 2003). An evaluation of the assumption 

for indirect localization, with an analysis of the size and location variability for these nuclei in 



comparison to the standard atlases (Schaltenbrand and Wahren, 1977; Talairach and Tournoux, 

1988) will likely facilitate the surgical planning for STN DBS. 

 With the help of chemical stains, histology data have been the gold standard for neuro-

anatomy definition, and previously anatomical variability studies have been conducted using 

post-mortem brains (Den Dunne and Staal, 2005; Massey et al., 2012). It is true that with high 

resolution and visual aid of chemical stains, the anatomical knowledge obtained from histology 

data is undoubtedly valuable. However, three reasons still justify the need of anatomical 

variability studies based on MRI of in vivo brains. First, due to the availability of funds and brain 

donors, histology-based studies often cannot include a big number of subjects, and a larger 

sample size can potentially provide more reliable results. Second, the brain is susceptible to 

texture changes and deformation due to external force, tissue preservation methods, and 

environmental changes (i.e. temperature, humidity, pressure). Once the brain is extracted from 

the skull, the morphometric properties of the brain structures may alter, and the measurement 

will be different from the situation when the subject is alive. Third, often dissection of the brain 

can only be performed in one principle direction. This limits the accuracy of 3D analysis of the 

nuclei of the same subject, unlike the MR images. Therefore, as MRI is still the chief method for 

pre-surgical planning, morphometric variability analysis of the midbrain nuclei using MRI is still 

important for the clinical consideration.  

 To date, a few previous endeavors (Ashkan et al., 2007; Daniluk et al, 2010; Patel et al., 

2008; Richter et al., 2004; Zhu et al., 2002) have reported the size and location variability with 

respect to the standard atlases for the STN by using 1.5 T T2w MRI with a 2 or 3 mm axial-slice 

thickness and manual structural contour identification. However, for a small nucleus like the 

STN as well as for the commissure points, the partial volume effects associated with a 2 or 3 mm 

slice thickness may make accurate delineation of STN boundaries challenging. The later 3T or 

higher-field MRI scanners that allow better image contrast, signal-to-noise-ration (SNR) and 

resolution can be better suited for the task. Although some (Forstmann et al., 2012; Keuken et al., 

2013; Kitajima et al., 2008; Massey et al., 2012) have attempted the variability analysis with high-

field MRI, the selections of stereotactic space as well as landmarks often differ from the clinical 

practice, and furthermore, there is a lack of pathological patient data.  

 In this article, we investigate the morphometric variability of the STN and the 

neighboring SN and RN that are directly visualized by 3T T2w MR images (1 mm isotropic 



resolution), and compare the results within the Talairach AC-PC based coordinate system. 

Instead of 2D manual contour identification (Ashkan et al., 2007; Daniluk et al, 2010; Richter et 

al., 2004; Zhu et al., 2002), we employed an automatic majority-voting label-fusion 

segmentation technique (Aljabar et al., 2009; Heckemann et al., 2006; Rohlfing et al., 2004; 

Rohlfing and Maurer, 2007) to identify the nuclei in 3D. Besides measuring the nuclei’s relative 

locations with respect to the commissure points as commonly practiced in DBS pre-surgical 

planning, we performed principal-component analysis (PCA) to obtain more in-depth and 

intuitive perspectives of their morphometric variability. Finally, the computed principal 

components were correlated with patients’ clinical information to explore the possible link 

between the morphometric variability and disease progression. 

 

Methods and Materials 
 
Patients and MRI protocols 
 
For the analysis, 33 PD patients (19 male & 14 female, age = 61±8 yo) that received DBS 

procedures at the CHU Rennes (France) were scanned before surgery with a Philips Achieva 3T 

MRI scanner for both T1w MRIs (TR = 8.4 ms, TE = 3.7 ms, flip angle = 8°, acquisition matrix 

= 240×240, 160 axial slices, 1 mm3 isotropic resolution) and turbo spin echo T2w MRIs (TR = 

3035 ms, TE = 80 ms, flip angle = 90°, acquisition matrix = 256×256, 36 coronal slices, 1 mm3 

isotropic resolution). While the T1w MRI covers the entire head, the T2w MRI only images a 

coronal slab of the brain that contains the relevant nuclei. In Fig.1, coronal and sagittal slices of 

the T1w and T2w MR images, which cut through the RN and SN, are shown for a PD patient. 

The pre-surgical unified Parkinson’s disease scale (UPDRS) III scores were evaluated as 

8.35±5.37 and 30.89±14.35 (information missing for six patients) for with and without 

medication (on-Dopa and off-Dopa), respectively. All patients gave informed consent and the 

project was approved by the local research ethics board.  

 

Figure 1 goes here 

  

 
 
 



Automatic segmentation  
 
In earlier investigations (Ashkan et al., 2007; Daniluk et al, 2010; Richter et al., 2004), structure 

identification was conducted with manual contour drawing or landmark picking (e.g. selecting 

the most anterior point of a structure) in the axial slices, and no volumetric segmentation or 

evaluation was involved. Manual segmentation can be good to identify structures, but automatic 

segmentation can provide more consistent results against inter- and intra-rater segmentation 

quality incoherence while saving both labor and time. Previously, automatic segmentation 

techniques have contributed to morphometric studies relating to neurological diseases and brain 

development (Hu et al., 2013; Morra et al., 2009). Among the proposed methods, label-fusion 

techniques have gained the popularity with the robust performance in identifying structures that 

are typically difficult to segment solely by image intensity features. In this paper, we employed 

the majority-voting label-fusion method (Aljabar et al., 2009; Heckemann et al., 2006; Rohlfing 

et al., 2004; Rohlfing and Maurer, 2007) to segment the RN, SN and STN. Before segmentation, 

the T1w and T2w images were pre-processed for all patients. All images were first denoised by 

the non-local mean filter technique proposed by Coupe et al. (2008), and then corrected for field 

inhomogeneity (Sled et al., 1998). Each patient’s T1w and T2w MRIs were rigidly co-registered 

using a normalized mutual information objective function (Studholme et al., 1999). The essence 

of label-fusion is to deform multiple atlases (segmented labels and MRI volumes) to the target 

subject’s anatomy and determine the final segmentation based on the consensus of all 

customized atlases in order to mitigate imperfect registration and label interpolation in the single 

atlas deformation. In this project, 10 out of the total of 33 subjects were selected to form the 

label-fusion atlas library, where each subject’s brain was brought to the MNI305 space by a 9-

parameter linear registration. Then, the SN, RN and STN were segmented manually in the 

stereotactic space for both hemispheres with ITK-SNAP (http://www.itksnap.org) by an 

experienced neurosurgeon (CH). To further enrich the library, left-right mirrored versions of 

these atlases were also included, effectively doubling the original library size.  

 For each subject to be segmented, the library atlases were first registered to the target 

patient’s anatomy with a global affine registration using T1w MRI, and then deformed through 

local T2-T2 nonlinear registration with SyN (Avants et al., 2008) in the central region of the 

brain. Here, instead of using the conventional nearest-neighborhood interpolation, we used tri-

linear interpolation to deform the labels. This adds certain level of fuzziness to the atlases. The 



procedure is repeated for all 20 atlases in the template library. A demonstration of the label 

fusion procedure is shown in Fig. 2.   

 To obtain the final segmentation at each voxel location in the patient’s image, the 

structural label with the maximum counts determined voxel’s label (i.e. a simple voting scheme). 

Some subjects from the cohort of 33 patients formed the atlas library. In these cases, the label-

fusion was performed in a leave-one-out manner, where the effective library would exclude the 

subject to be segmented.  

 

Figure 2 goes here 

 

Validation of automatic segmentation 
 
The label-fusion automatic segmentation method for delineating the RN, SN and STN is 

validated in a leave-one-out manner using the 10 patients’ MRIs, which formed the atlas library. 

To avoid resampling errors and ensure the quality of comparison, the RN, SN and STN were 

automatically segmented in the stereotactic space (MNI305), where manual segmentations were 

performed. The comparison between the automatic and manual segmentation was performed 

with three metrics: 1) Dice overlapping coefficient, or kappa=2*a/(b+c) where a is the 

intersection of two segmentations, and b and c are volumes of each segmentation; 2) 95% 

Hausdorff distance, and 3) the Euclidean distance between the centers of mass (COM) of the 

manual and automatic segmentations.  

 

Coordinate spaces  
 

Any variability estimated will depend on the choice of coordinate space. Hence, selecting a 

coordinate space is important for understanding the anatomical variability and its potential link 

to other factors, such as the clinical information. In stereotactic neurosurgeries, the commissure 

points were frequently employed as the landmarks to infer the location of the subcortical 

structures, and thus these landmarks are natural choices to define a coordinate space to evaluate 

variability. To verify the spatial relationship and size differences between the nuclei and the 

Talairach atlas, which is often employed in the conventional DBS planning, we analyzed the 

variability in two different AC-PC aligned spaces. For both spaces, AC and PC points were 



manually identified for each subject, and the brain was re-oriented in the same manner as 

specified in the Talairach atlas (Talairach and Tournoux, 1988). That is to say that the superior 

edge of AC and the inferior edge of PC were aligned at the centerline of the same axial plane, 

perpendicular to the mid-sagittal plane of the subject’s brain.  

 For the first space, the brain re-orientation employed a rigid transformation. For the 

second space, in addition to the rigid transformation, all brains were scaled uniformly in three 

dimensions so that all AC-PC distances were normalized to be 23 mm as measured in the 

Talairach atlas (Talairach and Tournoux, 1988), and the AC-PC lines were aligned at exactly the 

same location for all patients. To avoid confusion, here we refer to the first and second space as 

the “AC-PC native space” and “AC-PC normalized space”, respectively. Automatic 

segmentations were performed for each patient in these two spaces separately. Although we 

mainly employed the “AC-PC normalized space” to analyze the position and size variability, it is 

still important to acquire the nuclei sizes in the “AC-PC native space” in the absence of the 

scaling factor for comparison. Therefore, both of them were necessary for this study.  

 

Distance-based variability analysis 
 

As used in many clinical papers (Ashkan et al., 2007; Daniluk et al., 2010; Richter et al., 2004), 

measuring Euclidean distances between points within the structure of interest and other 

anatomical landmarks is a straightforward approach to explore the anatomical variability in terms 

of both position and size. For both coordinate spaces, we measured nuclei sizes in term of 

volume (in mm3) as well as the extents of their 3D dimensions defined by the smallest 

rectangular box that contains the nucleus. The position variability of the nuclei was explored 

only in the “AC-PC normalized space”. Because in DBS planning, the position of the STN is 

often inferred from the MC point, we measured the relative position between the center of mass 

(COM) of the nuclei and the geometric center of the “bounding box” to the MC point. The 

measurements were compared against the Talairach atlas (Talairach and Tournoux, 1988), and 

the comparison was studied with one-sided paired t-tests.  

 

 

 



PCA-based variability analysis 
 
Although the distance measurements offer quantitative comparison between subjects and 

standard atlases, the interpretation is less intuitive for 3D volumes. Alternatively, more detailed 

and intuitive morphometric variability analysis for the nuclei can be achieved using PCA, which 

is able to isolate shape variations that are independent in a high-dimensional space and offers the 

possibility to rank them according to their level of contribution to the overall variability. To 

bridge the volumetric segmentation and PCA, we employed the concept of a level-set (Osher and 

Sethian, 1988). Thus, for each structure, a signed distance transformation function (negative 

inside, positive outside and zero at the boundary) is computed. An example of the distance 

transformation is demonstrated for the left red nucleus with a coronal view in Fig. 3.  

 Therefore, for a dataset of N patients, the distance transform function of patient i and 

structure L is denoted as , where i = {1,2, .., N} and L = {Left RN, Right RN, Left STN, 

Right STN, Left SN, Right SN}. Given the average level set function , 

eigenvalues  and the corresponding orthonormal eigenvectors (or principal 

components)  are found for the matrix , where 

 and . This is achieved by decomposing K so that 

 with  being the diagonal matrix containing the eigenvalues and U being the 

orthonormal matrix that has the corresponding eigenvectors. Note that here, the eigenvectors 

 are arranged in the descending order.    

 Given a shape ψL, it can be represented as a linear combination of PCA components, as  

 
where  is the mean level-set function,  is the principal components, and  

is the reconstruction coefficient of . By changing the principal components and their 

associated reconstruction coefficients, different variants of the structural shapes can be obtained. 

Two perspectives were explored with PCA in the “AC-PC normalized space”. Firstly, the 

specific variation type with respect to each principal component (or variation mode in the context 

of shape analysis) was examined. This is achieved by acquiring the level set function 

, which represents the positive (and negative) 3-fold standard deviation for the 

shape variation of the jth variation mode . The specific type of shape variation is visually 



identified from comparing the binary shapes obtained by thresholding the level-set function 

 and  with the value of 0.8. Secondly, the relationship between 

the variation modes (in the form of level-set) and the disease progression was experimentally 

explored. Here, the Pearson correlation between the reconstruction coefficient  of the jth 

variation mode  and the UPDRS-III scores while controlling for sex and age was computed 

for each structure under study, and the results with statistical significance (p<0.05) were 

reported.   

 

Figure 3 goes here 

 
 
Results 
 
Automatic segmentation and validation 
 
The automatic segmentations for the SN, RN and STN for one patient registered to the MNI305 

space are demonstrated in Fig. 4, along with the manual segmentations in the corresponding 

views.   

 
Figure 4 goes here 

 
 
The segmentation validation results are shown in Fig. 5 for all three evaluation metrics as 

boxplots with the mean values and standard deviations in the same graphs. 

 
Figure 5 goes here 

 
 
Distance-based variability analysis  
 
The AC-PC distance is an important measurement for the application of Talairach atlas. In the 

“AC-PC native space”, the AC-PC distance (mean ± standard deviation) is measured at 24.18 ± 

1.81 mm with a range of 21.52 to 28.32 mm. In the Talairach atlas, the AC-PC distance is 23 

mm, which is at the 27% percentile of the cohort under study.  

 With a fairly large variability in the AC-PC distance, fitting of the atlas often employs the 

process of scaling the AC-PC line so that the commissures will overlap those of the patient. In 



this context, variability was examined in the “AC-PC normalized space”. In general, two main 

factors are often investigated for the anatomical variability, size and position. With regard to the 

nucleus size, we first took the measurement in terms of the medio-lateral (M-L), antero-posterior 

(A-P), and supero-inferior (S-I) dimensions of a smallest rectangular bounding box that 

completely contains the nucleus. The 3D dimensions of the bounding boxes were measured in 

both “AC-PC native space” and “AC-PC normalized space”. To take advantage of the volumetric 

segmentation, we also measured the volume of the nuclei in mm3. Unfortunately, it was not 

possible to compare this value to a corresponding metric from the Talairach atlas. Both of the 

size measurements are detailed in Table I, along with the corresponding available metrics 

obtained from the Talairach atlas.  

 

Table I goes here 

 
 
 From Table I, it is shown that the mean nuclei sizes are smaller in the “AC-PC 

normalized space” than the “AC-PC native space” due to the AC-PC distance normalization.  

However, except the supero-inferior and antero-posterior dimensions of the STN, the STN sizes 

measured from the Talairach atlas are on average larger than the cohort in both coordinate 

spaces. Through paired t-tests, except the A-P dimensions of the left and right RN in the “AC-PC 

normalized space”, the M-L dimension of the left and right STN in the “AC-PC native space”, 

and the A-P dimension of the right SN in the “AC-PC native space”, the 3D extents of the nuclei 

are significantly different from the Talairach atlas.  

     The second main factor of anatomical variability is position. To study the position 

variability, the analysis was only conducted in “AC-PC normalized space”. Since in DBS 

planning, the MC point is often used to infer the location of the STN, the distances between the 

nuclei’s center of mass (COM) and the MC point in the M-L, A-P and S-I directions are reported 

in Table II. Here, we see that on average, the left STN is 10.08 mm lateral, 0.94 mm posterior, 

and 5.00 mm inferior to the MC point while the right STN is 10.18 mm lateral, 0.71 mm 

posterior, and 5.06 mm inferior to the MC point. However, the center of the STN is 12 mm 

lateral, 2 mm posterior, and 4 mm inferior to the MC point on the Talairach atlas (Ashkan et al., 

2007). Our measurements do not correspond with those from the standard atlas, and the average 

STN position is more medial, more anterior, and more inferior to that in the Talairach atlas. 



While the previous report (Richter et al., 2004) also attempts to utilize the COM to measure the 

relative distances between the nuclei and the MC point, it is possible that this disagreement may 

be due to the fact that the COM of the nucleus is difficult to estimate on the 2D atlas. For the 

same reason, our measurements of the other nuclei locations in terms of the COM relative to the 

MC point were not compared with the atlas. Instead, we measured the location for geometric 

center of the “bounding box” of each nucleus relative to the MC point, which is more easily 

quantified objectively. From Table III, it is demonstrated that such definition for the position of 

the STN is again significantly different (p<0.05) between the cohort and the Talairach atlas. 

Also, the positions of the right RN posterior and lateral to the MC, that of the left and right RN 

inferior to the MC, and that of the SN lateral and posterior to the MC are also significantly 

different from the Talairach atlas (Talairach and Tournoux, 1988).  

 
Table II goes here 

 
Table III goes here 

 
 
 
PCA-based variability analysis 
 
The experiments above give an idea of the positions and extents of the STN, RN and SN, but 

don’t give any insight into how the shapes of these structures vary in the PD population. To 

address this limitation, PCA analysis was performed in “AC-PC normalized space” for each 

structure with the left and right side analyzed separately. The PCA analysis decomposes the 

anatomical variability into ranked variation modes, and thus allows a more intuitive view on the 

nature of the variability. For all structures of interest, the first 5 and the first 10 components 

account for 95-98% and roughly 99% of the total variability, respectively. The eigenvalues of the 

first 10 components for all structures are illustrated as bar plots in Fig. 6.  

 Through investigating the ordered eigenvalues of the structures using paired t-tests, the 

eigenvalues of the RN are significantly lower (p<0.05) than those of the SN and STN on the 

respective side. This implies that in terms of variability, the RN is less variable than the SN and 

STN. To demonstrate the variation modes, the first 6 most prominent shape variations for all 

structures are shown from Fig. 7 to Fig. 9, with the degree of 3 folds of standard deviation 

(negative and positive) from the mean shape. Through the evolution between the two extreme 



shape variations (negative and positive deviations) for each mode, we can identify the specific 

type of shape variation that is represented by a mode. In the same figures, the mean shapes are 

overlaid on the average of all 33 AC-PC normalized T2w MRIs, and they, not surprisingly, fit 

the averaged T2w MRI after AC-PC normalization. However, owing to the structural variability 

remaining after the linear AC-PC scaling alignment, the nuclei in the averaged T2w MRI appear 

blurry.  

 In general, for each structure, the first 3 shape variations are mostly related to the spatial 

displacements while the later principal components account for relatively more subtle global and 

local shape variations. More specifically, for the RN, the A-P position displacement appears 

most significant, and the M-L and S-I displacements are secondary. It is interesting that for the 

RN, the second and third mode appears very similar in nature, but the direction of the 

displacement in space varies. For the SN and STN, a mix of A-P and S-I position difference is 

the most dominant. However, for the SN, the importance of S-I and M-L displacements come in 

the second and third while for the STN, after the first mode, the contribution of the M-L 

displacement is more than the S-I displacement. Overall, within the principal component 

representation of the position variability, the variability often involves displacements in three 

principal directions (medio-lateral, infero-superior, and antero-posterior), but a prevailing trend 

in one or two directions can still be easily identified.  

 An additional observation is that while on average the variation modes appear similar 

between the left and right side, the symmetry does not hold all the time. Example of this 

phenomenon can be seen when comparing bilaterally the third modes of the SN and STN, as well 

as in the later principal component representations. Despite the symmetry assumption in many 

atlases, it is not surprising to discover asymmetric anatomical variability in these nuclei as in 

many other structures in the human brain.  

 
 

Figure 6 goes here 
 

Figure 7 goes here 
 

Figure 8 goes here 
 

Figure 9 goes here 
 



 
 
Correlation  
 
To explore the influence of the disease over the variations revealed by PCA analysis, we 

computed the Pearson correlation between the reconstruction coefficients for each variation 

mode and the clinical information (on-Dopa and off-Dopa UPDRS III) of the patients while 

controlling for age and sex. The partial correlations with a significant level (p<0.05) are shown 

in Table IV. It is mentioned earlier that for all structure of interest, the first 10 variation modes 

account for about 99% of the observed variation. Therefore, to avoid noise that may mislead the 

interpretation, the correlations are only listed for the relevant first 10 variation modes in Table 

IV. The variation modes showing significant correlations are different between the case of on- 

and off-Dopa UPDRS III scores, and furthermore, the examination results are not symmetric 

between the left and right side. More specifically, as the on-Dopa UPDRS III score increases, the 

positions of the right RN (Mode 3), right STN (Mode 2), and right SN (Mode 3) become more 

lateral, and the superior portion of the right RN is reduced (Mode 4). As of the off-Dopa UPDRS 

III scores, with higher scores, the right STN is more infero-posterior (Mode 1), the left STN size 

is smaller (Mode 7), and the right RN is more posterior (Mode 1).  

 

Table IV goes here 

 
Discussion 
 
Label fusion 
 
For the purpose of nuclei segmentation, we employed the majority-voting label-fusion 

techniques despite that a number of more recent and sophisticated label-fusion techniques 

(Artaechevarria et al., 2009; Chen et al., 2012; Isgum et al., 2009; Coupe et al., 2011; Wang et 

al., 2011; Wang et al., 2013; Warfield et al., 2004) have demonstrated superior performance by 

exploring statistical behaviors of the images and atlases. Two reasons contribute to our selection 

of segmentation method. Firstly, the relatively simple majority-voting segmentation has shown 

robust performance (Aljabar et al., 2009; Collins and Pruessner, 2010; Heckemann et al., 2006; 

Rohlfing et al., 2004; Rohlfing and Maurer, 2007). Secondly, a complete comparison of these 



new methods is not available, and the performance of the more sophisticated segmentation 

techniques depends on the successful re-implementation. It is true that majority-voting label-

fusion techniques have never been used in segmenting midbrain nuclei. However, a comparison 

of different algorithms is out of the scope of this paper, and thus we will not include it here. By 

visual inspection, the selected segmentation method demonstrates satisfactory results according 

to the manual segmentation protocols adopted by the neurosurgeon who labeled the relevant 

structures for the atlas library. From quantitative validation, we have achieved fairly satisfactory 

results for such small structures, compared with previous publications in terms of kappa 

(Haegelen et al., 2012) and the Euclidean distance between COMs (Brunenberg et al., 2011). In 

this study, to further ensure the segmentation accuracy, T2-T2 nonlinear registration was used 

instead of the more common T1-T1 registration seen in DBS applications.   

 
Stereotactic spaces 
 
The selection of coordinate space may determine the final results of the morphological study. 

With different coordinate space and volume normalization strategy, the analysis results can vary. 

While both are employed in DBS planning, the Schaltenbrand atlas (Schaltenbrand and Wahren, 

1977) is more commonly seen in the previous studies of midbrain nuclei anatomical variability 

(Ashkan et al., 2007; Castro et al., 2006; Daniluk et al., 2010; Richter et al., 2004) than the 

Talairach atlas (Talairach and Tournoux, 1988). However, we referred to the latter for our 

analysis. In contrast to the Talairach atlas, which only contains one healthy aged female subject 

without Parkinson’s disease, the Schaltenbrand atlas was created with different subjects for 

different sections. To obtain more consistent dimension measurements, the Talairach atlas may 

be a better choice. Furthermore, the definitions of AC-PC line and thus the MC point in these 

two atlases differ (Weiss et al., 2003), making it difficult to simultaneously compare the two 

atlases to the measurements of the cohort in the same coordinate space. Besides the histology-

derived stereotactic spaces, there also exist MRI-derived stereotactic spaces, such as the 

ICBM152 (Fonov et al., 2011) and MNI305 spaces (Collins et al., 1994). These newer 

stereotactic spaces resemble the brain orientation of the Talairach space, and the stereotactic 

space re-alignment for any upcoming subject is achieved fully automatically. Variability analysis 

(Forstmann et al., 2012) has also been previously conducted using such stereotactic space. Yet, 

often due to the availability of the software and the long history of successful applications in 



neurological studies, the histology-derived atlases (Schaltenbrand and Wahren, 1977; Talairach 

and Tournoux, 1988) are still more commonly employed.   

 
Morphometric variability 
 
While the T2w MRI is still the most common way to image the midbrain nuclei in the clinics, as 

the medical imaging technology advances, there have been a number of MRI methods 

(Brunenberg et al., 2011; O’Gorman et al., 2011; Xiao et al., 2012) designed to directly visualize 

the STN. Consequently, this raised the debate of whether direct targeting using these MRI 

methods is superior to the classical landmark-based indirect targeting method. On one hand, 

some studies (Richter et al., 2004; Zhu et al., 2002) support the use of direct visualization; on the 

other hand, a number of studies (Acar et al., 2007; Guehl et al., 2007; Lanotte et al., 2002; 

McClelland et al., 2005) have reported successful application of indirect targeting. As a result, an 

investigation is still necessary, especially with better imaging methods and high field scanners 

becoming increasingly available.  

 Similar to a previous study (Richter et al., 2004), the measured STN size is smaller than 

that of the Talairach atlas (Talairach and Tournoux, 1988) in the M-L dimension, but larger in 

the I-S and A-P dimensions. While Richter et al. (2004) reported that the position of the STN is 

more posterior and lateral on the images than the Talairach atlas, our study shows that the STN is 

more anterior, lateral and inferior to the atlas. Unfortunately, most previous studies only focused 

on the analysis of the STN, and their AC-PC line alignment may differ from the method 

described in this article, especially when using the Schaltenbrand atlas (Schaltenbrand and 

Wahren, 1977) as the reference. It is difficult to compare our results, and especially those of the 

RN and SN, to previous publications. Nevertheless, the additional measurements of the RN and 

SN, and the comparison to the Talairach atlas with a larger population than in (Richter et al., 

2004) provide valuable complementary knowledge to the application of atlases.   

 As far as the cohort is concerned, the Talairach atlas (Talairach and Tournoux, 1988) 

does not match our measurements. One possible reason for the disagreement is that the subject 

for atlasing lacks of sufficient representativeness of the population under study (i.e. PD). This is 

a universal issue for all single-subject derived atlases. In this sense, unbiased anatomical atlases 

(Fonov et al., 2011; Haegelen et al., 2012) that represent the averaged anatomical features of the 

population of interest (i.e. advanced PD patients) may be more desirable as both aging and 



disease progression may alter the anatomy due to global and local tissue degeneration and 

atrophy. Whether targeting the STN with such unbiased atlas is superior than direct visualization 

will require further evaluation beyond the scope of this paper. At the moment, the evidence 

presented here supports the use of direct targeting method over the landmark-based indirect 

targeting based on the Talairach atlas. 

 Another issue related to the analysis is image distortion. For the image protocols 

involved, a distortion study was conducted using a LEGO phantom, and the procedure is detailed 

in (Caramanos et al., 2010). Through the analysis, an average distortion below 0.5 mm was 

measured within the field of view for both T1w and T2w MRI protocols presented. For the 

central region, where our analysis was conducted, the distortion is close to 0.2 mm. Compared 

with the magnitude of our measurements, this will not likely influence our final conclusion that 

the metrics obtained from the cohort differ from the Talairach atlas.          

 In this study, PCA offers a new perspective on the issue of anatomical variability of the 

midbrain nuclei compared with the conventional coordinate analysis. When correlated with 

clinical information (UPDRS III scores), one can identify specific types of shape variation that 

are possibly related to the disease progression. In addition, the intuitive nature of the analysis 

results allows visual identification of the subtle morphometric changes possibly due to disease 

progression. With the help of PCA, we discovered the lateral displacement of the nuclei with 

disease progression on the right side likely due to the enlargement of the third ventricle (Daniluk 

et al., 2010), but the asymmetry of this discovery requires further investigation. The off-Dopa 

UPDRS III scores were only shown to be related the STN with size reduction on the left side and 

position alteration on the right side. The difference between the on- and off-Dopa results is very 

likely due to the interplay between the structure changes and the influence of external dopamine 

supply. It should also be noted that the morphometric alterations of the nucleus for PD should be 

a result of shape changes of both the nucleus itself and the surrounding structures (i.e. ventricle 

enlargement and brain atrophy). The PCA analysis may offer a potential method for disease 

prediction of Parkinson’s disease. However, to better understand and further confirm this 

correlation, a larger patient population is required. For this study, only the motor-function-related 

UPDRS III scores were used because among all the UPDRS assessment sub-scores, this metric is 

obtained most objectively by the neurologist while the rest were self-evaluated by the patients, 



and the motor function disability is more prominent than other cognitive and psychological 

symptoms for PD. 

 
Conclusion 
 
In conclusion, we analyzed the sizes and positions of the STN and the adjacent RN and SN by 

using label-fusion techniques to automatically segment structures from high resolution 3 Tesla 

FSE T2w MRI. From the analysis, significant differences were discovered between the studied 

cohort and the Talairach atlas, and the discovery supports the use of MRI-based direct targeting 

method for locating the SN, RN and STN. In addition to conventional coordinate measurement, 

we employed PCA analysis to obtain more intuitive and detailed information regarding the 

morphometric variability of the nuclei, and correlations between the PCA components and 

UPDRS III scores were found.  
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Figure legends 
 

Figure 1. Example of T1w and T2w MRI images from one Parkinson’s disease patient in the 

study. From left to right: A. a coronal slice of T1w MRI cutting through the region of the red 

nucleus and substantia nigra; B. a sagittal slice of T1w MRI cutting through the region of the red 

nucleus and substantia nigra; C. a coronal slice of T2w MRI corresponding to A; and D. a 

sagittal section of the T2w MRI corresponding to B. Note that the T2w acquisition does not 

cover the entire brain. 

 

Figure 2. Demonstration of majority-voting label-fusion procedure for a Parkinson’s disease 

patient, whose brain MRIs are in the “AC-PC normalized space”.  

 

Figure 3. Structural segmentation and distance transformation. A. segmentation of the left red 

nucleus overlaid on the coronal slice of the T2w MRI; B. distance transformation of the left red 

nucleus label with the color map shown on the right.    

 

Figure 4. Demonstration of automatic segmentation results with one PD subject in MNI305 

space. First column (from top to bottom): T2w MRI slices of the subject in axial, sagittal and 

coronal views; Second column: automatic segmentation results in the corresponding view of the 

first column; Third column: manual segmentation results in the corresponding view of the first 

column; Fourth column: 3D volumetric rendering of manual and automatic segmentation. Here 

the label colors are shown as: green = left STN, yellow = right STN, red = left SN, white = right 

SN, purple = left RN, and blue = right RN.  

 

Figure 5. Results of automatic segmentation validation as boxplots. From top to bottom: kappa 

overlapping coefficient, Euclidean distance between center of mass (COM), and 95% Hausdorff 

distance. The value of mean ± standard deviation for each result is shown beside the 

corresponding boxplot. 

 

Figure 6. Bar plot showing the eigenvalues of the first 10 principal components from the PCA 

analysis of each nucleus. 



 

 

Figure 7. PCA analysis results for the left (top three rows) and right (bottom three rows) RN 

showing effects of the first 6 variation modes and the mean shape overlaid on an average of AC-

PC normalized T2w MRIs. For each variation mode shown, the cyan color label represents mean 

shape minus 3 folds of standard deviation while the red color label represents mean shape plus 3 

folds of standard deviation. Note that in each group of figures demonstrating the left or right RN, 

the cross-hair cursor is placed at the same position, and the three rows show the axial, sagittal, 

and coronal views (from top to bottom) of the nucleus.  

 
Figure 8. PCA analysis results for the left (top three rows) and right (bottom three rows) SN 

showing effects of the first 6 variation modes and the mean shape overlaid on an average of AC-

PC normalized T2w MRIs. For each variation mode shown, the cyan color label represents mean 

shape minus 3 folds of standard deviation while the red color label represents mean shape plus 3 

folds of standard deviation. Note that in each group of figures demonstrating the left or right SN, 

the cross-hair cursor is placed at the same position, and the three rows show the axial, sagittal, 

and coronal views (from top to bottom) of the nucleus. 

 
Figure 9. PCA analysis results for the left (top three rows) and right (bottom three rows) STN 

showing effects of the first 6 variation modes and the mean shape overlaid on an average of AC-

PC normalized T2w MRIs. For each variation mode shown, the cyan color label represents mean 

shape minus 3 folds of standard deviation while the red color label represents mean shape plus 3 

folds of standard deviation. Note that in each group of figures demonstrating the left or right 

STN, the cross-hair cursor is placed at the same position, and the three rows show the axial, 

sagittal, and coronal views (from top to bottom) of the nucleus. 

 

 

 

 

 

 



 

 

Table legends 
 
Table I. Measurements of nuclei sizes as maximum extents in the medio-lateral, antero-

posterior, supero-inferior dimensions, as well as the nuclei volumes measured in mm3. Note that 

each value is shown as mean ± standard deviation. Here, the measurements in “AC-PC native 

space” are shown in black fonts while those in “AC-PC normalized space” are shown in italic 

fonts with underlines. The measurements from the Talairach atlas are listed in the parentheses.  

 

Table II. Measured distances (mean± standard deviation) between the COM of the nuclei and 

the middle commissure point in the left-right, anterior-posterior, and superior-inferior directions.  

 

Table III. Measured distances (mean± standard deviation) between the geometry centers of the 

nuclei and the middle commissure point in the left-right, anterior-posterior, and superior-inferior 

directions. An asterisk (“*”) indicates that the measurements disagree with those from the 

Talairach atlas with statistical significance (p<0.05).   

 

Table IV. Table of variation modes that have statistically significant (p<0.05) correlations with 

on- and off-Dopa UPDRS III scores. Note that the value of correlation is shown inside the 

parenthesis after the respective variation mode number. Here only the first 10 variation modes 

are shown in the table.   
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Nucleus Medio-lateral (mm) Antero-posterior (mm) Supero-inferior (mm) Size (mm3)

Left RN 6.91 ± 0.77 (7.5) 8.30 ± 0.73 (8.0) 6.79 ± 0.65 (8.5) 203.36 ± 25.75Left RN
6.53 ± 0.53 (7.5) 8.00 ± 0.56 (8.0) 6.53 ± 0.72 (8.5) 176.94 ± 32.13

Right RN 6.88 ± 0.65 (7.5) 8.24 ± 0.61 (8.0) 6.79 ± 0.60 (8.5) 203.45 ± 26.18Right RN
6.62 ± 0.60 (7.5) 8.03 ± 0.62 (8.0) 6.47 ± 0.61 (8.5) 177.05 ± 31.54

Left STN 9.00 ± 0.87 (9.0) 9.70 ± 0.73 (8.5) 6.82 ± 0.85 (5.5) 156.36 ± 20.66Left STN
8.68 ± 0.82 (9.0) 9.52 ± 0.87 (8.5) 6.44 ± 0.75 (5.5) 136.52 ± 26.23

Right STN 9.09 ± 0.88 (9.0) 9.55 ± 0.75 (8.5) 6.64 ± 0.74 (5.5) 155.73 ± 21.72Right STN
8.67 ± 0.75 (9.0) 9.20 ± 0.70 (8.5) 6.35 ± 0.74 (5.5) 135.68 ± 29.32

Left SN 10.85 ± 0.94 (12.0) 12.73 ± 0.84 (13.0) 8.09 ± 0.98 (9.5) 285.33 ± 32.68Left SN
10.42 ± 0.94 (12.0) 12.44 ± 0.99 (13.0) 7.85 ± 0.96 (9.5) 250.36 ± 46.00

Right SN 10.88 ± 1.17 (12.0) 12.76 ± 0.87 (13.0) 8.21 ± 0.78 (9.5) 285.52 ± 32.21Right SN
10.32 ± 0.96 (12.0) 12.52 ± 0.89 (13.0) 7.94 ± 1.00 (9.5) 248.57 ± 46.27

Table I - new

Nucleus Lateral to MC (mm) Posterior to MC (mm) Inferior to MC (mm)

Left RN 4.88 ± 0.51 7.38 ± 1.05 4.90 ± 0.75

Right RN 4.93 ± 0.53 7.24 ± 0.94 4.86 ± 0.77

Left STN 10.08 ± 1.04 0.94 ± 1.02 5.00 ± 0.89

Right STN 10.18 ± 1.00 0.71 ± 0.94 5.06 ± 0.93

Left SN 8.89 ± 0.87 4.90 ± 1.29 8.48 ± 1.00

Right SN 8.91 ± 0.79 4.86 ± 1.15 8.46 ± 1.10

Table II -new



Nucleus Lateral to MC (mm) Posterior to MC (mm) Inferior to MC (mm)

Left RN 4.85 ± 0.51 (4.75) 7.30 ± 1.09 (7.5) 4.95 ± 0.78 (5.25)*

Right RN 4.92 ± 0.55 (4.75)* 7.17 ± 0.92 (7.5)* 4.92 ± 0.77 (5.25)*

Left STN 9.80 ± 1.01 (9.50) 2.14 ± 1.10 (1.25)* 4.97 ± 1.01 (3.75)*

Right STN 9.83 ± 0.96 (9.50)* 1.96 ± 1.05 (1.25)* 4.97 ± 0.92 (3.75)*

Left SN 9.16 ± 0.89 (9.00) 4.83 ± 1.36 (6.00)* 7.57 ± 0.88 (8.25)*

Right SN 9.12 ± 0.79 (9.00) 4.70 ± 1.29 (6.00)* 7.67 ± 1.03 (8.25)*

Table III –new

Nucleus On-Dopa UPDRS IIIOn-Dopa UPDRS III Off-Dopa UPDRS IIIOff-Dopa UPDRS III
Left RN

Right RN Mode 3 (0.35) Mode 4 (0.55) Mode 1 (0.34)Mode 1 (0.34)

Left STN Mode 7 (0.45)Mode 7 (0.45)
Right STN Mode 2 (0.43) Mode 1 (0.36)Mode 1 (0.36)

Left SN

Right SN Mode 3 (0.38)

Table IV-new


