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Abstract

Myotubularin MTM1 is a phosphoinositide (PPIn) 3-phosphatase mutated in X-linked centronuclear myopathy (XLCNM;
myotubular myopathy). We investigated the involvement of MTM1 enzymatic activity on XLCNM phenotypes. Exogenous
expression of human MTM1 in yeast resulted in vacuolar enlargement, as a consequence of its phosphatase activity.
Expression of mutants from patients with different clinical progression and determination of PtdIns3P and PtdIns5P cellular
levels confirmed the link between vacuolar morphology and MTM1 phosphatase activity, and showed that some disease
mutants retain phosphatase activity. Viral gene transfer of phosphatase-dead myotubularin mutants (MTM1C375S and
MTM1S376N) significantly improved most histological signs of XLCNM displayed by a Mtm1-null mouse, at similar levels as
wild-type MTM1. Moreover, the MTM1C375S mutant improved muscle performance and restored the localization of nuclei,
triad alignment, and the desmin intermediate filament network, while it did not normalize PtdIns3P levels, supporting
phosphatase-independent roles of MTM1 in maintaining normal muscle performance and organelle positioning in skeletal
muscle. Among the different XLCNM signs investigated, we identified only triad shape and fiber size distribution as being
partially dependent on MTM1 phosphatase activity. In conclusion, this work uncovers MTM1 roles in the structural
organization of muscle fibers that are independent of its enzymatic activity. This underlines that removal of enzymes should
be used with care to conclude on the physiological importance of their activity.
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Introduction

X-linked centronuclear myopathy (XLCNM, also called

myotubular myopathy; OMIM 310400) is a recessive congenital

muscle disorder affecting mainly males and due to mutations in the

MTM1 gene coding for the phosphoinositides (PPIn) phosphatase

myotubularin [1]. The most severe form of XLCNM is

characterised by hypotonia at birth, muscle atrophy, generalized

muscle weakness and respiratory failure leading to high neonatal

mortality [2]. Milder clinical phenotypes and progression were

also reported and some are compatible with nearly normal lifespan

[3]. Muscle biopsies from XLCNM patients show hypotrophic

muscle fibers with an abnormal central positioning of nuclei. A

mouse model lacking the MTM1 protein (Mtm1 KO) has been

characterized and reproduces the muscle mass decrease and most

histopathological features of XLCNM, including muscle fibers

hypotrophy and abnormal organelles positioning [4]. While the

MTM1 gene is ubiquitously expressed, skeletal muscle is the tissue

mainly affected. To date almost 200 different disease-causing

mutations have been identified in the MTM1 gene [3,5–7]. Most

mutations cause severe forms of the myopathy characterized by a

strong decrease in the protein level, at least in fibroblasts or

lymphoblasts, whereas others cause milder forms of the disease

[8,9]. A very mild XLCNM phenotype was even described in a

67-year-old grandfather with a N180K missense mutation [3].

However, the genotype-phenotype correlation is not extensive and

the importance of the PPIn phosphatase activity in the disease

phenotype was not defined.

Myotubularin (MTM1) displays PPIn 3-phosphatase activity

and converts phosphatidylinositol 3-phosphate (PtdIns3P) into

PtdIns and phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2)

into PtdIns5P. The PtdIns3P phosphatase activity of myotubularin
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was identified in a purified protein complex in brain and

confirmed in vitro and ex vivo after the isolation of the cDNA

[10,11]. The catalytic site and mechanism of MTM1 resembles

those of dual-specificity protein phosphatases. Indeed, mutation of

the catalytic cysteine of MTM1 into serine (C375S, phosphatase-

dead) totally abolished its enzymatic activity [12–14]. PtdIns3P

produced by the PtdIns 3-kinase hVPS34/Vps34, is enriched at

early and late endosomes and is essential for endosomal protein

sorting and trafficking, autophagy and proper morphology of the

endosomal compartment in human and yeast cells (for a review see

[15]). PtdIns3P is also produced by class II PtdIns 3-kinases in

multicellular eukaryotes, while these kinases are absent in yeasts

[16,17]. PtdIns(3,5)P2, the other substrate of MTM1, is generated

from PtdIns3P by the 5-kinase PIKfyve/Fab1. The absence of

PtdIns(3,5)P2 resulting from impairment of PIKfyve activity in

mammalian cells, or from FAB1 gene deletion in yeast S. cerevisiae,

leads to a swollen or enlarged endosomal/lysosomal compartment

associated with retrograde endosomal trafficking defects (for a

review see [18]).

The study of MTM1 in human cells is hampered by the

presence of highly conserved paralogues, termed MTMR for

myotubularin related proteins. There are thirteen MTMR

proteins (MTMR1 to MTMR13), seven of which are active

phosphatases while the other six are dead phosphatases lacking key

catalytic residues. S. cerevisiae contains only one member of the

myotubularin family, Ymr1 (yeast myotubularin related-1) encod-

ed by the YJR110W gene [19,20]. Ymr1 displays PtdIns 3-

phosphatase activity in vitro and in vivo and deletion of the YMR1

gene leads only to minor phenotypes [12,21].

The aim of this study is to understand the importance of the

MTM1 PPIn phosphatase activity in the phenotype and severity of

the disease. We first analyzed at the cellular level the functional

impact of MTM1 mutations isolated from patients using yeast S.

cerevisiae ymr1D deletion strains. Among the described mutations in

MTM1, we have chosen to enzymatically characterize missense

mutations affecting different MTM1 domains that lead to severe,

mild or very mild XLCNM forms. We then analyzed the

morphology of the vacuolar/lysosomal compartment, the subcel-

lular distribution of these proteins and the intracellular levels of the

different PPIn. The yeast results show that some disease mutants

display phosphatase activity. In parallel, we performed rescue

experiments for the XLCNM-like phenotypes displayed by the

Mtm1 KO mice using adeno-associated viral gene transfer of

murine wild-type, phosphatase-inactive C375S or S376N con-

structs. Taken together, our data show that phosphatase-dead

MTM1 mutants ameliorated most phenotypes of knock-out mice

thus suggesting that myotubularin displays phosphatase-indepen-

dent functions to maintain normal skeletal muscle.

Results

Expression of human Myotubularin MTM1 in yeast
impairs vacuolar morphology
We analyzed in yeast S. cerevisiae the expression of four missense

mutations in MTM1, two affecting the PPIn interaction PH-

GRAM domain (MTM1V49F and MTM1R69C), one the protein-

protein interaction domain RID (MTM1N180K) and one the

phosphatase catalytic domain (MTM1R421Q), leading respectively

to severe, mild or severe (depending on the family), very mild, and

severe XLCNM forms (Figure 1A) [3,5,6,22]. We used as controls

the wild-type MTM1 and the artificial phosphatase-dead

MTM1C375S mutant [12]. The different MTM1 constructs were

expressed into the ymr1D yeast mutant from either low (CEN) or

high (2 m) copy number plasmids. Growth curves (optical density

of liquid cultures as a function of time) as well as drop tests

revealed that none of the plasmids induced a significant growth

defect and that only cells expressing MTM1 or MTM1R69C

showed a slight growth delay (Figure S1). The Western blot

analysis shows that the different human MTM1 proteins were

produced at the expected molecular weight (70 kDa) and that

protein levels in cells transformed with CEN plasmids were lower

than in cells transformed with 2 m plasmids (Figure 1B). None-

theless, there were differences in the levels of the different MTM1

produced. Indeed, mutants having little or no effect on growth,

like the phosphatase-dead MTM1C375S, were most abundant

while mutants delaying growth, like MTM1R69C, were least

abundant suggesting that yeast cells regulate the production of the

exogenous human proteins.

The expression of MTM1 in fission yeast Schizosaccharomyces

pombe induced an enlarged vacuolar phenotype [13,23]. This was

also observed upon expression of MTMR3 in S. cerevisiae and the

enlarged vacuolar phenotype was correlated with MTMR3 PPIn

3-phosphatase activity [24]. We stained the vacuolar membrane

with the lipophilic fluorescent dye FM4-64 in ymr1D cells upon

MTM1 or MTM1C375S production (pVV204, CEN) or overpro-

duction (pVV200, 2 m). Wild-type yeast cells show unilobar

vacuoles, whereas the ymr1D mutant displayed small multilobar

vacuoles (Figure 2). In contrast, MTM1 overproduction resulted in

larger cells with a small or large unilobar vacuole, whereas

MTM1C375S overproduction resulted in no obvious change in cell

morphology (Figure 2A). The vacuolar morphologies were

classified by microscopic observation into three categories: large

unilobar or giant, small one or two lobes and more than two lobes

or fragmented vacuoles (Figure 3). A significantly higher percent-

age of cells with abnormally large vacuoles was observed upon

MTM1 production and this was increased with overproduction,

whereas this percentage was low for MTM1C375S and similar to

the empty plasmid controls (Figure 3).

Author Summary

X-linked centronuclear myopathy is a muscle disorder
characterized by neonatal hypotonia and abnormal
organelle positioning in skeletal muscle. This myopathy is
due to different mutations in the MTM1 gene encoding
the phosphoinositide phosphatase myotubularin. Disease-
causing mutations are found all along the protein
sequence and not only in the phosphatase catalytic
domain. We investigated the link between myotubularin
phosphatase activity and disease phenotypes. We used
brewer yeast as a simple cellular model to analyze the in
vivo phosphatase activity of different disease mutants. Our
results show that mutations responsible for severe forms
of myopathy are either active or inactive phosphatases. To
further question this finding, we used the mice myotubu-
larin knock-out model that reproduces faithfully the
histopathological findings from human patients. Expres-
sion of phosphatase-dead mutants improved most phe-
notypes of knock-out mice comparable to wild-type
myotubularin. This shows that the maintenance of normal
skeletal muscles is largely independent from myotubularin
phosphatase activity, while defects in the activity may
participate in the onset of the disease. Moreover, it could
have important implications in the design of therapeutic
approaches aimed at manipulating the phosphoinositide
levels in the different diseases linked to myotubularin
homologues. Finally, these data call for cautiousness when
manipulating such enzymes to conclude on the physio-
logical relevance of their activity.

Phosphatase-Independent Roles of Myotubularin
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The enlarged vacuole phenotype could be due to the 3-

phosphatase activity of MTM1 or to loss of Fab1 kinase functions

upon MTM1 production. Indeed, the fab1D mutant also displays

the enlarged vacuole phenotype (Figure 2A) [25]. Osmotic stress in

wild-type yeast results in vacuolar fragmentation (Figure 2A), due

to stimulation of Fab1 kinase activity [26,27]. The ymr1D cells

producing either MTM1 or phosphatase-dead MTM1C375S

displayed fragmented vacuoles upon osmotic shock, whereas in

the fab1D mutant vacuoles remained enlarged (Figure 2A),

indicating that overproduction of MTM1 did not block the Fab1

kinase activity. A similar result was previously obtained with S.

cerevisiae cells expressing human MTMR3 [24]. These results show

that MTM1 phosphatase activity is directly responsible for the

enlarged vacuole phenotype observed in yeast cells. Thus, analysis

of vacuolar morphologies can be used to assess the MTM1

enzymatic activity of mutants found in XLCNM patients.

Differential impact of XLCNM patient MTM1 mutations
on yeast vacuolar morphology
The vacuolar morphology of the ymr1D mutant expressing or

overexpressing the four MTM1 constructs with XLCNM muta-

tions was analyzed (Figure 1A). Many cells producing MTM1V49F,

MTM1R69C and MTM1N180K displayed enlarged vacuoles

(Figure 2B). Producing or overproducing the MTM1R421Q in the

ymr1D mutant did not result in major changes in vacuolar

morphology, suggesting that this mutation strongly impairs the

enzymatic activity in vivo. Upon production (CEN) and overpro-

duction (2 m) of MTM1V49F or MTM1N180K, the percentage of

cells with small and large unilobar vacuoles increased as observed

for MTM1 (Figure 3). Thus MTM1V49F and MTM1N180K

responsible for severe and very mild forms of XLCNM respec-

tively display a phosphatase activity in vivo. Production (CEN and

2 m) of MTM1R69C resulted in similar or higher numbers of

enlarged vacuoles as compared to MTM1 (Figure 3). As for

MTM1, osmotic stress also induced fragmentation of the vacuole

in cells expressing the different MTM1 with XLCNM mutations

(Figure 2B) confirming that Fab1 kinase activity was not impaired.

To determine whether similar enlarged vacuolar phenotypes were

also observed in wild-type yeast cells (WT SEY6210) upon MTM1

expression, we analyzed the vacuolar morphology of WT cells

transformed with pVV200 or pVV204 empty plasmids or coding

for MTM1 or the different MTM1 mutants (Figure S2). The

expression of the MTM1, MTM1V49F, MTM1R69C and

MTM1N180K constructs induced an increase in the vacuolar size

in both WT and ymr1D mutant cells, showing that this phenotype

was not specific for the latter yeast mutant cells. Taken together,

our data show that the vacuolar phenotypes induced by the

different MTM1 mutants are not reflecting the severity of

XLCNM phenotypes.

The enlarged vacuolar phenotypes observed upon production of

various MTM1 proteins in yeast cells suggest that these human

phosphatases have access to their membranous PPIn substrates.

To determine their intracellular distribution, protein extracts from

ymr1D cells producing the different MTM1 proteins were

subjected to subcellular fractionation to separate the membrane

fractions P13 and P100 from the cytosolic fraction S100 (Figure

S3). MTM1 was found mainly in P13 and P100 fractions and a

similar fractionation was observed for the different MTM1

mutants. This membrane association of MTM1, despite the

absence of a transmembrane domain or a lipid anchor, suggests

that MTM1 interacts with lipids or proteins independently of its

phosphatase activity since MTM1C375S was also membrane-

associated. These results show that the different vacuolar

phenotypes observed upon production of the different MTM1

proteins are not due to differences in their subcellular distribution.

Some MTM1 disease mutants display phosphatase
activity
The vacuolar phenotypes suggest that MTM1, MTM1V49F,

MTM1R69C or MTM1N180K dephosphorylate PtdIns3P and

PtdIns(3,5)P2 in yeast cells. To assess their phosphatase activity

in vivo we determined the intracellular levels of PtdIns3P and

PtdIns5P in ymr1D cells producing the different MTM1 constructs.

Cells were labeled with 32P, lipids extracted and separated by thin-

layer chromatography (TLC) and spots corresponding to phos-

phatidylinositol-monophosphates (PtdInsP) and phosphatidylinosi-

tol-bisphosphates (PtdInsP2) were isolated, deacylated and resolved

by anion-exchange HPLC chromatography. Four different PPIn

are identified in yeast S. cerevisiae: PtdIns3P, PtdIns4P,

PtdIns(3,5)P2 and PtdIns(4,5)P2. The relative abundance of

[PtdIns3P, PtdIns4P, PtdIns(3,5)P2, PtdIns(4,5)P2] is 40:40:7:13

in wild-type SEY6210 strain whereas in fab1D mutant strain this

ratio changes to 74:21:0:5 [25]. It was previously shown that in

ymr1D cells PtdIns3P levels are 2-fold higher than in wild-type cells

and represent 82% of the total PtdInsP species [12]. To compare

the phosphatase activity of the different MTM1 constructs, we

calculated the percentage of PtdIns3P over total PtdInsP for the

different strains (Figure 4A). This showed that MTM1R421Q

mutant affecting a residue in the catalytic pocket displayed a poor

phosphatase activity, as PtdIns3P levels were comparable to those

Figure 1. Human myotubularin expression in yeast S. cerevisiae.
(A) Representation of the MTM1 protein with its domains, the position
of the mutations analyzed and the severity of the resulting myopathy
phenotype. MTM1 displays different domains, PH-GRAM (pleckstrin
homology-glucosyltransferase, Rab-like GTPase activator and myotubu-
larin), RID (Rac-induced recruitment domain), catalytic phosphatase
domain and SID (SET-protein interaction domain). (B) Anti-MTM1
Western-blot on yeast protein extracts. The MTM1 gene was placed
under the control of the tetracycline-repressible tetO promoter in the
low copy number centromeric plasmid (CEN, pVV204, 1 to 3 copies per
cell). In the high copy number 2 m plasmid (2 m, pVV200, 20 to 50 copies
per cell), the MTM1 gene was under the control of the strong yeast
PGK1 promoter. These different plasmids were transformed into the
ymr1D yeast mutant. Protein extracts of ymr1D cells transformed with
pVV204 (CEN) or pVV200 (2 m) empty plasmids (Control) or bearing the
different MTM1 forms were analyzed by Western-blot. MTM1 produc-
tion was detected with the mouse monoclonal 1G6 anti-MTM1
antibody. The different human MTM1 proteins were produced at the
expected molecular weight (70 kDa) as compared to the ymr1D cells
transformed with empty control plasmids that displayed no signal.
Protein loading was evaluated by immunodetection of the yeast
endogenous 3-phosphoglycerate kinase Pgk1 protein.
doi:10.1371/journal.pgen.1002965.g001

Phosphatase-Independent Roles of Myotubularin
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Figure 2. Yeast vacuolar phenotype analysis upon MTM1 expression. The wild-type and fab1D cells were used as controls. The different
yeast cells transformed or not with pVV200 (2 m, overexpression) plasmids bearing or not wild-type or mutants MTM1 were grown to exponential
phase in selective SC-trp medium and the vacuoles were stained by FM4-64. Cell were labeled with FM4-64 for 15 min at 25uC in YPD and washed in
once in SC-trp. Cells were then observed in selective medium by fluorescence microscopy with DIC (Nomarski) and TRITC (FM4-64) filters. Osmotic
shock was induced by addition of NaCl (final concentration 0.9 M) to FM4-64 stained cultures, and cells were observed after 10 min incubation. (A)
Wild-type, fab1D and ymr1D yeast cells transformed with pVV200 empty plasmid or bearing wild-type MTM1 or the phosphatase-dead MTM1C375S

Phosphatase-Independent Roles of Myotubularin
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of the phosphatase-dead MTM1C375S control. In contrast, the

three other XLCNM patient mutants MTM1V49F, MTM1R69C

and MTM1N180K showed PtdIns3P phosphatase activity compa-

rable to the wild-type MTM1, as they displayed a strong decrease

in the PtdIns3P levels which represented only 45–50% of total

PtdInsP (Figure 4A). These results were confirmed by in vitro

phosphatase assays [28] done on MTM1, MTM1C375S,

MTM1V49F, MTM1R69C and MTM1N180K proteins immuno-

isolated from yeast ymr1D cells (Figure S4).

Among the different PPIn detected in yeast cells, the

PtdIns(3,5)P2 is the least abundant and represents about 0.1% of

the total inositol phospholipids [18]. Indeed, HPLC chromato-

grams of PtdInsP2 showed that under our experimental conditions

PtdIns(3,5)P2 was barely detectable in normal conditions for the

different strains (not shown). PtdIns(3,5)P2 intracellular levels can

be increased by osmotic shock [26]. To avoid any osmotic stress

treatment of the cells and to detect PtdIns(3,5)P2 dephosphoryla-

tion by MTM1 under normal conditions, we quantified the

resulting product PtdIns5P by a sensitive mass assay [28,29]. Thus

ymr1D yeast cells producing MTM1, MTM1C375S, MTM1V49F,

MTM1R69C, MTM1N180K and MTM1R421Q were grown to

exponential phase, lipids were extracted and separated by TLC,

and spots corresponding to PtdInsP were extracted and submitted

to an in vitro kinase assay to detect PtdIns5P. The ymr1D cells

expressing MTM1C375S or the empty plasmid showed a basal level

of PtdIns5P, whereas in the presence of active MTM1 there was a

strong increase in PtdIns5P (Figure 4B). Comparison of PtdIns5P

levels showed that MTM1R421Q can be considered as an inactive

phosphatase, as it displayed similar levels to MTM1C375S

(Figure 4B). The three other XLCNM patient mutants

MTM1V49F, MTM1R69C and MTM1N180K displayed a

PtdIns(3,5)P2 phosphatase activity since significant quantities of

PtdIns5P were detected (Figure 4B). Based on the p-values

(Figure 4B), the PtdIns5P production by the MTM1R69C mutant

is not significantly different than the one detected for MTM1.

These results were further confirmed by in vitro phosphatase assays

showing proper dephosphorylation of PtdIns(3,5)P2 by MTM1,

MTM1V49F, MTM1R69C and MTM1N180K produced in yeast

ymr1D cells, whereas in the same conditions the MTM1C375S and

MTM1R421Q were less active (Figure S4).

These results show that MTM1 mutants responsible for

myopathy are either active or inactive phosphatases. Indeed, the

MTM1V49F mutant is associated to severe forms of the disease and

displays phosphatase activity, even so its activity is reduced

compared to the wild type phosphatase. The second mutant in the

PH-GRAM domain of MTM1, MTM1R69C shows similar

phosphatase activity as the wild-type MTM1 and is associated to

mild or severe phenotype. In conclusion, not all MTM1 mutants

responsible for myopathy lack the phosphatase activity.

Exogenous expression of myotubularin ameliorates the
histological phenotype of Mtm1 KO muscle independent
of its enzymatic activity
As results in yeast suggested that some XLCNM patient

mutants retain the phosphatase activity, we aimed to investigate

the role of the phosphatase activity on the development of the

XLCNM phenotype in vivo. We tested the ability of the

MTM1C375S phosphatase-dead mutant to correct the XLCNM-

like muscle phenotype of Mtm1 knockout (KO) mice compared to

wild-type MTM1 using Adeno-associated virus (AAV) gene

transfer. We used the constitutive Mtm1 KO mouse that develops

a homogeneous XLCNM in the 129PAS background [30]. These

mutant animals show a progressive muscle weakness starting

clinically at 3 weeks of age and leading to death by 7 to 9 weeks,

probably from respiratory failure. They display most phenotypes

mutant. Inset shows an increased magnification of a representative cell to illustrate the vacuolar phenotype upon osmotic shock. (B) ymr1D cells
transformed with pVV200 plasmid bearing the different MTM1 mutants responsible for XLCNM myopathy.
doi:10.1371/journal.pgen.1002965.g002

Figure 3. Vacuolar morphologies quantification in yeast cells
producing MTM1. The ymr1D cells expressing either wild-type MTM1
or the different MTM1 mutants from either pVV200 (2 m, overexpres-
sion) or pVV204 (CEN, expression) plasmid were analyzed. For each
strain, 300 to 600 cells were observed by microscopy (DIC and FM4-64)
and sorted into one of the three categories: unilobar large or giant (in
white), small one or two lobes (in grey) and more than two lobes or
fragmented (in black) vacuoles. The main vacuolar phenotype of the
non-transformed ymr1D mutant cells is fragmented vacuoles with more
than two lobes. Histograms are the mean of three independent
experiments and show the proportion of each category in the different
transformed yeast cells.
doi:10.1371/journal.pgen.1002965.g003

Phosphatase-Independent Roles of Myotubularin
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observed in patients as a decrease in muscle mass, muscle fiber

hypotrophy, nuclei and mitochondria positioning defects, desmin

aggregation, and alteration in T-tubule structure. At 6 weeks old,

Mtm1 KO mice injected with empty AAV vector show a 38%

decrease in the Tibialis anterior (TA) muscle weight compared to

wild-type mice injected with empty AAV (Figure 5C). Mtm1 KO

Figure 4. Determination of different phosphoinositides (PPIn) levels upon expression of MTM1 wild-type or mutant proteins. (A)
Quantification of PtdIns3P cellular levels of ymr1D cells expressing wild-type MTM1 or the different mutants from pVV204 (CEN). Strains were grown
to early log phase in selective medium, labeled with 32P and lipids were extracted and prepared for HPLC analysis. Based on HPLC chromatograms the
peak area corresponding to each PPIn species was determined and results were expressed as the percentage of 32P-PtdIns3P compared to the total
labeled 32P-PtdInsP. Results are represented as the mean of at least two independent experiments shown with standard deviations. (B) Quantitative
analysis of PtdIns5P produced in ymr1D cells expressing wild-type or mutants MTM1. Strains were grown to log phase in selective medium, lipid were
extracted, separated by TLC and spots corresponding to mono-phosphorylated PPIn were scrapped off and subjected to phosphorylation by
PtdIns5P 4-kinase type IIa in presence of [c-32P]-ATP. This kinase is specific for PtdIns5P and produces PtdIns(4,5)P2. The

32P-labeled PtdIns(4,5)P2
generated from this in vitro kinase reaction was further analyzed by TLC and radioactivity was quantified in a scintillation counter. The total amount of
PtdIns5P (pmol) in each sample was determined by comparison with a calibration curve made from diC16-PtdIns5P and normalized to the number of
yeast cells. Graph represents PtdIns5P as a percentage of production compared to the wild type myotubularin MTM1 (n= 3 to 4 experiments). The p-
value for each construct was evaluated versus the wild type MTM1 and is indicated at the top of the graph. A p-value of less than 0.05 indicates that
the difference in the two PtdIns5P percentages is statistically significant. The p-value was 0.0021 for MTM1V49F versus MTM1C375S and 0.0036 for
MTM1V49F versus MTM1R421Q.
doi:10.1371/journal.pgen.1002965.g004
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TA muscles displayed smaller and rounder myofibers with

increased proportion of internal nuclei compared to wild-type

mice (Figure 5B and 5D). In addition, Mtm1 KO muscles had an

abnormal oxidative staining with higher intensities in the

subsarcolemmal region and in the center of fibers, reminiscent

of an accumulation of mitochondria at these regions (Figure 5B).

TA muscles of 2–3 weeks old Mtm1 KO mice were injected with

either AAV2/1-Mtm1-WT (AAV-Mtm1-WT) or AAV2/1-Mtm1-

C375S (AAV-Mtm1-CS), where the C375S mutation abolishes the

phosphatase enzymatic activity towards PPIn substrates (Figure 4).

The contralateral muscle was injected with AAV2/1-Empty

(AAV) as an internal control. The effect of AAV-mediated

Mtm1-WT or Mtm1-CS expression was analyzed 4 weeks after

injection. The level of ectopic Mtm1-WT and Mtm1-CS expression

was analyzed by western blot in injected muscles. In both injected

muscles the level of the protein was reestablished and similar to the

levels of the endogenous protein in WT muscle (Figure 5A).

We confirmed that exogenous expression of Mtm1-WT in TA

muscle corrects the XLCNM-like phenotype in the constitutive

129PAS Mtm1 KO mice, as previously shown in muscle-specific

KO mice on a B6 background [31], showing that the MTM1

protein is acting primarily in skeletal muscle and not in other

tissues as only muscle was injected. The Mtm1 KO model displays

a severe muscle atrophy (Figure 5 and [4,30]). Muscles injected

with AAV-Mtm1-CS showed a significant increase of the weight

compared to Mtm1 KO muscle injected with AAV (0,13%60,03

for AAV-Mtm1-CS compared to 0,08%60,02 for AAV alone),

reaching similar levels to Mtm1 KO injected with Mtm1-WT

(Figure 5C). Next we investigated if the increase in weight

correlates with an improvement at the histological level. Hema-

toxylin and eosin (HE) staining revealed similar improvement of

the histological aspects of Mtm1 KO muscles injected with either

AAV-Mtm1-WT or AAV-Mtm1-CS (Figure 5B). Quantitative

analysis of the distribution of myofiber areas showed a clear

increase in fiber size for both AAV-Mtm1-WT and AAV-Mtm1-CS

treated muscles compared to Mtm1 KO muscles (Figure 5E). None

of the constructs restored fiber area and the muscle weight to the

level of wild-type mice 4 weeks after infection and it was not

possible to test if longer infection would increase the correction of

these features under our experimental conditions as mice were

dying around the age of analysis. Fiber area distribution is different

comparing AAV-Mtm1-WT and AAV-Mtm1-CS; AAV-Mtm1-CS

leads to a higher increase in the number of fibers with an area in

the range of 200 to 3200 mm2, compared to fibers with an area

superior to 3200 mm2 with AAV-Mtm1-WT. Our data show that

both AAV-Mtm1-WT and AAV-Mtm1-CS partially but signifi-

cantly improved muscle atrophy and fiber hypotrophy of theMtm1

KO mice.

Furthermore Mtm1 KO muscle fibers are also characterized by

a progressive disorganization in the distribution of mitochondria.

Thus, we evaluated the localization of these organelles by

succinate dehydrogenase staining (SDH) that labels the oxidative

activity. The SDH staining of muscle sections (Figure 5B) revealed

that the abnormal central concentration of oxidative activity was

improved with both AAV-Mtm1-WT and AAV-Mtm1-CS. In

addition, abnormal internalization of nuclei represents another

hallmark of the XLCNM pathology. We thus counted the number

of fibers with internal nuclei (not in contact with the sarcolemma)

in wild-type and Mtm1 KO muscles injected with AAV versus

Mtm1 KO muscles treated with AAV-Mtm1-WT or AAV-Mtm1-

CS (Figure 5D). We observed a strong and similar reduction of the

percentage of internal nuclei in AAV-Mtm1-WT and AAV-Mtm1-

CS treated muscles compared to Mtm1 KO muscles

(21,15%68,23 for AAV-Mtm1-CS; 15,68%60,62 for AAV-

Mtm1-WT compared to 46,67%68,18 for Mtm1 KO and

2,28%62,11 for wild-type mice).

The phosphatase-dead myotubularin improves muscle
strength
To determine whether the significant improvement of the

histological features was associated to improved muscle perfor-

mance, we measured the in situ force of the muscle. The isolated

muscle was stimulated by the sciatic nerve, and the maximal force

produced was recorded and normalized to muscle weight

(Figure 6). The specific maximal force of untreated TA muscles

of 6 week-old Mtm1 KO mice was lower by 81% compared to

wild-type muscle. The muscles transduced with AAV-Mtm1-CS

and AAV-Mtm1-WT exhibit an increase of the specific maximal

force compared toMtm1 KO (0,44 mN/mg60,23 for AAV-Mtm1-

CS; 0,66 mN/mg60,17 for AAV-Mtm1-WT compared to

0,06 mN/mg60,04 for Mtm1 KO and 1,31 mN/mg60,21 for

wild-type mice) (Figure 6). Altogether, our results show that the

MTM1C375S phosphatase-dead mutant improves most XLCNM-

like histological and the specific muscle force of the Mtm1 KO

model at a level comparable to that of the wild-type MTM1

protein.

MTM1C375S phosphatase-dead mutant restores the
abnormal desmin organization in Mtm1-deficient muscle
To further decipher the molecular basis for these phosphatase-

independent improvements we analyzed the localization of

desmin, a muscular MTM1 protein interactor. Indeed, it was

recently shown that MTM1 binds specifically desmin and

regulates the filament assembly and organization [32]. Desmin is

the major component of intermediate filaments (IFs) cytoskeleton

of muscle, which plays a central role in the integration of structure

and function of striated muscle by linking the contractile apparatus

to the sarcolemmal cytoskeleton as well as to several cytoplamic

organelles and the nucleus. Desmin is found mainly in the Z-disk

in a normal skeletal muscle. In the muscle biopsies from XLCNM

patients, desmin localization is altered. The Mtm1 KO mice

muscles present an accumulation of aggregates that disrupt the

continuity and organization of the desmin network (Figure 7A).

We could previously show that ectopic expression of MTM1-WT

in the Mtm1 KO muscle restores the normal organization of the

desmin network [32]. We examined the muscle injected with the

MTM1C375S phosphatase-dead mutant. The muscle transduced

with AAV-Mtm1-CS exhibited a clear improvement of the desmin

localization compared to the desmin aggregates observed in the

Mtm1 KO muscle injected with the empty virus (Figure 7A).

Furthermore, the mislocalization of desmin in Mtm1 KO

corresponds also to a shift in desmin equilibrium from the soluble

to the insoluble fraction, indicating a defect in the desmin assembly

process (Figure 7B). We observed a significant and similar increase

in the desmin solubility in AAV-Mtm1-WT and AAV-Mtm1-CS

treated muscles compared to Mtm1 KO muscles (Figure 7B). To

confirm that AAV-Mtm1-WT and AAV-Mtm1-CS displayed

similar efficiency regarding the correction of desmin solubility

we analyzed the level of MTM1 expression in the same samples

(Figure 7C). The MTM1 expression was similar in both type of

muscles suggesting that phosphatase-dead mutant MTM1C375S

improves the desmin organization as efficiently as MTM1-WT.

Moreover, we analyzed the distribution of MTM1-WT and

MTM1-C375S in the membrane fraction of skeletal muscle using

a microsomal preparation from Mtm1 KO muscles injected with

AAV-Mtm1-WT and AAV-Mtm1-CS and from wild-type muscle.

Microsomal fractions were analyzed using protein markers for the
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membrane fraction (a-sarcoglycan and SERCA1), for the cyto-

plasmic (b-tubulin) and for the nuclear fractions (the TATA-box

binding protein (TBP)). The MTM1-WT and MTM1-C375S

proteins ectopically expressed in the Mtm1-KO muscle were

similarly distributed in the microsomal fractions (Figure 7F). These

results suggest that MTM1-WT and MTM1-C375S localize

similarly in the membrane fraction in skeletal muscle.

Altogether, our results show that the phosphatase activity of

MTM1 is not required for normal desmin localization in muscle

fibers, and suggest that maintenance of the desmin network is a

phosphatase-independent function of MTM1 that is important in

XLCNM.

Improvement of the ultrastructural organization of triads
in Mtm1 KO muscles
To determine whether the substantial amelioration of the

histological features was correlated to the improvement of the

structural organization of the triads, we analyzed the muscles by

electron microscopy. Indeed, previous studies have shown that the

muscles lacking myotubularin as well as XLCNM muscle biopsies

Figure 5. Amelioration of muscle atrophy and fiber hypotrophy in a murine model of centronuclear myopathy by AAV–mediated
expression of two phosphatase-inactive myotubularin mutants MTM1C375S and MTM1S376N. (A) Skeletal muscle protein lysates 4 weeks
post-injection were immunoblotted for MTM1 and GAPDH levels in WT and Mtm1 KO mice injected with empty AAV, Mtm1 KO injected with AAV-
Mtm1-WT, AAV-Mtm1-CS and AAV- Mtm1-SN. (B) Hematoxylin and eosin (HE, left panels, magnification6400) and succinate dehydrogenase (SDH,
right panels,6400) staining of TA cross-sections from WT mice injected with empty AAV, Mtm1 KO injected with empty AAV, AAV-Mtm1-WT, AAV-
Mtm1-CS and AAV-Mtm1-SN mice 4 weeks PI. Mtm1 KO muscle sections show the presence of very small myofibers and internalized nuclei.
Mitochondrial oxidative staining is abnormally accumulated at the centre of fibers. Note the recovery of oxidative reactivity pattern in myotubularin-
expressing Mtm1 KO muscles. Scale bar: 50 mm. (C) Graph represents TA weight as a percentage of total body weight (n = 6 mice). P values,0.01 for
WT injected with AAV versus KO injected with AAV, AAV-Mtm1-WT, AAV-Mtm1-CS and AAV-Mtm1-SN. P values,0.001 for KO injected with AAV versus
AAV-Mtm1-WT, AAV-Mtm1-CS and AAV-Mtm1-SN. (D) Percentage of muscle fibers with internalized nuclei after AAV, AAV-Mtm1-WT, AAV-Mtm1-CS
and AAV-Mtm1-SN injection of Mtm1 KO mice. Nuclei were considered as internalized if not in contact with the sarcolemma. The number of fibers
with internal nuclei is increased in Mtm1 KO tibialis anterior (TA) muscle and significantly and equally reduced after injection with AAV-Mtm1-WT or
AAV-Mtm1-CS or AAV-Mtm1-SN (n = 550). P values,0.009 for WT injected with AAV versus KO injected with AAV, AAV-Mtm1-WT, AAV-Mtm1-CS and
AAV-Mtm1-SN. P values p,0.0009 for KO injected with AAV versus AAV-Mtm1-WT, AAV-Mtm1-CS and AAV-Mtm1-SN. (E) Transverse muscle sections
were analyzed for fiber area. Fiber size is grouped into 200 mm2 intervals, and represented as the percentage of total fibers in each group (n = 1,000
for 15 mice for AAV-Mtm1-WT, AAV-Mtm1-CS and 6 mice for AAV-Mtm1-SN group).
doi:10.1371/journal.pgen.1002965.g005
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present abnormal organization of triads [30,33,34]. The electron

micrographs obtained from the wild-type, Mtm1 KO and Mtm1

KO injected with AAV-Mtm1-WT and AAV-Mtm1-CS muscles

were analyzed. The wild-type muscle showed proper organization

of the fibers and sarcomere arrangement, and the typical triad

structure. In contrast, the micrographs from Mtm1 KO muscle

exhibited sarcomere disorganization and a decrease in the number

of well-positioned triads (Figure 8A and 8B). Interestingly, the

Mtm1-KO muscle injected with AAV-Mtm1-WT showed a clear

improvement in the general organization of the sarcomere and the

presence of the well–formed triads (Figure 8A–8C). An improve-

ment was also observed in the Mtm1 KO muscle injected with the

AAV-Mtm1-CS. The ratio of triads per sarcomere in Mtm1 KO

muscles of 6 weeks-old mice was decreased by 83% compared to

wild-type muscle. Muscles transduced with AAV-Mtm1-WT and

AAV-Mtm1-CS presented a significant increase in this ratio

(0,960,18 for AAV-Mtm1-CS; 1,0460,24 for AAV-Mtm1-WT

compared to 0,2360,21 for Mtm1 KO and 1,260,3 for wild-type

mice) (Figure 8B). In addition, the shape of the triad was analyzed

in the wild-type and in the Mtm1-KO muscle transduced with

AAV-Mtm1-WT and AAV-Mtm1-CS. The Mtm1 KO was not

considered for this analysis, as recognizable triads were nearly

absent in this muscle. The muscle transduced with the phospha-

tase-dead mutant exhibited recognizable triads with a more dilated

shape than the muscle transduced with the AAV-Mtm1-WT and

wild-type muscle (Figure 8C).

Altogether, our results show that the MTM1C375S phosphatase-

dead mutant improves the general organization of the muscle

fibers and restores the presence and number of the triads in the

Mtm1 KO model at a level comparable to the wild-type MTM1

protein. However the muscle transduced with AAV-Mtm1-CS

exhibited only a partial correction of the shape of the triads

compared to the AAV-Mtm1-WT, suggesting a potential role of

the phosphatase activity in the shape of the triad.

The phenotypic improvement does not correlate with
normalization of PtdIns3P levels
To determine whether the MTM1 phosphatase activity

contributed to the improvement of the XLCNM phenotypes, we

measured the level of PtdIns3P in the different muscles. For these

measurements, we extracted total lipids from the tibialis anterior of

wild-type, Mtm1-KO and Mtm1-KO muscles injected with AAV-

Mtm1-WT or AAV-Mtm1-CS. We used a novel sensitive mass

assay for measuring PtdIns3P from total muscle lipid extracts

without metabolic labeling [35]. The level of PtdIns3P in the

sample was quantified and normalized to total phospholipids, the

resulting pmol of PtdIns3P/mmol of phospholipids data were

expressed as fold increase compared to the wild-type muscle

transduced with AAV (Figure 9). The lipid extracts from Mtm1

KO mice exhibited a higher level of PtdIns3P compared to wild-

type (2.19 fold increase for Mtm1 KO muscle). These data support

the conclusion that PtdIns3P is a physiological substrate of MTM1

in mammalian muscle and that the disease is paralleled by an

alteration of PPIn metabolism in the Mtm1 KO model. The lipid

extracts from the muscles transduced with AAV-Mtm1-WT

showed a normalization of the PtdIns3P to levels similar as the

wild-type muscle. In contrast, muscles transduced with AAV-

Mtm1-CS exhibited, as the Mtm1 KO muscles, higher levels of

Ptdns3P compared to the wild-type muscle (3.3 fold increase for

AAV-Mtm1-CS) (Figure 9). The difference in PtdIns3P levels

between the Mtm1 KO injected with empty AAV and AAV-Mtm1-

CS is not statistically significant since the p-value is 0.06. However,

there is a tendency towards increased PtdIns3P levels with AAV-

Mtm1-CS that could be caused by a substrate-trapping property of

this mutant resulting in the protection of PtdIns3P from

consumption by other enzymes. Thus, the Mtm1-C375S mutant

is catalytically inactive in vivo and might be a substrate-trapping

mutant. The results show that the correction of the phenotypes

with the MTM1C375S phosphatase-dead was not correlated to

normalization of the PtdIns3P levels in muscle.

The rescuing potential of the phosphatase-dead mutant
is very likely not due to substrate-trapping properties
The analysis of the PtdIns3P level in mice muscles did not

exclude that the MTM1C375S mutant might be a substrate-

trapping mutant. Thus, this mutant could promote the correction

of the Mtm1 KO mice phenotypes through a dominant-negative

effect by blocking the access of effectors to PtdIns3P and/or

PtdIns(3,5)P2. To address this issue, we used the MTM1S376N

(Mtm1-SN) mutant associated to severe XLCNM [36]. The S376N

mutation located in the catalytic site abrogates the in vitro

phosphatase activity [12] and this inactive mutant was predicted

to disrupt the substrates binding based on the myotubularin

MTMR2 crystal structure [37]. Indeed, the replacement of this

serine 376 with a bulkier aminoacid removes the hydrogen bond

formed with the oxygen of the D1 phosphate of the lipid substrate

and is also predicted to produce an allosteric clash with both the

D1 phosphate of the substrate and with two aminoacids of the

catalytic pocket (Asp280 and Asp288, Figure S5). To determine its

in vivo activity, we produced this mutant in yeast ymr1D cells,

analyzed the vacuolar size and quantified the resulting PtdIns5P

product (Figure S5). The results show that the MTM1S376N

protein is produced in yeast cells, and that this MTM1S376N

mutant is catalytically inactive as judged from the vacuolar

phenotypes and the lack of dephosphorylation of PtdIns(3,5)P2 in

PtdIns5P (Figure S5). Next, we analyzed the major XLCNM-like

phenotypes in the Mtm1 KO muscle injected with AAV-Mtm1-SN

mutant (Figure 5). The Mtm1 KO muscles transduced with AAV-

Figure 6. The phosphatase-dead C375S myotubularin mutant
improves muscle force in Mtm1 KO mice. The specific maximal
force (sP0) of WT muscle injected with AAV and Mtm1 KO TA muscle
injected with AAV, AAV-Mtm1-WT and AAV-Mtm1-CS. The sP0
represents the absolute maximal force related to muscle weight (n = 6
mice, *P,0.001).
doi:10.1371/journal.pgen.1002965.g006

Phosphatase-Independent Roles of Myotubularin

PLOS Genetics | www.plosgenetics.org 9 October 2012 | Volume 8 | Issue 10 | e1002965



Mtm1-CS showed a clear improvement of the muscle concerning

the muscle weight, fiber size, organelle and nuclei positioning and

a similar improvement was observed for the injection of AAV-

Mtm1-SN mutant (Figure 5). While not excluding that the C375SS

mutant could have some substrate-trapping properties, these

results strongly suggest that the amelioration of the XLCNM

phenotypes described for AAV-Mtm1-CS are not due to a

substrate-trap effect of the C375S mutation. As the S376N mutant

is also phosphatase-dead, this supports the conclusion that the

MTM1 phosphatase activity does not contribute to the mainte-

nance of most XLCNM phenotypes.

Discussion

In this study, we investigated the involvement of MTM1

enzymatic activity on the phenotypes of XLCNM. Using

heterologous expression of human genes in yeast, we showed

that the PPIn phosphatase activity of MTM1 was directly

linked to vacuolar homeostasis. The vacuolar phenotypes

induced by expressing different MTM1 mutants found in

patients and their measured impact on PPIn levels revealed

that not all MTM1 mutants were associated to inactive

phosphatase. In addition, using gene transfer in a murine

model of XLCNM, we were able to significantly ameliorate

most morphological phenotypes with two different phospha-

tase-inactive mutants of MTM1. Altogether, our data strongly

suggest that the main roles of MTM1 in adult muscle are

largely independent of its enzymatic activity, with the

exception of triad shape and fiber size distribution.

We report here a sensitive assay to determine human MTM1

phosphatase activity in yeast S. cerevisiae using vacuole size as a

read-out. We showed that vacuole size correlates with the levels of

intracellular PtdIns3P and PtdIns(3,5)P2 dephosphorylated by

MTM1. In yeast cells, a reverse correlation was observed between

the in vivo phosphatase activity and the MTM1 protein level.

Indeed, the enzymatically inactive MTM1R421Q and MTM1C375S

are the most produced whereas the most active MTM1R69C was

the least abundant (Figure 1B). This suggests that yeast cells

regulate the levels of human MTM1 to avoid massive deregulation

of PPIn levels. This regulation could be post-transcriptional since

the same effect was observed with two different replication origins

(2 m or CEN-ARS) combined with two different promoters, the

yeast PGK1 and the bacterial tetO promoters. Thus, an equilibrium

between intracellular protein levels and PtdIns3P and

PtdIns(3,5)P2 dephosphorylation rates may have been reached to

ensure yeast growth in the presence of human MTM1 active

Figure 7. The phosphatase-dead C375S myotubularin mutant injection in Mtm1-KO muscle restores normal desmin expression and
localization. (A) Ectopic expression of MTM1 transgene in Mtm1-KO muscle restored normal desmin localization in muscle. Arrowheads indicate
aggregates of desmin in Mtm1-KO muscle injected with AAV. Scale bars: 10 mm. (B) The phosphatase-dead C375S myotubularin mutant expression in
Mtm1-KO muscle restored normal desmin expression level in soluble and insoluble fraction. (C) Skeletal muscle protein lysates 4 weeks post-injection
were immunoblotted for MTM1. (D) Quantification of relative desmin expression level in soluble compared to insoluble fraction. Data correlated from
2 independent experiments (n = 3 mice per group). *P#0.05. (E) Quantification of relative expression of MTM1 in WT and Mtm1 KO mice injected with
empty AAV, Mtm1 KO injected with AAV-Mtm1-WT and AAV-Mtm1-CS. (F) Microsome fractions from Mtm1 KO muscles injected with AAV-Mtm1-WT
and AAV-Mtm1-CS and from wild-type muscles were prepared and immunoblotted for MTM1 to compare localization of MTM1-WT and MTM1-C375S
in the membrane fraction of the muscle. Microsome fractions were immunoblotted with antibodies detecting membrane proteins (SERCA1 and
Sarcoglycan), cytoplasmic protein (b-tubulin) and nuclear protein (TATA-box binding protein (TBP)).
doi:10.1371/journal.pgen.1002965.g007
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forms. This is further supported by the fact that despite being

massively produced in yeast, enzymatically active MTM1 did not

drastically deplete intracellular PtdIns3P but restored similar

PtdIns3P levels to the SEY6210 WT strain. It may also reflect a

specificity of MTM1 towards distinct intracellular subpools of

PtdIns3P.

Using different approaches in two eukaryotic models, the yeast

S. cerevisiae ymr1D and the Mtm1 KO mouse, our results indicate

that the XLCNM disease is not solely linked to a defect in MTM1

phosphatase activity. In yeast cells, several XLCNM patient

mutants responsible for severe forms of the disease displayed a

phosphatase activity comparable to wild-type MTM1. In this

model, the MTM1 phosphatase activity was linked to vacuolar

homeostasis, in accordance with the known function of PtdIns3P
and PtdIns(3,5)P2 in yeast cells [18]. In the Mtm1 KO mice AAV

gene transfer of wild-type MTM1 or phosphatase-inactive

MTM1C375S and MTM1S376N mutants significantly improved

the XLCNM phenotypes. Comparison of AAV-Mtm1-WT and

AAV-Mtm1-CS injected Mtm1 KO mice muscles revealed that

ectopic expression of MTM1C375S phosphatase-dead mutant

corrected similarly as MTM1 wild-type: the muscle weight, nuclei

positioning, oxidative staining and fiber shape (HE staining),

desmin localization and solubility, sarcomere organization, the

presence of well-oriented triads at the sarcomere and the specific

maximal force, whereas the distribution of the fiber size and the

triads shape were only partially ameliorated (Figure 10). Whether

the complete correction of these phenotypes requires longer time

of expression or the phosphatase activity of MTM1 remains an

open question. Thus, apart from PtdIns3P levels, which are mainly

dependent on the phosphatase activity, only fiber size distribution

and triads shape appear both phosphatase-dependent and

phosphate-independent functions of MTM1. Interestingly, since

mice were injected with MTM1C375S or MTM1S376N at 3 weeks

when animals start to present some pathological signs, it supports

that these dead phosphatases did not only improve but were also

able to revert the progression of the disease. Thus, even though the

phosphatase activity of MTM1 is very important for its cellular

function likely by impacting on vesicular trafficking, the loss of this

activity is not responsible for the maintenance of most muscle

phenotypes observed in the disease. This strongly suggests that

defects in PPIn metabolism and vacuolar homeostasis are not the

main cause in the maintenance of XLCNM phenotypes. However,

we do not exclude that defect in the regulation of triad shape may

affect muscle function at later stages, even so we did not observe

significant differences in muscular specific maximal force after 4

weeks of transduction. Based on previous studies and on our

results, we favor the hypothesis that the MTM1 phosphatase

activity is crucial for the onset of the disease but less important for

its maintenance in later stages of the myopathy. In this study only

the PtdIns3P levels could be measured in the muscle, thus we

Figure 8. Improvement of triad abnormalities present in Mtm1-deficient muscles with AAV-Mtm1-WT and AAV-Mtm1-CS. (A)
Sarcomere and triad (arrowheads) organization in wild-type muscle, Mtm1 KO muscle, Mtm1 KO muscles injected with AAV-Mtm1-WT and AAV-Mtm1-
CS at 2 different magnifications. Muscles from Mtm1 KO demonstrate a severe disorganization of the muscle fiber with lack of recognizable triads
within the sarcomere structure. (B) Quantification of the presence of triads in the muscle fibers. The graph represents the ratio between the number
of triads observed in each longitudinal section divided by the total number of sarcomeres present in the section. (C) Triads shape in wild-type muscle,
and Mtm1 KO muscles injected with AAV-Mtm1-WT and AAV-Mtm1-CS.
doi:10.1371/journal.pgen.1002965.g008
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cannot exclude that there might be a correlation with restored

PtdIns(3,5)P2, although the MTM1C375S mutant was shown to lack

enzymatic activity against both PtdIns3P and PtdIns(3,5)P2 [28].

Moreover, Kiger and colleagues reported that down regulation of

PI3K class II (Pi3K68D) in drosophila could rescue viability and

several defects observed in mutant of mtm, the fly orthologue for

MTM1, MTMR1 and MTMR2 [17,38]. It is possible that in fly

the role of myotubularins are more tightly linked to the

phosphatase activity than in mammals where the diversification

of myotubularins may have developed some phosphatase-inde-

pendent and tissue-specific functions.

Mutations responsible for XLCNM are found all along the

MTM1 protein [3,6]. For most of them, including missense

mutations, the MTM1 protein level was strongly decreased or not

detectable in fibroblasts, lymphoblasts or myoblasts from patients,

suggesting that XLCNM results in most cases from the absence or

instability of MTM1 [8]. Recent results show that Mtm1 p.R69C

mice model is associated to mild CNM phenotypes with

undetectable MTM1 protein levels, however the presence of

residual protein that might account for the milder phenotype

compared to the Mtm1 KO mice cannot be ruled out [39]. One

exception was the MTM1S376N mutant associated to normal

protein level in lymphoblast and leading to severe XLCNM [8,9].

The MTM1S376N mutant is phosphatase inactive in vitro [12] and
in vivo (Figure S5). However, the level of this MTM1 mutant was

not investigated in patients’ muscle, as it requires a muscle biopsy

from a patient deceased a long time ago in the neonatal period,

and thus it is possible that this mutation leads to the instability of

the protein in muscle. Moreover, Pierson et al. recently showed

that the mutation predicted to lead to the R69C aminoacid change

was in fact promoting a splicing defect and loss of the protein in

the skeletal muscle of the R69C knock-in mice [39], suggesting

that other missense mutations might impact on splicing in the

diseased tissue. As exogenous expression of this MTM1S376N

mutant and of the phosphatase-dead MTM1C375S improves

muscle atrophy, fiber hypotrophy and organelles positioning

defects, we conclude that these pathways are not mainly linked

to the phosphatase activity but to other functions of MTM1. Based

on these new findings, we rather propose that the MTM1

myotubularin protein might be a key effector involved in complex

protein-protein interactions required for proper muscular func-

tions. Indeed, MTM1 does not display a skeletal muscle-specific

expression [40], whereas the XLCNM disease is mostly restricted

to skeletal muscle. This would suggest that MTM1 interacts with

muscle specific proteins and is required for their proper

localization/function. Among these, the muscle-specific interme-

diate filament desmin involved in organelle positioning is a good

candidate. MTM1 is required for proper desmin localization and

assembly and some XLCNM-causing mutations disrupt the

MTM1-desmin interaction [32]. Furthermore the MTM1C375S

phosphatase-dead mutant restores the abnormal desmin organi-

zation in MTM1-deficient muscle, suggesting that the phosphatase

activity of MTM1 is not required for normal desmin organization

and assembly in muscle fibers. Thus, the maintenance of desmin

organization and IFs network is a phosphatase-independent

function of MTM1 that is important for maintenance of the

muscle structure and function.

Our work also shows that a disease due to mutation(s) affecting

an enzyme is not always associated with loss of the corresponding

enzymatic activity. Such dual function of PPIn metabolizing

enzymes has been described for class I PI3K. Knock-out mice

lacking PI3K protein expression show different phenotypes than

knock-in mice expressing a kinase-dead mutant [41,42]. More-

over, manipulation of myotubularins or other PPIn regulatory

proteins by knock-down, overexpression or specific intracellular

targeting is being widely used to decipher the roles of these lipids

[43]. Our results call for cautiousness when interpreting the

observed effects as they may result from a function unrelated to

their enzymatic activity.

In conclusion, our data unravel an important and novel aspect

of XLCNM as we provide evidences for a scaffolding activity of

MTM1 for muscle specific proteins, such as desmin, which

appears more important than its phosphatase activity in the

maintenance of the XLCNM pathology. Our findings have

important implications in the design of therapeutic approaches

aiming to manipulate the phosphoinositide level in the different

diseases linked to myotubularin homologues. Whether the MTM1

phosphatase activity is also dispensable for the development of the

disease and the exact link between PPIn modulation and muscle

function remains to be established.

Materials and Methods

Ethics statement
Animals were housed in a temperature-controlled room (19–

22uC) with a 12:12-h light/dark cycle. Mice were humanely killed

by CO2 inhalation followed by cervical dislocation, according to

national and European legislations on animal experimentation.

Plasmids, yeast strains, and media
The human MTM1 ORF was cloned into pENTRTM1A

plasmid (Invitrogen) to generate an entry clone. Gateway system

(Invitrogen) was used to clone the different MTM1 constructs into

the yeast expression vectors pVV200 and pVV204 or into a

pAAV-MCS vector.

S. cerevisiae fab1D (MATa ura3D0, leu2D0, his3-D1, met15-

D0, fab1::kanMX4) mutant (EUROSCARF collection), ymr1D

Figure 9. MTM1-WT but not MTM1-C375S normalizes PtdIns3P
levels in the injected muscles. Lipids were extracted from wild-type,
Mtm1 KO, and Mtm1-KO injected with AAV-Mtm1-WT and AAV-Mtm1-CS
tibialis anterior muscles and PtdIns3P levels were quantified. The results
were presented as the levels of PtdIns3P to the total phospholipids. The
graphs represent the mean of two independent experiments shown
with the standard deviation. *p,0.05.
doi:10.1371/journal.pgen.1002965.g009
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(MATa ura3-52, leu2-3,112, his3-D200, trp1-D901, lys2-801,

suc2-D9 ymr1::HIS3) and WT (SEY6210 strain; MATa ura3-52,

leu2-3, 112, his3-D200, trp1-D901, lys2-801, suc2-D9) cells [21]

were grown at 30uC in rich medium (YPD): 1% yeast extract,

2% peptone, 2% glucose or synthetic drop-out medium (SC):

0.67% yeast nitrogen base without amino acids, 2% glucose and

the appropriate amino acids mixture to ensure plasmid

maintenance.

Western blot analysis
Yeast cells were lysed by glass beads using a FASTprep (MP

Biomedicals) in PBS1X, sorbitol 0.3 M, Complete Mini EDTA-

free protease inhibitor cocktail (Roche Diagnostics) and PMSF

1 mM. Lysates were cleared and analyzed by SDS-PAGE and

Western blot using mouse monoclonal 1G6 anti-MTM1 (1/

10,000) [8] and mouse monoclonal anti-PGK1 (1/400) (Invitro-

gen) antibodies. Muscles were homogenized in 50 mM Tris, 10%

glycerol, 1 mM EDTA, 50 mM KCl, 10 mM beta-glycerophos-

phate, 10 mM NaF, 1 mM Na3VO4, 0.1% SDS, 2% Triton X-

100 and protease inhibitors (Roche Diagnostics) using a Polytron

homogenizer (Kinematica Inc.). Mouse anti-glyceraldehyde-3-

phosphate dehydrogenase (Chemicon) and rabbit anti-MTM1

antibody (R2868) were used for detection.

Yeast vacuolar staining
FM4-64 (Invitrogen) staining was performed as previously

described [44]. Labeled yeast cells were observed by fluorescence

microscopy (Axiovert200, Zeiss) in SC-trp medium. Cells were

counted and classified into different categories: more than two

lobes, small one or two lobes and unilobar large or giant vacuoles.

Yeast phosphoinositide analysis
Labeling and lipid extraction procedures were done as

previously described [45]. ymr1D cells expressing MTM1 were

grown for 16 h in presence of 40 mCi/ml H3
32PO4 (Perkin

Elmer) before lysis by TCA. Lipids were extracted with 95%

EtOH:diethyl ether:pyridine at 15:5:1 v/v. Samples were

analyzed by TLC and labeled spots were identified by

autoradiography and PPIn standards. Labeled PtdInsP as well

as PtdInsP2 were scraped off the plates, collected and deacylated

before being analyzed by high-performance liquid chromatogra-

phy (HPLC) Whatman PartiSphere 5 SAX (4.66125 mm) as

previously described [46].

PtdIns5P and PtdIns3P mass assay from yeast and muscle
extracts
ymr1D cells producing the different MTM1 were grown to

exponential phase, lipids extraction and TLC separation were

performed as described above. Spots corresponding to PtdInsP

were extracted and submitted to an in vitro kinase assay using

recombinant PtdIns5P 4-kinase type IIa in presence of [c-32P]-

ATP [28,29]. Among the different PtdInsP species, this kinase

specifically phosphorylates PtdIns5P to PtdIns(4,5)P2 and the

measured quantity of 32P-PtdIns(4,5)P2 will directly represent the

in vivo PtdIns5P intracellular levels. The total lipids from TA

muscles were extracted with the Dounce homogenizer using the

method of Bligh and Dyer [47] and prepared for mass assay to

measure the intracellular PtdnIs3P levels in muscle by a novel

mass assay using recombinant PIKfyve kinase in presence of

[c-32P]-ATP [35].

Figure 10. XLCNM phenotypes that are ameliorated by the MTM1-C375S phosphatase-dead mutant to a similar extend as with the
wild-type MTM1, in the Mtm1 KO muscle. Phosphate-independent and phosphatase-dependent functions are underlined.
doi:10.1371/journal.pgen.1002965.g010
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Production and purification of Adeno-Associated Virus
(rAAV)
rAAV2/1 vectors were generated by a triple transfection of

AAV-293 cell line with pAAV2-insert containing the insert under

the control of the CMV promoter and flanked by serotype-2

inverted terminal repeats, pXR1 containing rep and cap genes of

AAV serotype-1, and pHelper encoding the adenovirus helper

functions. Viral vectors were purified and quantified by real time

PCR using a plasmid standard pAAV-eGFP. Titers are expressed

as viral genomes per ml (vg/ml) and rAAV titers used here were 5–

7.1011 vg/ml.

AAV–transduction of wild-type tibialis anterior muscle of
mice
Two to three week-old male wild-type and Mtm1 KO 129PAS

mice were anesthetized by intraperitoneal injection of 5 ml/body

gram of ketamine (20 mg/ml, Virbac) and xylazine (0.4%,

Rompun, Bayer). Tibialis anterior (TA) muscles were injected

with 20 ml of AAV2/1 preparations, or AAV2/1 empty virus

solution. Animals were housed in a temperature-controlled room

(19–22uC) with a 12:12-h light/dark cycle. Mice were humanely

killed by CO2 inhalation followed by cervical dislocation,

according to national and European legislations on animal

experimentation. TA muscles were dissected 4 weeks after

injection and frozen in nitrogen-cooled isopentane and liquid

nitrogen for histological and immunoblot assays, respectively.

Functional analysis of the muscle
Muscle force measurements were evaluated by measuring in situ

muscle contraction in response to nerve and muscle stimulation, as

described previously. Animals were anesthetized by intraperitoneal

injection of pentobarbital sodium (50 mg per kg). The distal

tendon of the TA was detached and tied with a silk ligature to an

isometric transducer (Harvard Bioscience, Holliston, MA). The

sciatic nerve was distally stimulated, response to tetanic stimulation

(pulse frequency of 50 to 143 Hz) was recorded, and absolute

maximal force was determined. After contractile measurements,

the animals were sacrificed by cervical dislocation. To determine

specific maximal force, TA muscles were dissected and weighted.

Histological and immunofluorescence analysis of skeletal
muscle
Transverse cryosections (8 mm) of mouse TA skeletal muscles

were stained with hematoxylin and eosin (HE), succinate

dehydrogenase (SDH) and viewed with a fluorescence microscope

(DM4000; Leica Microsystems, Sunnyvale, CA). Cross-sectional

area (CSA) was analyzed on HE sections from TA mouse skeletal

muscles, using the RoiManager plugin of ImageJ image analysis

software (Rasband, W.S., ImageJ, U. S. National Institutes of

Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/,

1997–2009). The percentage of TA muscle fibres with centralized

or internalized nuclei was counted using the cell counter plugin of

ImageJ image analysis software. Transverse cryosections (8 mm)

sections of mouse TA skeletal muscles were prepared, fixed, and

stained with antibodies to desmin (Santa Cruz). Nuclei were

detected by co-staining with Hoechst (Sigma-Aldrich) for 10 min-

utes. Sections were viewed using a fluorescence microscope

(DM4000; Leica Microsystems, Sunnyvale, CA).

Transmission electron microscopy
Muscle biopsies from TA muscles of anesthetized mice were

fixed with 4% PFA and 2.5% glutaraldehyde in 0.1 M phosphate

buffer (pH 7.2) and processed as described [30]. Determination of

the triads organization was accomplished on images at the

magnification of 625,000. The triad structure was identified

using morphological criteria on the longitudinal sections of the

muscle and the number of triads per sarcomere was quantified.

Ratio of triads/sarcomere was calculated by dividing number of

triad structure identified by the total number of sarcomere present

on the section.

Microsome preparations
Frozen muscles were homogenized to prepare membranous

(microsomal) fractions from skeletal muscles [32]. Membrane

fractionation was confirmed using several protein markers: mouse

anti-SERCA1 (MA3–911; ABR) and mouse anti-a-sarcoglycan
[48], cytoplasmic protein mouse anti-b-tubulin (IGBMC antibody

facility) and nucleus protein mouse anti-TATA-box-binding

protein (IGBMC antibody facility).

Desmin solubility assays
Cells or muscles were treated as described in [32] with the

following modifications. Extracts were obtained by homogeniza-

tion in extraction buffer (50 mM Tris-Cl pH 7.5, 50 mM NaCl,

5 mM EDTA, 5 mM EGTA, 1 mM DTT, 0,5% Triton X-100,

2 mM PMSF) supplemented with complete protease inhibitor

tablet (Roche), 1 mM Leupeptin and 1 mM pepstatin A (SIGMA).

Equal weight of tibialis anterior muscles were homogenized with a

Polytron homogenizer (Kinematica Inc.) in ice-cold extraction

buffer supplemented with 0.05% (w/v) SDS. The muscle extracts

were incubated ON at 4uC in the extraction buffer with 0.1% of

N-Lauroylsarcosine Sodium Salt solution (SIGMA). Muscle

extracts were centrifuged during 30 min at 30,000 rpm at 4uC.

Pellets were collected as the insoluble material and solubilized in

extraction buffer supplemented with 8 M Urea.

Extended experimental procedures are available in Text S1.

Supporting Information

Figure S1 Analysis of growth upon MTM1 expression in ymr1D
yeast cells. (A) Drop test growth assays on ymr1D mutant yeast cells

transformed or not with pVV204 (CEN, expression) or pVV200

(2 m, overexpression) plasmids bearing the different MTM1

proteins. Mid-log phase cultures of the indicated yeast cells were

serially diluted to the indicated OD600 and spotted onto YPD

medium. Growth was evaluated after 2 days of incubation at 30uC.

(B) Growth curves of ymr1D cells bearing pVV200 (2 m) plasmid

either empty or coding for different MTM1 forms. Cell

concentrations were measured by OD600 nm at the indicated time

after incubation at 30uC. The growth curve corresponds to the

logarithmic curve.

(TIF)

Figure S2 Analysis of vacuolar morphology upon MTM1

expression in wild-type yeast cells. (A) Anti-MTM1 Western-blot

on wild-type yeast protein extracts. Protein extracts of wild-type

yeast cells transformed or not with pVV204 (CEN, expression) or

pVV200 (2mu, overexpression) empty plasmids or bearing the

indicated MTM1 constructs were analyzed by Western-blot with

the monoclonal 1G6 anti-MTM1 antibody. Degradation products

could be seen associated to high expression. (B) Mid-log phase

yeast cells cultures of wild-type (WT) yeast strain transformed or

not with pVV204 (CEN) or pVV200 (2 m) plasmids bearing the

different MTM1 forms were serially diluted to the indicated

OD600 and spotted on YPD plates. Growth was evaluated after 2

days of incubation at 30uC. (C) Quantification of the different

vacuolar morphologies observed in wild-type yeast cells (SEY6210

WT) producing MTM1, MTM1C375S, MTM1V49F, MTM1R69C,
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MTM1N180K or MTM1R421Q on either pVV204 (CEN, expres-

sion) or pVV200 (2 m, overexpression) plasmid. For each strain,

300 to 600 cells were observed by microscopy (DIC and FM4-64)

and sorted into one of the three categories: unilobar large or giant

(in white), small one or two lobes (in grey) and more than two lobes

or fragmented (in black) vacuoles. A scheme representing these

three classes of vacuolar phenotypes is presented at the top of the

graph. Histograms show the proportion of each class in the

different transformed yeast cells.

(TIF)

Figure S3 Subcellular distribution of the different MTM1

mutants. Total yeast protein extracts of ymr1D cells expressing

wild-type MTM1 or the different mutants from pVV204 (CEN)

were subjected to differential centrifugation. P13 and P100 pellet

fractions represent the high-density membrane fractions, and the

supernatant S100 the soluble fraction. Equivalent amounts of

proteins were loaded, separated by SDS-PAGE and analyzed by

western-blot. MTM1 was detected with mouse monoclonal 1G6

antibodies. The transmembrane sorting receptor Vps10 and the

cytosolic 3-phosphoglycerate kinase Pgk1 were used as markers.

(TIF)

Figure S4 In vitro phosphatase activity assays on the different

MTM1 mutants. Yeast protein extracts from ymr1D cells

transformed with pVV200 (overexpression) plasmid either empty

or coding for wild type MTM1 protein or the different mutants

were subjected to anti-MTM1 immunoprecipitation. After control

by anti-MTM1 Western-blot, comparable amounts of MTM1

were tested for in vitro phosphatase activity using fluorescent C6-

BODIPY-FL-PPIn, according to [49] and [28]. (A) The products

of the enzymatic reaction were separated by TLC (Thin Layer

Chromatography) allowing the different PPIn species (PtdIns,

PtdIns monophosphate and PtdIns bisphosphate) to migrate at a

different height. Fluorescent PtdIns, PtdIns3P, PtdIns5P (barely

detectable) and PtdIns(3,5)P2 were spotted on the TLC and used as

controls for the TLC migration (phosphoinositides). The TLC

plate was revealed under a UV table. (B) Percentage of hydrolysis

of the fluorescent phosphoinositide substrates (PtdIns3P in blue

and PtdIns(3,5)P2 in red) are reported for each construct.

(TIF)

Figure S5 Model of MTM1-C375S and MTM1-S376N. The

crystal structure of MTMR2 (PDB accession number 1ZSQ) was

used to model the MTM1 catalytic pocket that shares the same

amino acids. The figure was prepared with the PyMOL software

(The PyMOL Molecular Graphics System, Version 1.5.0.1

Schrödinger, LLC.). (A) MTM1-C375S model. (B) MTM1-

S376N model. (C) The MTM1-S376N mutant is catalytically

inactive in vivo in yeast cells. Protein extracts of ymr1D cells

transformed with pVV204 (CEN) or pVV200 (2 m) plasmids

bearing the MTM1-S376N mutant were analyzed by Western-

blot. MTM1 production was detected with the mouse monoclonal

1G6 anti-MTM1 antibody. Protein loading was evaluated by

immunodetection of the yeast endogenous 3-phosphoglycerate

kinase Pgk1 protein. (D) Quantification of the different vacuolar

morphologies observed in ymr1D yeast cells producing MTM1,

MTM1C375S or MTM1S376N on pVV200 (2 m, overexpression)

plasmid. For each strain, 300 to 500 cells were observed by

microscopy (DIC and FM4-64) and sorted into one of the three

categories: unilobar large or giant (in white), small one or two lobes

(in grey) and more than two lobes or fragmented (in black)

vacuoles. Histograms show the proportion of each class in the

different transformed yeast cells. (E) Quantitative analysis of

PtdIns5P produced in ymr1D cells transformed with the pVV204

(CEN, expression) plasmid empty or bearing MTM1 wild-type,

MTM1-C375S or MTM1-S376N mutant. The intracellular levels

of PtdIns5P are expressed as pmol for 200 units of OD600 nm of

yeast cells. The graphs represent the mean of two independent

experiments shown with the standard deviation.

(TIF)

Text S1 Extended experimental procedures.

(PDF)
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