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Abstract

In this paper, we focus on the Joint Diagonalization by Congruence (JDC) de-

composition of a set of matrices, while imposing nonnegative constraints on

the joint diagonalizer. The latter will be referred to the semi-nonnegative JDC

fitting problem. This problem appears in semi-nonnegative Independent Com-

ponent Analysis (ICA), say ICA involving nonnegative static mixtures, such as

those encountered for instance in image processing and in magnetic resonance

spectroscopy. In order to achieve the semi-nonnegative JDC decomposition, we

propose two novel algorithms called ELS-ALSexp and CGexp, which optimize

an unconstrained problem obtained by means of an exponential change of vari-

able. The proposed methods are based on the line search strategy for which

an analytic global plane search procedure has been considered. All derivatives

have been jointly calculated in matrix form using the algebraic basis for matrix

calculus and product operator properties. Our algorithms have been tested on

synthetic arrays and the semi-nonnegative ICA problem is illustrated through

simulations in magnetic resonance spectroscopy and in image processing. The

numerical results show the benefit of using a priori information, such as non-

negativity.
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1. Introduction and Problem formulation

The CANDECOMP/PARAFAC (CP) model, introduced by Harshman in

the seventies, consists in expressing a q-th (q ≥ 3) order array as a minimal linear

combination of q-th order rank-1 arrays [1]. This decomposition is very useful

in many applications, such as in phonetics [1], in biomedical engineering [2] and

in chemometrics [3]. More particularly, for a third-order array, X ∈ ❘I×J×K ,

this model can also be expressed as a congruent diagonalization of a set of its

K frontal slices, called {X(1), · · · ,X(K)} as follows:

∀k ∈ {1, 2, ...,K} ,X(k) = AD(k)BT +R(k) (1)

with A ∈ ❘I×P , B ∈ ❘J×P and R(k) ∈ ❘I×J representing the model residual;

and where the K matrices D(k) ∈ ❘P×P are diagonal matrices.

In order to fit a set of symmetric matrices {X(1), · · · ,X(K)}, Carroll and

Chang [4] proposed INdividuals Differences in SCALing (INDSCAL) model as

a special case of CP model (1) for three-way arrays that are symmetric in two

modes i.e. A = B. It is also known as Joint Diagonalization by Congruence

(JDC). It has been most often applied in psychometric literature [5], and more

generally in data analysis, such as in the context of multiple factor analysis

[6]. JDC model appears also in multivariate statistical signal processing and,

more particularly, in Blind Source Separation (BSS) [7], whose problematic is

to extract source components of interest from the observed signal. In this con-

text, the matrix set {D(1), · · · ,D(K)} contains some statistical matrices of the

sources, such as their correlation matrices at different lags, covariance matrices

within different time intervals [8] or their different slice matrices of Higher Order

statistics (HOS) [9]. {X(1), · · · ,X(K)} denotes the estimates of similar statis-

tical matrices of the observed signals. Moreover, the statistical independence

of the sources can be assumed in many areas, such as biomedical engineering

2



[10, 11], speech and audio [12] and spectroscopy [13] to cite a few, leading to

the Independent Component Analysis (ICA) concept [7, 4]. Under this assump-

tion, the statistical matrices D(k) are diagonal and the matrix A represents the

mixing matrix. Solving the JDC problem is more difficult than the CP ones

(1) and most of the proposed algorithms imposed some restrictive conditions on

the given matrices that can be diagonalized, or on the joint diagonalizer sought,

such as orthogonality [8], positive-definiteness [14] or square joint diagonalizer

[15]. If none of them is verified, JDC model is generally computed using a

CP algorithm [16]. The two similar matrices are considered as distinct factors,

without an explicit constraint enforcing equality. In practice, after convergence

the two loading matrices will be equal. Ten Berge and Kiers show that in such

cases this conjecture can be not valid [17].

Furthermore, some ICA applications involve a nonnegative mixing matrix,

i.e. mixing matrix with nonnegative components, encountered, for instance,

in image processing [18] or in Magnetic Resonance Spectroscopy (MRS) [19].

Indeed, each MRS observation is a linear combination of tissue or metabolite

spectra, which are as independent as possible. The mixing matrix contains the

positive weights representing concentrations. At present, in this context, the

classical ICA algorithms, without nonnegative constraint, are used, in order to

detect or classify tumors [20, 21]. Therefore, our primary motivation behind this

paper is to consider such a constraint during the ICA process in order to improve

the extraction quality as we will show in numerical simulations on simulated

MRS data (see section 4). It gives rise to what we call semi-nonnegative ICA.

This analysis can also be applied in image processing, to extract linear feature

combinations, such as in facial recognition [22] or in prediction of rectal toxicity

after radiotherapy [23]. Imposing the nonnegativity of the features allows us

to facilitate interpretation and to obtain results in agreement with physical

reality. To compute the semi-nonnegative ICA, the optimization problem we

tackle is to fit the JDC model, while imposing nonnegative constraints on the

joint diagonalizer, A, as explained in section 3.5. The latter will be referred to

the semi-nonnegative JDC fitting problem.
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In this paper, the proposed methods fit explicitly the semi-nonnegative JDC

model, taking into account symmetry and nonnegativity. The semi-nonnegative

JDC model can be reformulated as a unique equation in a matrix form: X3 =

C(A⊙A)T where the k-th row of C ∈ ❘
K×P corresponds to the diagonal

of D(k) and the symbol ⊙ stands for the Khatri-Rao product (column-wise

Kronecker product). The matrix X3 corresponds to the mode-3 unfolding of

the corresponding three-way array X [24]. To date, only two methods, briefly

presented in [24, 25], allow to solve this problem. In [24, 26], as a way of

including the nonnegative constraint in the JDC model, a square change of

variable is used, such as each component (i, j) of A is obtain by squaring the

component (i, j) of a matrix B. In this paper, we consider an exponential change

of variable, like in [25], such as each component of the diagonalizer, A, is the

exponential of the component of a matrix E ∈ ❘I×P , denoted in matrix form

for the sake of convenience A = exp (E). To solve the semi-nonnegative JDC

model, we propose to minimize the following Frobenius norm of the difference

between a (K × I2) matrix X3 and C(A⊙A)T, as follows:

Ψ(E,C) =
1

2
‖X3−C(exp (E)⊙exp (E))T‖2F (2)

where the couple of matrices (E, C) belongs to the open set ❘I×P×❘K×P . To

minimize this cost function, we develop two optimization procedures, which be-

long to the line search strategy, in section 3. They are based for the first one on

an Alternating Least Square (ALS) procedure, called ELS-ALSexp, and for the

second one on a nonlinear Conjugate Gradient (CG) descent, named CGexp. To

accelerate the convergence, the two approaches are combined with a line search,

described in section 3.3. The latter improves the performance of our ELS-ALS-

like method briefly presented in [25], based on an iterative procedure of line

search. Moreover, we provide compact matrix expressions of the derivatives

and the parameters used in the two optimization procedures, which allow for a

direct implementation of our iterative algorithms in matrix programming envi-

ronments, like MATLAB. Note that the exponential change of variable prevents

to process a matrix A with some exact zero components. To overcome this, an
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alternative strategy is incorporated in the two proposed methods, as described

in section 3. The numerical complexity is calculated analytically in section 3.4.

In section 4, numerical results show the benefit of our methods compared with

non-constrained CP methods [27, 28], classical JDC algorithms [7] and semi-

nonnegative JDC techniques [24]. Moreover, the concept of semi-nonnegative

ICA is introduced in section 3.5. The semi-nonnegative ICA algorithms pro-

posed in this paper exploit some interesting properties enjoyed by Second Or-

der (SO), Third Order (TO) and Fourth Order (FO) cumulants in the presence

of independent random processes and are based on our semi-nonnegative JDC

optimization procedures. The behavior of our semi-nonnegative methods is com-

pared to that of classical ICA methods [8] and an NMF algorithm [29] on MRS

signals and image data.

2. Notations

The symbol ⊗ denotes the Kronecker product while ⊙ and ⊡ stand for

the Khatri-Rao product (column-wise Kronecker product) and the Hadamard

product (element-wise product), respectively. The operator Mat rearranges a

block matrix (or vector) into another; such as Mat(N×P,M)([A1,A2, ...,AM ]T) =

[A1
T,A2

T, ...,AM
T], where the M blocks, Ai with 1 ≤ i ≤ M , are all of size

(N×P ). The symbol diag is the MATLAB operator, given diagonal matrix and

diagonal of a matrix depending on the size of the argument. When z is a vector,

diag(z) stands for the (I×I) diagonal matrix built from the I-dimensional vector

z. When Z is a matrix of size (I × I), diag(Z) is a column vector containing

the I diagonal component of Z. Furthermore, the superscripts ♯ and T stand

for the Moore-Penrose pseudo-inverse and the transpose operators, respectively.

The (N ×N) identity matrix is denoted by IN . The permutation matrix, UPN

of size (PN×PN), is defined by [30]: UPN =
∑P

p=1

∑N
n=1 E

(P×N)
pn ⊗ E(N×P )

np ,

where E(P×N)
pn is a (P × N) elementary matrix of zeros except the (p, n)-th

component which is set to one. The trace of the square matrix Z is denoted by

Tr(Z). The N -dimensional vector of ones and the (N × P )-dimensional matrix
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of ones are denoted by 1N and 1N×P , respectively. We denote: A⊙2 = A⊙A

and B⊡2 = B ⊡B. Finally |.|, ‖.‖ and ‖.‖F stand for the absolute value, the

Euclidean norm and the Frobenius norm, respectively.

3. Nonnegative JDC Methods

3.1. The nonlinear Conjugate Gradient (CG) method

The nonlinear CG method is widely used in practice, particularly to solve

large-scale nonlinear optimization problems. The main advantage of this al-

gorithm lies in the combination of small memory allocation and low numerical

complexity. Moreover, it is characterized by an interesting convergence property

[31].

At iteration it, the update rule of E and C of the CGexp algorithm is given

by:

 vec(Eit+1)

vec(Cit+1)


 =


 vec(Eit)

vec(Cit)


−


 µit

E
IIP 0

0 µit
C
IKP




 vec(Git

E)

vec(Git
C)


(3)

where vec(Git
E) and vec(Git

C) are the two descent directions and where the two

stepsizes µit
E

and µit
C

are computed by a line search procedure (see section 3.3).

These parameters are calculated analytically at each iteration by minimizing

the objective function along vec(Git
E) and vec(Git

C). In practice, the line search

permits to accelerate the convergence and to sometimes avoid potential local

minima. Moreover, in the CG method, vec(Git
E) and vec(Git

C) are a linear com-

bination of the gradients and the previous descent directions and are updated

at iteration it according to the following rule:

 vec(Git

E)

vec(Git
C)


 = −


 DEΨ(Eit,Cit)T

DCΨ(Eit,Cit)T


+ βit−1


 vec(Git−1

E
)

vec(Git−1
C

)


 (4)

where the gradients DEΨ(Eit,Cit) and DCΨ(Eit,Cit) are given in Lemma 1

(see Appendix A ) and where βit−1 is computed using the Polak-Ribière formula

[31]:

βit−1 =
(DΨ(Eit−1,Cit−1)−DΨ(Eit−2,Cit−2))DΨ(Eit−1,Cit−1)T

DΨ(Eit−2,Cit−2)DΨ(Eit−2,Cit−2)T
(5)
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with DΨ(Eit,Cit) = [DEΨ(Eit,Cit), DCΨ(Eit,Cit)]. Note that, the direc-

Algorithm 1 Pseudo-code for CGexp

Initialize both matrices E0 and C0.

Set it = 1, the relative error err = 1, the maximal number itmax of allowed

iterations, the stop criterion threshold ǫ and the restarting number n.

Calculate DEΨ(E0,C0), DCΨ(E0,C0) (see Lemma 1), µ0
E

and µ0
C

(see sec-

tion 3.3) and compute E1 and C1 with a steepest descent step.

while err > ǫ or it < itmax do

Compute DEΨ(Bit,Cit) and DCΨ(Eit,Cit) using Lemma 1.

If it is proportional to n, vec(Git
E) = DEΨ(Eit,Cit)T and vec(Git

C) =

DCΨ(Eit,Cit)T, else compute βit−1, defined in (5), and update the direc-

tion [vec(Git
B)T, vec(Git

C)T]T using (4).

Compute the two stepsizes µit
E

and µit
C

according to section 3.3.

Compute the matrices Eit+1 and Cit+1 using the update rule (3).

If Ψ(Eit+1,Cit+1) > Ψ(Eit,Cit), compute the matrices Eit+1 and Cit+1

again with a steepest descent step (βit−1 = 0).

Compute err = |Ψ(Eit+1,Cit+1)−Ψ(Eit,Cit)|/Ψ(Eit,Cit).

Set it = it+ 1.

end while

tions vec(Git
B) and vec(Git

C) contain the informations of all previous iterates. It

is noteworthy that periodically erasing old information may be beneficial. To

do so, the direction is refreshed by simply taking a gradient direction, at every

n iterations. Moreover, the stopping of the algorithm in the case of an ascent

direction is replaced by a simple gradient descent and then the CG update is

used again at the next iteration. Although the exponentional function is not

defined at zero, at the end of convergence, as the exponential of an element of

E is lower than a threshold value, close to zero, the associated component of A

is arbitrary fixed to zero. It allows us to process A mixtures with some exact

zero components. This pseudo-code is described in Algorithm 1.
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3.2. The ELS-ALS method

3.2.1. Alternating Least Square (ALS)

The second method is based on an ALS procedure, in order to minimize (2)

due to its advantages brought to light in the context of the CP decomposition.

Bro and Tomasi [3] found that this optimization scheme has good results in terms

of decomposition accuracy, numerical complexity and memory requirements. Its

principle is to reduce the non-linear minimization problem of Ψ (2) to several

coupled linear least square subproblems. To do so, the cost function (2) is

alternatively minimized w.r.t. E and C. Then, we solve sequentially the two

following subproblems:

Eit+1=argmin
E

ΨE=argmin
E

∥∥X3−Cit(exp (E)⊙ exp (E))T
∥∥2
F

(6)

Cit+1=argmin
C

ΨC=argmin
C

∥∥X3−C(Ait+1⊙Ait+1)T
∥∥2
F

(7)

with Ait+1 = exp (Eit+1) and where ΨE and ΨC depend only on one free matrix

variable, E and C, respectively. The two minimization problems can be solved

by vanishing the matrix partial derivatives, given in Lemma 1 (see Appendix A).

Concerning the subproblem (6) w.r.t. E, due to the complexity of gradient, we

are not able to find an analytical matrix zero. Then, we alternatively minimize

ΨE w.r.t. each component of E, as described in Appendix B. In addition the

proposed procedure allows us to process mixtures with some exact zero compo-

nents, while the exponential change of variable prevents that. The solution of

the minimization of ΨC (7) is well-known and given by C = X3((A ⊙ A)♯)T

[28].

3.2.2. Enhanced Line Search (ELS)

The ALS procedure has some known drawbacks such as a slow convergence

in the context of ill-conditioned factors or high collinearity between factors, and

a sensitivity to initialization. The ALS procedure can stay trapped in a local

minimum for several iterations. The ELS procedure, which will be described in

detail in section 3.3 seeks to calculate the optimal stepsizes to exit faster from

local minima and thus to accelerate the ALS algorithm convergence.
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The direction used during the ELS step is most of the times a linear direction

equal to the difference between two successive iterates. However, Comon et al.

[28] showed that the ELS cannot improve the convergence in case of bad linear

direction. One possibility is to define a new search direction based on a extrapo-

lation. Chen et al. [32] proposed such a search direction containing higher-order

information, which is a linear combination of three previous iterates, depending

on an empirical positive parameter τ ∈ [0, 1] to set:

Git
M = (1 + 2τ)M it+1 − (1 + 3τ)M it + τM it−1 (8)

with M = {E,C} and where M it+1, M it and M it−1 are the matrix estimates

in the ALS iteration it + 1, it and it − 1. Then, at iteration it, after the ALS

step, the update rule characterizing the ELS strategy, can be defined as follows:

Enew = Eit−1 + µit
EGit

E Cnew = Eit−1 + µit
CGit

C (9)

Both stepsizes, µit
E

and µit
C

, can be computed by minimizing the line search cost

function along the cycle directions, as described in section 3.3. Then, to have

a good compromise between effectiveness and numerical complexity, it is better

to calculate the optimal stepsizes, every k iterations with k > 1. Then, Enew

and Cnew are the matrices that will be used in the ALS step at iteration it+ 1

instead of Eit and Cit. The pseudo-code of ELS-ALSexp is given in algorithm

2.

3.3. The computation of line search

It consists of searching stepsizes, µit
E

and µit
C

, minimizing the cost function

Ψ (2) along the directions, Git
E and Git

C , as follows:

ϕ(µE , µC) =
∥∥∥X3 − (Cl + µCGit

C)((exp (Eit + µEGit
E))⊙2)T

∥∥∥
2

F
(10)

w.r.t. µE and µC , with l = it for CGexp and l = it − 1 for ELS-ALSexp. This

procedure of stepsize calculation is common for the two semi-nonnegative JDC

algorithms. It differs only on the choice of Git
E and Git

C , given by (4) (resp. (8))

for CGexp (resp. ELS-ALSexp).
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Algorithm 2 Pseudo-code for ELS-ALSexp

Initialize both matrices B0 and C0.

Set it = 0, k = 5 and the relative error err = 1 and set the maximal number

itmax of allowed iterations and the stopping criterion threshold ǫ.

while err > ǫ or it < itmax do

Compute each element of Eit+1, as explained in section (3.2).

Compute Cit+1, as explained in section (3.2).

if mod(it, k) = 0, update the directions Git
E and Git

C (8). Compute the

stepsizes µit
E

and µit
C

using the global plane search scheme, described in

section 3.3, and update the matrices Eit+1 and Cit+1 using (9).

Set it = it+ 1.

end while

The line search procedure can be done approximately or exactly [1, 33, 28,

26]. Regarding the semi-nonnegative JDC model, Coloigner et al. [24, 34] de-

veloped an exact line search procedure, for an ALS algorithm based on a square

change of variable. However, since the exponential function is not homogeneous,

the exact minimization of (10) leads to root a function which is the composite

of a polynomial and the exponential function. So, the problem we tackle has

no analytical root. In [25], we have calculated the zeros of the derivative func-

tion ϕ′ by MATLAB rooting. Unfortunately, the procedure may be trapped in

local extrema and so the global minimum may be not found. To overcome this

difficulty, we propose to approximate the exponential by its truncated power

serie. Indeed, the latter allows us to approximate ϕ by a polynomial in µE

and µC and to calculate the global minimum analytically. By choosing a suf-

ficiently large expansion order we can make the approximation as accurate as

we wish. However, the choice of a large order increases considerably the degree

of the polynomial. For instance, we have a 35-th degree with a third order

truncated power series, a 47-th degree polynomial for a fourth order... A high

degree leads to a high numerical complexity and problems of root stability. To

obtain accurate results combining a relatively low numerical complexity and a
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good stability, we propose to use a third order truncated power series of the

exponential function and the criterion (10) can be reformulated as follows:

ϕ(µE , µC) ≈

∥∥∥∥∥X3 − (Cl + µCGit
C)(exp (El)⊡

3∑

n=0

(µEGit
E)⊡n

n!
)⊙2)T

∥∥∥∥∥

2

F

(11)

w.r.t. µE and µC . Note that equation (11) can be reduced to a compact form

as follows:

ϕ(µE , µC) ≈ ‖Fu‖
2
F = uTF TFu = uTQu (12)

where F is a (I2K × 14) matrix (see Appendix C), where u = [µCµ6
E
, µCµ5

E
,

µCµ4
E
, µCµ3

E
, µCµ2

E
, µCµE , µC , µ6

E
, µ5

E
, µ4

E
, µ3

E
, µ2

E
, µE , 1]T is a 14-dimensional

vector and where Q is a symmetric matrix. To reduce the numerical complexity,

Q can be directly calculated, without computing F , using the Khatri-Rao prop-

erty [30] (see Appendix D). After developping (12), the objective function ϕ is

a second degree polynomial in µC . Thus, the optimal stepsize µit
C

is a rational

function in µE . Once µit
C

is computed, its expression is injected in the equation

∂ϕ/∂µE = 0, which is a 35-th degree polynomial in µE . Then, the optimal

stepsize µit
E

is computed as the root of this polynomial, allowing us afterward

to calculate µit
C

.

3.4. Numerical complexity

This section is devoted to compute the numerical complexity, which is de-

fined as the number of floating point operations (flop) required to execute a

iteration. A flop corresponds to a multiplication followed by a addition. Note

that all expressions have been calculated analytically. The two methods, CGexp

and ELS-ALSexp, require the computation of stepsizes, which are obtained by

a line search procedure, as described in section 3.3. It costs approximately

O(I2KP+P 2(I+K)) flops. Note that the first term I2KP is associated with

the computation of the last row and column of the matrix Q (12) and the second

term P 2(I+K) corresponds to the other simplified components (see Appendix

D).

For CGexp, besides the computation of stepsizes, each iteration involves the

ones of the gradient. The cost of the gradient is the sum of both complexities of
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DEΨ(E,C) and DCΨ(E,C) (see Lemma 1 in Appendix A). DEΨ(E,C) and

DCΨ(E,C) approximately amount to O(I2P (P 3+IP+K)) and O(KP (KP+I2))

flops, respectively. This algorithm costs approximately O(I3P 2+I2(P 4+KP )+

K2P 2).

At each iteration, ELS-ALSexp algorithm requires the element by element

update of matrix E, which approximately amounts to O(I3(KP 2+P 3)+IKP 3)

multiplications. This step consists of calculating the coefficients β1, β2 and β4 of

the polynomial Φ′
Ea,b

(B.2) as well as the computation of the stationary points

and the selection of the positive minimum, as described in section Appendix B.

The estimate of the matrix C is the well-known solution of the CP model and

its cost is approximately O(KP (I2 + P )) flops by assuming that P ≤ I2 [28].

In addition, to accelerate the convergence, the line search step is used at every

k iterations and its cost is given previously. This algorithm costs approximately

O(I3(KP 2+P 3)+IKP 3) flops.

3.5. Application to semi-nonnegative ICA

In this section, we introduce the semi-nonnegative ICA problem, defined as

follow:

Given one realization of a real random vector process {x[m]}, find an (I×

P ) mixing matrix A and one realization of a P -dimensional source random

process {s[m]} such that for each index m, x[m] = As[m] + e[m] where A has

nonnegative components, s[m] has statistically independent components, and

e[m] is an I-dimensional Gaussian noise vector, independent of s[m].

This problem turns up in some ICA applications, which involve nonnegative

static mixtures, such as in image processing [21] and in MRS applications [35].

Furthermore, the independence property lead to several discussions, in some

ICA applications. In MRS, for instance, spectra of different chemical pure sub-

stances may show very large overlaps and have nonnegative components, which

may involve partial dependence between some spectra. In practice, the classical

ICA without nonnegative constraints may succeed in separating non totally in-

dependent sources, but the nonnegativity property is not ensured in this case.
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The idea throughout this paper is then to enforce the nonnegativity property of

the mixing matrix during the ICA procedure, giving results in agreement with

physical reality in such context.

The semi-nonnegative ICA algorithms can exploit some interesting proper-

ties enjoyed by the Second Order (SO), Third Order (TO) and Fourth Order

(FO) cumulants in the presence of mixed independent random processes and

the optimization procedures described in section 3. We propose in this section

the problem to show how we can combine SO, TO and FO cumulants into a set

of symmetrical matrices following the semi-nonnegative JDC model. However,

the user can choose also only one or two cumulants.

In BSS context, under the assumption of almost independent sources and

the multi-linearity property of cumulants, we get:

Cn1,n2,x =

P∑

p=1

An1,pAn2,pCp,p,s +Rn1,n2,x (13)

Cn1,n2,n3,x =

P∑

p=1

An1,pAn2,pAn3,pCp,p,p,s +Rn1,n2,n3,x (14)

Cn1,n2,n3,n4,x =

P∑

p=1

An1,pAn2,pAn3,pAn4,pCp,p,p,p,s +Rn1,n2,n3,n4,x (15)

where Cp,p,s, Cp,p,p,s and Cp,p,p,p,s denote the SO, TO and the FO marginal

cumulants of the p-th source, respectively, and where Rn1,n2,x, Rn1,n2,n3,x and

Rn1,n2,n3,n4,x contains the terms depending on the non-zero cross-cumulants of

the sources, due to their non-total independence. Note that the second-order

cumulant of the Gaussian noise is included in the components Rn1,n2,x.

We propose to merge together the entries of the cumulant arrays in a third-

order array, X of size (I×I×I2+I+1). In case of SO, TO and FO cumulants,
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the (i1, i2, i3)-th entry of X , is given by:

X i1,i2,i3 =





Ci1,i2,n3,n4,x for any (i1, i2) ∈ {1, . . . , I}2

and i3 ∈ {1, . . . , I2} with i3 = n3 + In4.

Ci1,i2,i3,x for any (i1, i2) ∈ {1, . . . , I}2 and

i3 ∈ {I2+1, . . . ,I2+I}

Ci1,i2,x for any (i1, i2) ∈ {1, . . . , N}2 and i3=I2+I+1

(16)

The K frontal slices, X(k), of X follow the semi-nonnegative JDC model, with

K = I2+I+1:

∀k ∈ {1, 2, ...,K} ,X(k) = AD(k)AT +R(k) (17)

with:

D(k) =





diag(c4,s ⊡ (A⊙A)k,:) for any k ∈ {1, . . . , I2}

diag(c3,s ⊡Ak−I2,:) for any k ∈ {I2+1,. . .,I2+I}

diag(c2,s) for k=I2+I+1

(18)

with the P -dimensional vectors c2,s = [C1,1,s, · · · , CP,P,s], c3,s = [C1,1,1,s, · · · ,

CP,P,P,s] and c4,s = [C1,1,1,1,s, · · · , CP,P,P,P,s], and where Ai,: (for 1 ≤ i ≤ I)

and (A⊙A)j,: (for 1 ≤ j ≤ I2) are the i-th row of A and the j-th row of A⊙A,

respectively. The semi-nonnegative ICA problem is then be reformulated as a

semi-nonnegative JDC problem (17) and can be solved using the algorithms

proposed in section 3.

4. Simulations

The purpose of this section is twofold. First, it tackles the performance of

the proposed methods, which exploit explicitly prior information, such as semi-

nonnegativity and semi-symmetry. Second, the exponential change of variable

is evaluated by comparing the performance of ELS-ALSexp, proposed in this

paper, with the one of ELS-ALSsquare [24], based on the same optimization pro-

cedure and on a square parameterization to ensure the nonnegative constraints

on A. This analysis is performed in terms of accuracy of factor estimation and

numerical complexity.
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First, in section 4.2, the experiments are made on synthetic data, in order to

evaluate the impact of the Signal to Noise Ratio (SNR) and the collinearity be-

tween columns of the nonnegative matrix factor, A, on the behavior of the con-

sidered methods. CGexp and ELS-ALSexp are compared with i) two classical CP

algorithms, called ELS-ALS [27] and LM [3], where neither symmetry nor non-

negativity constraints are imposed, with ii) the Alternating Columns/Diagonal

Center (ACDC) algorithm [7], which solves the JDC problem, taken into account

the symmetry constraint and with iii) a semi-nonnegative JDC algorithm, based

on a square change of variable ELS-ALSsquare [24]. Second, in section 4.3, the

behavior of the methods proposed in section 3.5 is assessed in ICA applications

w.r.t. a classical Nonnegative Matrix Factorization (NMF) algorithm called

NNLS [29] and four classical ICA methods, namely SOBI [8], FastICA [36],

eJade(3,4) [37] and CoM2 [38]. Experiments are carried out on simulated MRS

data, in section 4.3.1, and on image data, in section 4.3.2.

4.1. Performance criterion

As a performance criterion, we use a global measure allowing us to quantify

the error between the actual factor matrices, A and D(k) and their estimates,

named Â and D̂
(k)

, respectively. Note that if Â and D̂
(k)

are solutions of

semi-nonnegative JDC problem, then it is also true for any matrix couple of

the form (ÂΛP ,P T
Λ

−1D̂
(k)

Λ
−1P ), where Λ and P are a diagonal matrix and

a permutation matrix, respectively. So, our semi-nonnegative JDC problem

is solved up to scaling and permutation indeterminacies. In this context, the

proposed measure must be invariant under both matrices, Λ and P . For A and

all matrices D(k), the performance criterion, called α, is given by:

α =
1

2P

P∑

k=1

∆A
k +∆C

k (19)

with C = [diag(D(1)), diag(D(2)), · · · , diag(D(K))]T and where:

∆G
k = min

(p,p′)∈M2

k

d(gp, ĝp′) (20)
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with gp and ĝp the p-th column of G and Ĝ, respectively, and M2 = {1, ..., P}×

{1, ..., P}. Besides, d is the pseudo-distance between the vectors u and v defined

by [39]:

d(u,v) = 1−
‖uTv‖

2

‖u‖
2
‖v‖

2 (21)

In the first step aiming at computing α, the smallest distance is selected, asso-

ciating a column of a loading matrix with one of its estimate. Then, this pair

of indices is removed from M2, and the step is repeated until the P columns

of the estimate are used and the set M2 is empty. So, each column of G is

associated with a different column Ĝ and the measure α is the sum of all dis-

tances d between each pair of columns. This criterion is an upper bound of the

optimal criterion [28]. It avoids the computation of all permutations between

the columns of the estimated and actual factor matrices, in order to use it in

the context of arrays with high dimensions and rank.

4.2. Synthetic data

Synthetic sets of matrices following the semi-nonnegative JDC model are

generated from random matrices. In particular, the matrix E, used in A =

exp (E), is simulated with the zero-mean unit-variance normal distribution and

the diagonals of the matrices belonging to the set {D(1), · · · ,D(K)} are dropped

from a zero-mean Gaussian distribution with unit standard deviation. Moreover,

each resulting matrix, X(k), is contaminated by a noise, named R(k), following

a semi-nonnegative JDC model, generated like X(k). Each corresponding noisy

matrix Y (k) is written as:

Y (k) =
X(k)

‖X(k)‖F
+ σR

R(k)

‖R(k)‖F
(22)

where σR is a scalar controlling the noise level. The Signal to Noise Ratio (SNR)

is then defined by: SNR= −20 log10(σR).

All algorithms considered in this study stop either when the relative error

of the cost function between two successive iterations exhibits a value less than

a predefined threshold of 10−8 or when the number of iterations exceeds 2000.
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Furthermore, all results reported in this section are averaged over 200 Monte

Carlo realizations. In addition, we used a multi-start random initialization of

Ê and Ĉ, dropped from a zero-mean unit-variance normal distributions.

In this experiment, the impact of SNR on the behavior of the considered

methods is evaluated. Both the dimensions and the rank of T are fixed to

(5× 5× 5) and 3, respectively. Figure 1(a) shows the mean of the measure α at

the output of all methods as a function of the SNR ranging for -20 dB to 60 dB.

As expected, the decomposition is more effective in the context of high SNR

values. Both proposed methods, CGexp and ELS-ALSexp outperform the CP

and JDC methods, namely ELS-ALS, LM and ACDC. Our results in terms of

estimation accuracy are similar to the semi-nonnegative JDC algorithm based

on a square change of variable, namely ELS-ALSsquare. Figure 1(b) displays the

mean of numerical complexity for each method as a function of the SNR. Among

our methods, ELS-ALSexp is the cheapest for every SNR values and its cost is

even less expensive to that of the unconstrained ELS-ALS methods. Regarding

CGexp and ELS- ALSsquare, in spite of good similar estimation accuracy, their

numerical complexities are higher. In this simulation, we note the benefit of

exploiting an exponential change of variable, in terms of numerical complex-

ity. This can straightforwardly be seen by comparing the performance of the

ELS-ALS-like algorithm based on a square change of variable, ELS-ALSsquare,

with its exponential version, i.e. the ELS-ALSexp algorithm. So, the best accu-

racy/complexity trade off is achieved by ELS-ALSexp.

In a second simulation, the impact of the collinearity between columns of

the nonnegative matrix factor A is evaluated. A set of (10 × 4) matrices A is

generated with two bottlenecks such as A = [a1;a1 + βa2;a3;a3 + βa4], where

ai is drawn from a standard uniform distribution on [0, 1], for 1 ≤ i ≤ 4, and

β ranging from 0 to 1 [28]. For an SNR value equal to 60dB, figures 2(a) and

2(b) show the mean of the measure α and the numerical complexity at the

output of all methods as a function of the parameter β, respectively. When

vectors belonging to a bottleneck are close to collinear (β ≈ 0), the context of

the simulation is very difficult and the decomposition is less effective in terms
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Figure 1: Influence of SNR for a (5× 5× 5) array and P = 3 at the output of both proposed

methods, called CGexp and ELS-ALSexp, a semi-nonnegative JDC algorithm, ELS-ALSsquare,

a JDC method, ACDC, and two CP methods, namely ELS-ALS and LM.

of estimation accuracy. As shown in figure 2(a), the measures α of all methods

decrease to zero at various speeds. The semi-nonnegative JDC methods are

less sensitive to high collinearity coefficients. Indeed, contrary to the CP and

JDC methods, the semi-nonnegative JDC methods are effective in terms of

estimation accuracy for β beyond 0.2. ELS-ALSexp is the least expensive and it

is even less costly beyond to β = 0.4 than unconstrained ELS-ALS algorithm.

So, in terms of numerical complexity, ELS-ALSexp is favored between the three

algorithms giving the best estimation accuracy, namely CGexp, ELS-ALSexp and

ELS-ALSsquare.

4.3. Semi-nonnegative ICA applications

The goal of this section is to illustrate the semi-nonnegative ICA problem

and to assess the behavior of two semi-nonnegative ICA methods, proposed in

this paper.

4.3.1. Tests on simulated MRS data

In this section, the semi-nonnegative ICA methods are tested on simulated

MRS data. In such a context, as explained in section 3.5, the metabolite spec-
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Figure 2: Influence of the collinearity for a (10 × 10 × 10) array and P = 4 at the output of

both proposed methods, CGexp and ELS-ALSexp, a semi-nonnegative JDC algorithm, ELS-

ALSsquare, a JDC method, ACDC, and two CP methods, ELS-ALS and LM.

tra are considered not totally independent. After studying the behavior of the

cumulants, only the FO cumulant array is used in our semi-nonnegative ICA

algorithms. This can straightforwardly be seen by comparing the ratio between

the highest cross-cumulant and the lowest marginal cumulant of metabolite spec-

tra for the SO, TO and FO cumulants. In this context, this ratio is higher when

considering FO cumulant. Indeed, for a mixture of choline and myo-inositol, we

obtained 0.03, 0.16 and 0.53 with the fourth order, third order and second order

cumulants, respectively. So, we suppose that exploiting only the FO cumulants

gives better results. This report was been proved by comparing the performance

of the two semi-nonnegative algorithms with their versions exploiting the SO,

TO and FO cumulants. In addition, the concentrations of the metabolites are

positive, ensuring the nonnegativity of the mixing matrix A. Several metabolite

spectra are generated by the sum of Lorentzian and Gaussian functions where

the location and scale parameters are fixed to derive realistic metabolites [35].

The coefficients of the mixing matrix A are drawn from a uniform distribution

on [0, 1]. The number of samples is 2500. The observations are generated as a

noisy mixture of metabolite sources. As far as the additive noise is considered,

19



P
P
P
P

P
P

P
P
P
P
P

Algorithms

I
2 4 8 12

SOBI 0.303 0.082 0.080 0.080

CoM2 0.095 0.037 0.033 0.033

eJade(3,4) 0.110 0.042 0.037 0.035

FastICA 0.095 0.039 0.035 0.035

NNLS 0.161 0.089 0.036 0.030

ELS-ALSexp 0.116 0.017 0.007 0.007

CGexp 0.089 0.012 0.007 0.007

Table 1: Simulation 1 - choline/myo-inositol- Performance measure γ with respect to different

values of I at the output of four classical ICA approaches, called SOBI, CoM2, eJade(3,4) and

FastICA, a classical NMF technique, NNLS, and the two proposed methods, ELS-ALSexp and

CGexp, for an SNR value of 30dB.

a normal vector process is used to simulate a realistic instrumental noise and

the SNR value is equal to 30dB. As a performance criterion, we use the global

measure γ allowing to quantify the estimation error of the sources, as follows:

γ =
1

2P

P∑

k=1

∆S
k (23)

with ∆S
k given in (20).

The impact of the number of observations is evaluated. Two mixtures of two

and three sources of interest, namely choline/myo-inositol and choline/myo-

inositol/N-acetyl Aspartate, are considered. Tables 1 and 3 show the mean of

the measure γ of the sources, for the two mixtures, at the output of the seven

methods as a function of the number I of observations. Three ICA algorithms,

called CoM2, eJade(3,4) and FastICA, have similar results and outperform the

NMF algorithm, NNLS, and the last ICA approach, SOBI, for I ∈ {4, 8, 12}.

Beyond I = 4, the performance of our methods increases with the value of I,

contrary to ICA algorithms, having a constant behavior. Our methods outper-

form the classical ICA and NMF methods as soon as the number of observations

I increases beyond I = 4 and I = 8 for the first and second simulations, respec-
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P
P

P
P

P
P
P
P
P
P
P

Algorithms

I
2 4 8 12

SOBI 0.15× 105 0.40× 105 1.20× 105 2.42× 105

CoM2 0.63× 105 0.88× 105 1.69× 105 2.90× 105

eJade(3,4) 0.85× 105 1.09× 105 1.90× 105 3.12× 105

FastICA 0.05× 107 0.15× 107 0.55× 107 1.32× 107

NNLS 0.01× 1010 0.08× 1010 0.83× 1010 3.70× 1010

ELS-ALSexp 4.86× 108 3.97× 108 3.32× 108 4.75× 108

CGexp 5.52× 108 2.32× 108 0.54× 108 0.76× 108

Table 2: Simulation 1 - choline/myo-inositol- Numerical complexity with respect to different

values of I at the output of four classical ICA approaches, called SOBI, CoM2, eJade(3,4) and

FastICA, a classical NMF technique, NNLS, and the two proposed methods, ELS-ALSexp and

CGexp, for an SNR value of 30dB.

tively. Concerning our semi-nonnegative JDC algorithms, their behaviors are

similar in terms of γ. Tables 2 and 4 display the mean of numerical complexity

for each method as a function of the number of observations for the two sce-

narios. As expected, the numerical complexity increases with I. The classical

ICA methods are less expensive than our semi-nonnegative ICA methods and

NMF. Our proposed methods require at least 100 times more flops than SOBI,

eJade(3,4) and CoM2. NNLS has the highest numerical complexity.

For the first simulation, figure 3 shows the mean over 200 realizations of

the estimated sources at the output of the seven methods for I = 12. For the

different algorithms, the values of γ are 0.080 for SOBI, 0.033 for CoM2, 0.035

for FastICA, 0.035 for eJade(3,4), 0.030 for NNLS, and 0.007 for our two semi-

nonnegative JDC methods. For NNLS, Myo-Inositol is still present in the first

extracted source. Concerning SOBI, CoM2, eJade(3,4) and FastICA, the shapes

of their first sources are distorted reducing the area under the curve. Their esti-

mated source has negative components. As far as the semi-nonnegative methods

are concerned, the separation of both metabolites is perfect. This experiment

shows that in this context the use of both constraints, namely nonnegativity of
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P
P
P
P

P
P

P
P
P
P
P

Algorithms

I
3 4 8 12

SOBI 0.373 0.206 0.102 0.102

CoM2 0.139 0.062 0.041 0.036

eJade(3,4) 0.139 0.049 0.029 0.028

FastICA 0.136 0.058 0.031 0.030

NNLS 0.204 0.210 0.108 0.101

ELS-ALSexp 0.202 0.084 0.013 0.010

CGexp 0.204 0.109 0.012 0.010

Table 3: Simulation 2 - choline/Myo-Inositol/N-acetylAspartate - Performance measure γ with

respect to different values of I at the output of four classical ICA approaches, called SOBI,

CoM2, eJade(3,4) and FastICA, a classical NMF technique, NNLS, and the two proposed

methods, ELS-ALSexp and CGexp, for an SNR value of 30dB.

the mixing matrix and quasi-independence of the sources, allows us to achieve

good estimation accuracy.

4.3.2. Tests on image data

In this section, the semi-nonnegative ICA problem is illustrated through a

BSS image processing application. A database of 40 face images [40] is con-

sidered in order to generate 780 couples of sources. The nonnegative mixing

matrix A is drawn from a uniform distribution on [0, 1]. A Gaussian vector pro-

cess is added to each mixture to simulate a realistic instrumental noise and the

SNR value is equal to 60dB. Table 5 shows the mean over the 780 realizations

of the performance criterion γ of sources and the numerical complexity for all

datasets at the output of the seven considered methods. The measure of the

NMF method gives better results than the ones of the four classical ICA meth-

ods. However, both semi-nonnegative ICA methods, ELS-ALSexp and CGexp,

outperform ICA and NMF algorithms. This experiment shows that in this con-

text the use of both constraints, namely nonnegativity of the mixing matrix and

quasi-independence of the sources, allows us again to achieve better estimation
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Figure 3: Mean over 200 realizations of two sources, choline and myo-inositol, extracted by

SOBI, CoM2, eJade(3,4) FastICA, NNLS and our two semi-nonnegative ICA methods, based

on ELS-ALSexp and CGexp, for an SNR value of 30dB.



P
P

P
P

P
P
P
P
P
P
P

Algorithms

I
3 4 8 12

SOBI 0.35× 105 0.51× 105 1.42× 105 2.73× 105

CoM2 1.74× 105 1.90× 105 1.82× 105 4.14× 105

eJade(3,4) 2.66× 105 2.82× 105 3.73× 105 6.30× 105

FastICA 0.19× 107 0.31× 107 1.32× 107 2.42× 107

NNLS 0.01× 1010 0.08× 1010 0.83× 1010 3.70× 1010

ELS-ALSexp 6.16× 108 4.90× 108 1.66× 108 4.93× 108

CGexp 1.00× 108 0.96× 108 1.57× 108 3.03× 108

Table 4: Simulation 2 - choline/Myo-Inositol/N-acetylAspartate - Numerical complexity with

respect to different values of I at the output of four classical ICA approaches, called SOBI,

CoM2, eJade(3,4) and FastICA, a classical NMF technique, NNLS, and the two proposed

methods, ELS-ALSexp and CGexp, for an SNR value of 30dB.

accuracy. Concerning the numerical complexity, SOBI is the least expensive

among all methods. NNLS has the highest cost a long way ahead. Among

the semi-nonnegative ICA techniques, ELS-ALSexp is less expensive (similar to

CoM2) and it may give a good compromise between accuracy and complexity.

Figure 4 shows the extracted images at the output of the seven methods, for

three realizations. The first and second lines correspond to the true images and

the corresponding mixtures, respectively. The four ICA methods, SOBI, CoM2,

eJade(3,4) and FastICA, fail to separate both images. Often only one image

is properly extracted and the second one is a mixture of the two face images.

On the other hand, ELS-ALSexp and CGexp allow us to achieve a good image

extraction.

5. Conclusion

In order to achieve the semi-nonnegative JDC decomposition, we have pro-

posed two algorithms named ELS-ALSexp and CGexp. The exponential change

of variable is used to ensure the nonnegativity of the joint diagonalizer, leading

to an unconstrained optimization problem. A line search procedure has been



(a) Legend (b) Test 1 (c) Test 2 (d) Test 3

Figure 4: Results for 3 realizations: (line 1) the true images, (line 2) the corresponding

mixtures, (line 3) the extracted images by SOBI, (line 4) by CoM2,(line 5) by eJade(3,4),

(line 6) by FastICA, (line 7) by NNLS, (line 8) by ELS-ALSexp and (line 9) by CGexp.



P
P
P
P
P
P
P

P
P

P
P

Algorithms
measure α number of multiplications

SOBI 0.286 5.52× 103

CoM2 0.109 2.47× 106

eJade(3,4) 0.125 4.42× 106

FastICA 0.30 5.83× 107

NNLS 0.112 3.09× 1011

ELS-ALSexp 0.0374 4.33× 106

CGexp 0.0377 7.22× 107

Table 5: Average values of measure γ and numerical complexity at the output of four classical

ICA methods (SOBI, CoM2, eJade(3,4) and FastICA), one NMF algorithm (NNLS) and the

proposed algorithms, called ELS-ALSexp and CGexp.

considered, in order to accelerate the convergence. The derivatives used in the

conjugate gradient-like method and in the ALS step of ELS-ALSexp have been

jointly calculated in a matrix form using the algebraic basis for matrix calculus

and product operator properties. Besides, the computational complexity has

been evaluated analytically for each algorithm.

In section 4, our semi-nonnegative JDC algorithms are tested on synthetic

data, to evaluate the performance of the methods and the interest of using

jointly both a priori (i.e. semi-nonnegativity and semi-symmetry). The classi-

cal ELS-ALS [27] and LM [3] algorithms without symmetry and nonnegativity

constraints, and the ACDC algorithm [7] where only the semi-symmetry con-

straint is imposed, are tested as reference methods. Furthermore, the perfor-

mance is also compared with a semi-nonnegative JDC algorithm based on a

square change of variable and a ELS-ALS-like optimization method [24]. The

analysis is performed in terms of accuracy of factor estimation and numerical

complexity. The comparison studies show that a better estimation accuracy is

obtained when these two a priori are exploited. Among these approaches, the

best accuracy/complexity trade off is achieved by ELS-ALSexp, thanks to its

faster convergence speed.



The semi-nonnegative JDC analysis turns up in some ICA applications,

which involve nonnegative static mixtures, such as image processing or MRS.

Indeed, it allows us to solve what we called the semi-nonnegative ICA prob-

lem, imposing a nonnegative constraint on the mixing matrix. We propose

cumulant-based methods to blindly identify potentially underdetermined mix-

tures of statistically independent sources. We illustrate the behavior of our

semi-nonnegative ICA techniques in two BSS applications. Some experiments

are carried out on simulated MRS spectra and on image data. Our methods

are compared to a classical NMF algorithm, called NNLS and four classical

ICA methods, named SOBI, CoM2, eJade(3,4) and FastICA. Those experi-

ments show that the use of both constraints, namely nonnegativity of the mix-

ing matrix and quasi-independence of the sources, allows us to achieve better

estimation accuracy.

Appendix A. Gradient computation

The first-order derivative of the objective function Ψ (2) is calculated in a

compact matrix form [41]. From equation (2), we have:

Ψ(E,C) = Tr(X3
TX3)− 2f(E,C) + g(E,C) (A.1)

with f(E,C)=Tr(X3
TCZT), g(E,C) = 1P

T((ATA)⊡2
⊡CTC)1P , Z = A⊙A

and A = exp (E). The differential of Ψ, seen as a scalar function of two real-

valued matrices E and C, is given by:

dΨ(E,C) = DEΨ(E,C) dvec(E) +DCΨ(E,C) dvec(C)

where DEΨ(E,C) = ∂Ψ/∂vec(E)T and DCΨ(E,C) = ∂Ψ/∂vec(C)T represent

the partial derivatives of Ψ with respect to (w.r.t.) E and C, respectively. Then,

by using the chain rules and differential properties, the following two equations

are obtained:

DEΨ(E,C) = DZf(E,C)DAZDEA+DZg(E,C)DAZDEA(A.2)

DCΨ(E,C) = DCf(E,C) +DCg(E,C) (A.3)



Note that DAZ and DBA are defined as:

DAZ = ∂vec(Z)/∂vec(A)T = diag(vec(1I ⊗A))(IIP ⊗ 1I) + (A.4)

diag(vec(A)⊗ 1I)(U IP ⊗ II)(1I ⊗ IIP )

DEA = ∂vec(A)/∂vec(E)T = diag(vec(exp (E))) (A.5)

Then, we get, using the expressions of DAZ and DEA:

Lemma 1. The gradient DΨ(E,C) is given by:

DΨ(E,C) = [DEΨ(E,C), DCΨ(E,C)] (A.6)

with:

DEΨ(E,C)=−2 (vec(exp (E))⊡(((A⊗ 1I
T)⊡ (M+N))T1I))

T

+2vec(ATA⊡CTC)T((IP ⊗AT)+(AT ⊗ IP )U IP )diag(vec(exp (E)))

and:

DCΨ(E,C) = −2vec(X3Z)T + 2vec(C)T(ZTZ ⊗ IK)

with A=exp (E), Z=A⊙A, M=Mat(I×1,IP )(vec(X3
TC)) and N = Mat(I×I,P )(M T).

Appendix B. ALS computation

In order to minimize the subproblem (6) w.r.t. the (a, b)-th component of

E, we introduce ΦEa,b
: Ea,b 7→ Ψ(E,C), corresponding to the function Ψ

w.r.t. Ea,b, while keeping the other elements of E fixed. We rewrite ΦEa,b

as a composite function defined by ΦEa,b
(Ea,b) = g ◦ f(Ea,b) with f : Ea,b 7→

exp (Ea,b) and g : Aa,b 7→
∥∥∥X3 −C

(
(A)⊙2

)
T

∥∥∥
2

F
. Function f is associated to

the exponential change of variable and g corresponds to the JDC cost function

w.r.t. the (a, b)-th component of A. Consequently, we have:

g(Aa,b) = β4(Aa,b)
4 + β2(Aa,b)

2 + β1Aa,b + β0 (B.1)



where:

β1 = −2(AT(M +N))b,(b−1)I+a − 4Aa,b((C
TC(AT)⊡2)

+(ATA)b,b(C
TC)b,b + (Aa,b)

3(CTC)b,b)

−2Aa,b(M +N)a,(b−1)I+a

β2 = −2(M +N)a,(b−1)I+a + 4(A⊡2CTC)a,b

+4((ATA)b,b(C
TC)b,b

β4 = 4(CTC)b,b

Note that β0 is not defined here, because this expression is very complicated

and it is not useful in the sequel. A matrix computation of the coefficients βi,

for i ∈ {1, 2, 4} , is performed allowing for a straightforward implementation in

matrix programming environments.

According to the derivative property of the composite function, the derivative

of ΦEa,b
, denoted Φ′

Ea,b
, is given by:

Φ′

Ea,b
(Ea,b) = g′ (f(Ea,b)) f

′(Ea,b) (B.2)

= g′(Aa,b)f
′(Ea,b) (B.3)

with:

f ′(Ea,b) = exp (Ea,b) (B.4)

g′(Aa,b) = 4β4(Aa,b)
3 + 2β2Aa,b + β1 (B.5)

As a result, we can search for the stationary points of Φ′
Ea,b

by computing

the strictly positive roots of a third degree polynomial g′(Aa,b) of the form

h(Z) = Z3 + pZ + q, with p = β2/β4 and q = β1/β4. The analytical root can

be computed using Cardano’s method [42], which consists first in computing

a discriminant ∆. When ∆ ≤ 0, one of the solutions is positive and we are

done. On the other hand, when ∆ is strictly positive, the unique solution may

be negative. We studied in detail the behavior of the polynomial function h in

this particular case, and determined that the function g is strictly increasing on

]0,+∞[. Indeed, g cannot be defined in zero, because it depends on Aa,b = Ea,b.



So, the minimum of the cost function is achieved when the component of A is

equal to a small positive value ǫ close to zero. The variable ǫ decreases to zero

as a function of the number of iterations. Indeed, for the first ten iterations,

its is set to 0.1. Then, this value is divided by ten every ten iterations. At the

end of the convergence, this procedure permits us to fix the minimum to zero,

although this value is not allowed by the exponential change of variable, and thus

to process mixtures with some exact zeros. Paatero used the same technique for

his nonnegative tensor factorization algorithms, for which the strictly positivity

of the component is ensured by a logarithmic penalty function [43].

Appendix C. Calculation of ϕ

Note that in this section, the superscript it will be omitted. ϕ (11) can be

rewritten as follows:

ϕ(µE , µC) ≈
∥∥F 0 + F 1µE + F 2µ

2
E + F 3µ

3
E + F 4µ

4
E

+F 5µ
5
E + F 6µ

6
E + F 7µC + F 8µCµE + F 9µCµ2

E+ (C.1)

F 10µCµ3
E + F 11µCµ4

E + F 12µCµ5
E + F 13µCµ6

E

∥∥2
F

where:

F 0 = X(3) −CE0 F 1 = −CE1 F 2 = −CE2

F 3 = −CE3 F 4 = −CE4 F 5 = −CE5

F 6 = −CE6 F 7 = −GCE0 F 8 = −GCE1

F 9 = −GCE2 F 10 = −GCE3 F 11 = −GCE4

F 12 = −GCE5 F 13 = −GCE6



with:

E0 = (K⊙2
0 )T E1 = (K0⊙K1+K1⊙K0)

T

E2 = (K0⊙K2+K⊙2
1 +K2⊙K0)

T

E3 = (K1⊙K2+K2⊙K1+K0⊙K3+K3⊙K0)
T

E4 = (K⊙2
2 +K3⊙K1+K1⊙K3)

T

E5 = (K2⊙K3+K3⊙K2)
T E6 = (K⊙2

3 )T

and finally:

K0 = A(2) = (exp (E)) K1 = exp (E)⊡GE

K2 = (exp (E)⊡G⊡2
E )/2 K3 = (exp (E)⊡G⊡3

E )/6

We define F of size (I2K × 14) as the horizontally concatenation of vec(F i) for

0 ≤ i ≤ 13.

Appendix D. Simplification of the matrix Q

Q can be computed from F using the expression Q = F TF . However, in

terms of numerical complexity, it is better to build Q differently. Indeed, Q

is a symmetric matrix only of size (14 × 14), contrary to F , which requires a

large storage. Second, the expression of each component of Q, except those

belonging to the last row and column depending on X3, can be simplified using

the following properties

• (F ⊙G)T(F ⊙G) = F TF ⊡GTG

• vec(FZ) = (ZT ⊙ F )1N

with F ∈ ❘
P×N , Z ∈ ❘

N×P and G ∈ ❘
K×N [30]. Initially, we have Qi,j =

vec(F 13−i)
Tvec(F 13−j), for 0 ≤ i, j ≤ 12. First, using the previous property,

both vectors are replaced by a Khatri-Rao product of matrices. Both Khatri-



Rao products are replaced by a Hadamard product. For instance, we get:

Q1,5 = Q5,1 = Tr(C(K2
TK0 ⊡K0

TK2)Gc
T) (D.1)

= vec(Gc(K0 ⊙K0)
T)Tvec(C(K2 ⊙K2)

T)

= 1p
T((K0 ⊙K0)⊙Gc))

T((K2 ⊙K2)⊙C)1p

= 1p
T((K0 ⊙K0)

T(K2 ⊙K2)⊡Gc
TC)1p

= 1p
T(K2

TK0 ⊡K2
TK0 ⊡Gc

TC)1p (D.2)

Note that this way of simplifying the matrix trace was originally proposed by

Tomasi and Bro [3]. The same technique is used for the other components except

those depending on X3 and by which the numerical complexity is governed.
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