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Abstract 

Background: Total liquid ventilation (TLV) with perfluorocarbons has been shown to induce 

rapid protective cooling in animal models of myocardial ischemia and cardiac arrest, with 

improved neurological and cardiovascular outcomes after resuscitation. Here, we 

hypothesized that hypothermic TLV can also limit kidney injury after cardiac arrest. 

Methods: Anesthetized rabbits were submitted to 15-min of untreated ventricular fibrillation. 

After resuscitation, three groups of 8 rabbits each were studied: 1) life support plus 

hypothermia (32-33°C) induced by cold TLV (TLV group), 2) life support without hypothermia 

(Control group), 3) Sham group (no cardiac arrest). Life support was continued for 6 hours 

before euthanasia and kidney removal.  

Results: Time to target esophageal temperature was less than 5-min in the TLV group. 

Hypothermia was accompanied by preserved renal function in the TLV group as compared to 

Control regarding numerous markers including creatinin blood levels (12±1 vs 16±2 mg/L, 

respectively; mean±SEM), urinary N-acetyl-β-(D)-glucosaminidase (1.70±0.11 vs 3.07±0.10 

U/mol creat), γ-glutamyltransferase (8.36±0.29 vs 12.96±0.44 U/mol creat) or β2-microtubulin 

(0.44±0.011 vs 12±0.04 U/mol creat). Kidney lesions evaluated by electron microscopy and 

conventional histology were also attenuated in TLV vs Control. The renal-protective effect of 

TLV was not related to differences in delayed inflammatory or immune renal responses since 

transcriptions of, e.g., Interferon-γ, Tumor necrosis factor-α, Interleukin-1β, Monocyte 

chemoattractant protein-1, Toll-like receptor-2, Toll-like receptor-4 and Vascular endothelial 

growth factor were similarly altered in TLV and Control vs Sham. 

Conclusions: Ultrafast cooling with TLV is renal-protective after cardiac arrest and 

resuscitation, which could increase kidney availability for organ donation. 
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Introduction 

 Institution of therapeutic hypothermia has been well demonstrated to improve both 

survival and neurological outcome in patients resuscitated after out-of-hospital cardiac arrest 

1,2. Beyond this neuroprotective effect, it is also important to investigate the effect of 

hypothermia on the multivisceral dysfunction and the so-called “post-cardiac syndrome” 3. As 

example, acute kidney injury affects ~12% of the survivors after cardiac arrest and could 

worsen the prognosis 4. In this setting, Susantitaphong et al. recently analyzed clinical 

studies reporting kidney-related outcomes and demonstrated that therapeutic hypothermia 

neither prevented the development of acute kidney injury nor dialysis requirement 5. In 

animal models of cardiac arrest, the benefit afforded by hypothermia however directly 

depends upon its rapidity of institution after cardiopulmonary resuscitation 6. This benefit was 

investigated regarding cardiac and neurological outcomes 6-10 while renal function was not 

precisely investigated. Therefore, we hypothesized that hypothermia can also exert a renal-

protective effect after cardiac arrest if applied very rapidly after the no-flow episode. 

 An original strategy providing ultrafast cooling is total liquid ventilation (TLV) of the 

lungs with temperature-controlled perfluorocarbons 11. TLV can indeed use the lung as a 

heat exchanger and cool the body while maintaining gas exchanges 10,12-14. As compared to 

conventional cooling with combined cold blankets and fluid administration, TLV provided a 

potent protection on brain and heart in rabbits submitted to equal or less than 10 min of 

cardiac arrest 10,15. Here, we propose to use more severe experimental conditions inducing 

kidney dysfunction after 15 min of cardiac arrest in rabbits. We hypothesised that ultrafast 

cooling with TLV can increase kidney resistance to the post-cardiac arrest syndrome. Our 

endpoints were kidney function biomarkers, morphological appearance and transcriptomic 

responses. 
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Materials and Methods 

 The experiments were conducted in accordance with French official regulations, after 

approval by the institutional Animal Care Committee (ComEth “Anses/ENVA/UPEC” n°16, 

Maisons-Alfort; protocol 13/12/11-5). It conformed with the guidelines laid out in the Guide for 

the Care and Use of Laboratory Animals from the National Academy of Science. 

Animal preparation 

 New Zealand rabbits (3.0-3.5 kg) were anesthetized using zolazepam, tiletamine and 

pentobarbital (all 20-30 mg/kg i.v.). They were intubated and mechanically ventilated 

(FiO2=100%). After administration of pancuronium bromide (200 µg/kg i.v.), two electrodes 

were implanted upon the chest and inserted into the esophagus for subsequent induction of 

ventricular fibrillation. Rectal, esophageal and tympanic temperatures were continuously 

monitored using thermal probes (Harvard Apparatus, Paris, France). Throughout the 

protocol, external electrocardiogram was recorded, as well as arterial blood pressure from a 

catheter implanted into the ear artery. Data were digitalized and analyzed using the data 

acquisition software HEM v3.5 (Notocord, Croissy-sur-Seine, France).  

Experimental protocol 

As illustrated in Figure 1, the animals were randomly assigned after a period of 

stabilization to the Sham group or two groups submitted to cardiac arrest (Control and TLV 

groups). In these two groups, cardiac arrest was induced by ventricular fibrillation by passing 

an alternating current (10 V, 4 mA) between the implanted electrodes. After 15 min of 

untreated fibrillation, cardiopulmonary resuscitation was started using cardiac massage (~ 

200 compressions/min), electric attempts of defibrillation (5-10 J/kg) and intravenous 

administration of epinephrine (15 µg/kg i.v.). After resumption of spontaneous circulation 

(ROSC), administration of epinephrine was still permitted with an infusion pump to maintain 

mean arterial pressure at ~80 mmHg. In the TLV group, the animals were cooled to 32°C 

using TLV after ROSC. The lungs were filled with 10 ml/kg of perfluorocarbon (Fluorinert, 
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3M, Cergy, France) and the endotracheal tube was connected to our prototype of  liquid 

ventilator (tidal volume = 7-10 ml/kg; respiratory rate = 6 breaths/min). The temperature of 

the perfluorocarbon was adjusted to maintain esophageal temperature at a target 

temperature of ~32°C. After 20 min of TLV and achievement of the hypothermic target 

temperature, the perfluorocarbon was evacuated from the lungs and the endotracheal tube 

was again connected to a conventional mechanical ventilator. Hypothermia was maintained 

externally at 32°C during the subsequent entire follow-up. In all groups, the animals were 

followed during a total duration of 6 hours after cardiac arrest. Blood samples were 

withdrawn at baseline, 15, 60, 180 and 360 minutes for the assessment of blood creatinin 

levels and blood gases partial pressure. Urine production was also measured, as well as 

urinary creatinin concentration for calculation of the corresponding clearance. We also 

assessed blood and/or urinary osmolarity (Freezing point depression osmometer; Roebling 

osmometer, Burladingen, Germany) and levels of sodium, glucose, creatin phosphokinase 

(Hitachi/Roche Cobas, Roche Diagnostic, Meylan, France), N-acetyl-β-(D)-glucosaminidase 

(proximal tubule lysosomal enzyme; Roche Diagnostic, Mannheim, Germany), γ-

glutamyltransferase (marker of acute renal injury; Roche Diagnostic, Mannheim, Germany) 

and β2-microtubulin (marker of proximal tubule dysfunction; Roche Diagnostic, Mannheim, 

Germany). Fractional sodium excretion was calculated from blood and urinary sodium levels. 

At the end of the follow-up, animals were euthanized and kidneys were sampled for electron 

microscopy, conventional histology and molecular biology.  

Electron microscopy and histological analyses 

Kidneys samples were processed for transmission electron microscopy, as previously 

described 16. Briefly, tissue sections of 1 mm3 were fixed in glutaraldehyde (3%; 2h at 4°C), 

washed and postfixed in osmium tetroxide (1%; 1h at 4°C). They were dehydrated in graded 

series of aceton and embedded in araldite. Ultrathin sections were cut and stained with 

uranyl acetate and lead citrate and were examined under an electron microscope (JEOL 
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1010, Tokyo, Japan). Mitochondria integrity (membrane damage and crest reduction), 

cellular oedema, loss of brush bordure, cellular vacuolization, lyses of intracellular organelles 

were evaluated. The degree of histological lesions was determined in the cortex and medulla 

using a semi-quantitative graded scale from 0 to 10 according to lesions extension among 

the kidney samples (0: no alterations; 1, mild lesions < 10% of the kidney; 2, lesions affecting 

11-20%; 3, 21-30%; 4, 31-40%; 5, 41-50%; 6, 51-60%; 7, 61-70%; 8, 71-80%; 9, 81-90%; 10, 

>91%). Scores were blindly attributed by two independent observers after examination of at 

least 10 different sections. 

Kidneys slices were also fixed in formaldehyde (4%) for conventional histology after 

hematoxylin-eosin-saffron staining. We used a 0-5 score system to blindly quantify the 

lesions severity in the cortex and the medulla (0: normal appearance; 5: extensive necrosis). 

For each animal, the sum of these two scores (cortex and medulla) led to an overall score 

from 0 to 10. Detection of macrophages was performed on paraffin tissue sections using the 

RAM11 antibody against rabbit macrophages (Dako, Trappes, France), as previously 

described 17. The brush border integrity was also evaluated by immunochemistry staining 

using the CD10  antibody (Dako). 

Real-Time Quantitative polymerase chain reaction 

In all animals, kidney samples were fixed immediately after organ removal using liquid 

nitrogen. For cortical tissue RNA extraction, we used a commercial kit (Macherey Nagel, 

Hoerdt, France). Genomic DNA was removed using DNA-free kit (Applied Biosystems, Saint 

Aubin, France) and first-strand reverse transcription (Applied Biosystems) was performed. 

Real-Time polymerase chain reaction assays were performed on a RotorGene Q 

(Qiagen,Courtaboeuf, France) following the manufacturer’s recommendations. Rabbit DNA 

primers were designed using OligoPerfect™ (Invitrogen, Carlsbad, NM, USA), QuantPrim 

(Universität Potsdam, Max-Planck-Gesellschaft) and OligoAnalyser (Integrated DNA 

Technologies, Coralville, IO, USA), with the sequences detailed in Supplemental Digital 
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Content 1 (Table). Finally, messenger RNA expression level, relative to expression in healthy 

kidneys, was quantified with the Pfaffl method (expressed as Relative Fold Change), using 

ribosomal L19, β Actine and RPLPO as gene references. 

Statistics 

Data were expressed as mean±SEM. Statistical analyses were performed using a 

statistical software (SigmaStat 3.5, Systat Software Inc., Chicago, IL, USA). Hemodynamic 

and biochemical parameters were compared between groups using a two-way ANOVA for 

repeated measures. Post-hoc analyses were performed between groups at each time-point 

using a Student t-test with Bonferonni correction (two-tailed). Values were not compared 

between the different time-points in order to avoid multiple comparisons. Histological scores 

and molecular biology markers were compared between groups using a Kruskall-Wallis non 

parametric test. Significant differences were determined at P≤0.05. 
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Results 

 Twenty-four animals were included in the different groups (n=8 / group), with no 

missing data. In Control and TLV groups, ROSC was obtained in 4.1±0.7 and 3.7±0.5 min 

after cardiac arrest, respectively.  

TLV affords a very rapid cooling and preserves hemodynamic 

 As illustrated in Figure 1B, a mild and reversible decrease in esophageal and rectal 

temperatures was observed in the Control group after cardiac arrest. In comparison, 

temperatures decreased very rapidly in the TLV group and achieved 32°C within 5 min after 

the onset of TLV in the esophagus. As shown in Table 1, this was associated with a strong 

decrease in heart rate in the TLV group as compared to Control and Sham groups (e.g, -32% 

in TLV vs Control groups at t=360 min after cardiac arrest). Only minor changes were 

observed regarding mean blood pressure as our goal was to support values of ~80 mmHg 

using epinephrine infusion. The total doses administered to achieve this goal was 

significantly higher in Control vsTLV groups (990±179 and 361±23 µg/kg, respectively), 

showing a favourable hemodynamic effects of hypothermia. Despite epinephrine 

administration, blood pressure was moreover significantly decreased in the Control group at 

the end of the follow-up (t=360 min after cardiac arrest) as compared to the TLV group. In 

these two groups, we also observed a dramatic increase in glucose and lactate blood levels, 

as well as acidosis and decrease in blood oxygen partial pressure (Table 1). During the TLV 

episode (15 min after cardiac arrest), blood carbon dioxide partial pressure was also 

significantly higher in the TLV group as compared to Control and Sham. Creatinin 

phosphokinase blood levels were similarly increased in TLV and Control vs Sham. 

TLV limits kidney injury after cardiac arrest 

 As shown in Table 2, blood creatinin levels were significantly increased at the end of 

the follow-up (360 min) in both groups submitted to cardiac arrest as compared to the Sham 

group. They were significantly higher in the Control group as compared to TLV. Creatinin 
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clearance was also significantly reduced in both Control and TLV groups when compared to 

Sham. This reduction tended to be more important in the Control vs TLV group (+50%) but 

this did not achieve statistical significance. Total urine output also non-significantly 

decreased in Control as compared to Sham and TLV groups. As shown in Table 3, the 

beneficial effect of TLV on tubule function was evidenced by preserved fractional sodium 

excretion and urine concentration capacity. We also observed a limited glucose urinary 

excretion in TLV as compared to Control animals, despite similar blood glucose levels (Table 

1). The urinary concentrations of selective markers of tubular damages, i.e., N-acetyl-β-(D)-

glucosaminidase, β2-microtubulin and γ-glutamyl transferase, were also significantly 

decreased in TLV vs Control despite not completely normalized as compared to Sham 

animals. 

 These functional alterations were supported by kidney lesions in animals submitted to 

cardiac arrest as compared to Sham animals (Figures 2 and 3). As shown in Figure 2, 

electron microscopy revealed altered microvilli (brush border) and loss in cytosolic and 

mitochondrial crest density in the cortex and medulla in the Control group (Figures 2C and 

2G). In comparison, cortex and medulla appearance was better preserved in the TLV group 

(Figure 2D and 2H). In Sham animals, the appearance was normal at electron microscopy 

(Figures 2B and 2F). This led to a significant decrease in lesion score in TLV vs Control 

group with a significant increase for both groups when compared to Sham (Figure 2A). The 

glomerular apparatus was preserved in all groups (Figure 2E). These differences were 

confirmed using conventional histology (Figure 3A). The injuries were indeed particularly 

marked in the cortex of the Control group as illustrated by a tubular necrosis in Figure 3C. In 

the TLV group, lesions were attenuated with “only” dilation of the proximal tubes (Figure 3D). 

Virtually no macrophages infiltrations were detected using the RAM-11 antibody (Figure 3E-

3H), even in territories with extensive necrosis in the Control group (Figure 3F). Figure 3G 

illustrates one of the rare macrophages in a territory with a normal appearance in this same 
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group. Immunochemistry marking of the brush border membrane showed extensive 

degradation in Control animals (Figure 3J) as compared to Sham animals (3I). These 

alterations were not prevented in all animals in the TLV group. Some kidneys indeed showed 

normal appearance (Figure 3K) while others had clear brush border membrane alteration 

(Figure 3L). 

Cardiac arrest strongly upregulates hypoxia and inflammation markers in both Control and 

TLV groups 

 As shown in Figure 4A, we observed a dramatic increase in the expression of hypoxia 

markers in both Control and TLV groups as compared to Sham (Heme Oxygenase-1 (HO-1), 

Erythropoïetin, Hypoxia-Inducible Factor 1α  and Vascular Endothelial Growth Factor. The 

expression of the apoptotic marker Fas and the mobility marker RhoA were also similarly 

expressed in TLV and Control groups (Figure 4B). As illustrated in Figures 4C and 4D, the 

expression of endothelial activation and innate immunity markers was also not different 

between these two groups, including E-selectin, Vascular Cell Adhesion Molecule 1, 

Interleukin (IL)-10, IL-1β, Interferon-γ, Tumor Necrosis Factor-α, IL-18, Monocyte 

Chemoattractant Protein-1 and Toll-Like Receptors (TLR) 2 and 4. 
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Discussion 

 In the present study, we demonstrate that ultrafast cooling induced by TLV protects 

kidneys in a severe model of cardiac arrest in rabbits. This was strongly supported by 

improved renal function and preserved morphology using electron microscopy and 

conventional histology. Transcriptomic profiles were not much affected by TLV regarding 

numerous genes involved in innate immunity and hypoxic responses. 

 We previously showed that ultrafast hypothermic TLV can strongly prevent both 

cardiovascular and neurological dysfunctions after cardiac arrest 10. These investigations 

were conducted in rabbits after shorter duration of cardiac arrest comprised between 5 and 

10 min 10. In these conditions, we observed dramatic cardiac and neurological dysfunctions 

while renal dysfunction was very mild. Here, we used a prolonged episode of 15 min of no-

flow to obtain acute renal dysfunction and likely very poor neurological prognosis. TLV 

preserved urine output and significantly limited the rise in blood creatinin levels. The latter 

benefit was importantly not related to a decreased release of creatinin with hypothermia 

since creatinin phosphokinase blood levels were similarly enhanced in TLV and Control 

groups. Surprisingly, we did not observe any significant improvement in creatinin urinary 

clearance in TLV vs Control. It is rather difficult to analyze this result according to the 

complex effect of hypothermia on urine production. After out-of-hospital cardiac arrest, Zeiner 

et al. also showed a delayed recovery in creatinin clearance with therapeutic hypothermia 

(32-34°C) 18. One could also argue that hypothermia directly decreased urine production or 

conversely increased the production of diluted urine as previously showed in hypothermic 

patients treated for acute ischemic stroke 19 or with profound hypothermia 20,21. This was not 

the case in our experimental conditions as hypothermia preserved urine production and 

osmolarity in the TLV group as compared to Control. Importantly, the functional benefit 

afforded by TLV was also supported by a significant improvement of all markers of tubular 

damage, including N-acetyl-β-(D)-glucosaminidase,  β2-microtubulin and γ-glutamyl 
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transferase. It would also be relevant to investigate original and specific biomarkers such as 

Neutrophil gelatinase-associated lipocalin (NGAL) and Kidney injury molecule-1 22,23.  

 Morphological data definitely confirm the renal-protective effect of TLV in our study 

using either conventional histology or electron microscopy. Such a beneficial effect of 

moderate hypothermia has also been shown in animal models of regional renal ischemia-

reperfusion in rats 24. In the latter study, body temperature during ischemia dramatically 

affected the severity of injury, again showing the importance of per-ischemic and early 

cooling. Intra-ischemic hypothermia is however difficult to achieve during cardiac arrest, 

especially regarding abdominal and renal temperatures. In a recent meta-analysis including 

19 studies and 2218 patients, Susantitaphong et al. showed that therapeutic hypothermia 

neither prevented the development of acute kidney injury nor dialysis requirement but was 

associated with lower mortality 5. The present study suggests that the benefit of hypothermia 

could be still evidenced in very severe experimental conditions when it is induced very 

rapidly. 

 In the present study, the severity of the ischemic insult was also supported by kidney 

transcriptomic alterations. As an example, hypoxic stress led to a 30-50 fold increase in HO-

1 expression, as well as a 10 and 6 fold increases for Erythropoïetin and Hypoxia-Inducible 

Factor 1α, respectively. These expressions were not different between TLV and Control 

groups, suggesting that the renal-protective effect of TLV was not directly mediated through 

these pathways. However, one could speculate that the potent upregulation of Erythropoïetin 

and HO-1 could be associated with a facilitation of tissue repair, as previously suggested 

after tubulointerstitial injury and progressive nephritis 25.  We also did not observe any 

significant difference in transcriptomic profiles of cellular mobility, endothelial activation and 

innate immunity markers between Control and TLV groups. A non-significant decrease in 

TLR2 and pro-inflammatory Tumor Necrosis Factor-α and Interferon-γ markers was however 

observed in the TLV group, as well as a mild and non-significant upregulation of the 
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regulatory IL-10 cytokine. Interestingly, the latter cytokine was shown to mediate delayed 

protection afforded by remote ischemic preconditioning against myocardial ischemia-

reperfusion injury 26. Conversely, TLR2 and TLR4 expression are well known to mediate 

kidney ischemia-reperfusion damages 27,28. The lack of differences between groups could be 

a consequence of the early time-point of organ removal (6 h after cardiac arrest). This also 

suggests that the protective effect of TLV is at least in part related to other mechanisms, 

likely an early anti-necrotic effect through ultrafast hypothermia. Improvement in the 

hemodynamic status could also participate in the renal-protective effect. 

 The main limitation of the present study was therefore probably the short duration of 

follow-up before organ sampling and analyses after cardiac arrest. Animals were followed 

during only 6 h as it was difficult to maintain animals alive for much longer duration (e.g., 24 

h) according to the severity of the cardiac arrest insult (15 min of no-flow). In future studies, it 

could be relevant to analyse kidney function at later time-points, e.g. after transplantation in 

recipient animals. Hypothermic TLV could indeed offers quite new and promising therapeutic 

perspectives for uncontrolled organ donation after cardiac arrest or for controlled organ 

donation after brain death in initially resuscitated patients 29. It was not possible to conduct 

transplantation experiments in rabbits in the present experimental conditions but we currently 

are working on a new technology of liquid ventilation that could be used in a relevant porcine 

model for a definitive proof-of-concept using organ transplantation 30. There is indeed a high 

degree of proximity between human and pig kidneys with multilobular, multipapillary 

architecture, while mice, rats, dogs and rabbits have unilobular, unipapillary kidneys 31. In 

dogs and rodents, segmental arteries are bypassed due to the lack of multiple medullary 

pyramids, while in humans and pigs an elaborated system of interlobar and segmental 

arteries is present to supply the numerous kidney lobes 30.  
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 In conclusion, ultrafast cooling with TLV is renal-protective after cardiac arrest and 

resuscitation. Further experiments with organ transplantation might be relevant to afford a 

proof-of-concept in this setting. 
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Table 1: Heart rate, mean arterial pressure and blood biochemical parameters  
 

 

 
Baseline 

After cardiac arrest (min) 

15 60 180 360 
      

Heart rate (beats/min) 

  Sham 253±12 234±8 239±12 244±11 235±8 

  Control 254±8 204±15* 184±9* 187±5* 203±11* 

  TLV 250±7 151±6† 131±3† 137±2† 139±5† 
      

Mean blood pressure (mmHg)) 

  Sham 75±3 72±3 80±3 87±3 83±5 

  Control 81±4 84±4* 80±5 84±3 63±5* 

  TLV 78±3 98±3† 84±4 74±2† 74±5† 
      

Lactates blood levels (mmol/L) 

  Sham 3.0±0.3 2.8±0.5 2.6±0.3 2.2±0.3 2.2±0.5 

  Control 2.3±0.4 13.0±1.7* 12.9±1.3* 13.1±0.8* 11.6±1.3* 

  TLV 2.7±0.2 9.6±0.9† 12.1±1.0* 10.6±0.8* 9.8±1.0*  
      

Glucose blood levels (mg/dL) 

  Sham 183±23 180±19 130±15 133±6 126±4 

  Control 184±31 480±27* 536±35* 700±28* 550±47* 
  TLV 153±58 375±64* 460±76* 477±88† 474±82* 
      

Creatin phosphokinase blood levels (mg/Dl) 

  Sham 42±1 - - - 56±1 
  Control 43±1 - - - 69±2* 
  TLV 44±1 - - - 67±1* 
      

Blood pH 

  Sham 7.41±0.02 7.42±0.03 - 7.44±0.02 7.45±0.02 
  Control 7.42±0.02 7.05±0.05* - 7.06±0.08* 7.05±0.07* 
  TLV 7.42±0.05 6.92±0.06† - 7.11±0.05* 7.04±0.05* 
      

Blood pCO2 (mmHg) 

  Sham 46±3 37±4 - 37±3 38±2 
  Control 46±5 44±3 - 43±3 43±6 
  TLV 42±3 77±8† - 34±7 32±4 
      

Blood pO2 (mmHg) 

  Sham 532±31 558±34 - 550±29 559±38 
  Control 504±34 185±41* - 269±72* 250±65* 
  TLV 520±57 245±61* - 310±58* 201±71* 
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TLV, total liquid ventilation; *, p<0.05 vs corresponding Sham group; †, p<0.05 vs 

corresponding Sham and Control groups. 
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Table 2: Blood creatinin levels, urine production and creatinin clearance 

 
TLV. total liquid ventilation; *, p<0.05 vs corresponding Sham group; †, p<0.05 vs 

corresponding Sham and Control groups. 

 
 
 
 

 
Baseline 

After cardiac arrest 
T=360 min 

   
Blood creatinin levels (mg/L)   

  Sham 7.5±0.4 7.8±0.8 

  Control 7.4±0.6 16.1±1.8* 

  TLV 6.9±0.7 12.3±1.2† 
   

Total urine output (ml/h) 

  Sham - 6.3±1.6 

  Control - 3.5±0.6 

  TLV - 7.1±1.1 

   

Creatinin clearance (ml/min/kg)   

  Sham - 2.8±0.5 

  Control - 0.6±0.2* 

  TLV - 0.9±0.2* 
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Table 3: Urinary markers of renal function 

 
TLV. total liquid ventilation; *, p<0.05 vs corresponding Sham group; †, p<0.05 vs 

corresponding Sham and Control groups. 

 
Baseline After cardiac arrest 

T=360 min 

   
Fractional sodium excretion  (%)   

  Sham 1.04±0.03 0.84±0.03 

  Control 1.01±0.03 4.58±0.67* 

  TLV 1.04±0.02 2.09±0.11† 
   

Ratio between plasmatic and urinary osmolarity 

  Sham 0.93±0.01 0.91±0.01 

  Control 0.94±0.01 1.31±0.02* 

  TLV 0.96±0.01 1.01±0.00† 
   

Glucose urinary levels (g/L)   

  Sham 0.06±0.01 0.10±0.02 

  Control 0.06±0.01 1.27±0.02* 

  TLV 0.06±0.01 0.40±0.03† 
   

N-acetyl-β-(D)-glucosaminidase urinary levels (Unit / mol creatinin) 

  Sham 0.84±0.05 0.87±0.07 

  Control 0.94±0.04 3.07±0.10* 

  TLV 1.0±0.03 1.70±0.11† 
   

β2-microtubulin  urinary levels (Unit / mol creatinin) 

  Sham 0.18±0.01 0.20±0.01 

  Control 0.17±0.01 1.12±0.04* 

  TLV 0.17±0.01 0.44±0.01† 
   

γ-glutamyl transferase  urinary levels (Unit / mol creatinin) 

  Sham 5.31±0.59 5.18±0.39 

  Control 4.69±0.34 12.96±0.44* 

  TLV 4.82±0.49 8.36±0.29† 
   










