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Abstract

Background: Just as power, type I error of cluster detection tests (CDTs) should be spatially assessed. Indeed, CDTs’

type I error and power have both a spatial component as CDTs both detect and locate clusters. In the case of type

I error, the spatial distribution of wrongly detected clusters (WDCs) can be particularly affected by edge effect. This

simulation study aims to describe the spatial distribution of WDCs and to confirm and quantify the presence of

edge effect.

Methods: A simulation of 40 000 datasets has been performed under the null hypothesis of risk homogeneity. The

simulation design used realistic parameters from survey data on birth defects, and in particular, two baseline risks.

The simulated datasets were analyzed using the Kulldorff’s spatial scan as a commonly used test whose behavior is

otherwise well known. To describe the spatial distribution of type I error, we defined the participation rate for each

spatial unit of the region. We used this indicator in a new statistical test proposed to confirm, as well as quantify,

the edge effect.

Results: The predefined type I error of 5% was respected for both baseline risks. Results showed strong edge effect

in participation rates, with a descending gradient from center to edge, and WDCs more often centrally situated.

Conclusions: In routine analysis of real data, clusters on the edge of the region should be carefully considered as

they rarely occur when there is no cluster. Further work is needed to combine results from power studies with this

work in order to optimize CDTs performance.

Keywords: Cluster detection test, Type I error, Simulation study, Edge effect, Spatial scan

Résumé

Contexte: Les tests de détection de clusters (CDT) permettent à la fois de détecter et de localiser les clusters. Au

même titre que pour la puissance, il est donc nécessaire d’étudier la répartition spatiale de l’erreur de type I de ces

CDT. Dans le cas de l’erreur de type I, la répartition spatiale des clusters détectés à tort (WDC) peut être

particulièrement concernée par un effet de bord. Cette étude de simulation a pour objectif de décrire la

distribution spatiale des WDCs et de confirmer et quantifier la présence de cet effet de bord.
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Méthodes: Ce travail s’appuie sur la synthèse de 40 000 jeux de données simulant l’hypothèse nulle

d’homogénéité spatiale des risques. Les simulations étaient fondées sur les paramètres réels de données d’un

registre de malformations congénitales, et notamment sur deux risques de base réels. La description de la

distribution spatiale de l’erreur de type I nous a conduits à définir le concept de taux de participation de chaque

unité spatiale de la région. Cet indicateur a ensuite été intégré pour la construction d’un nouveau test statistique

destiné à confirmer et quantifier l’effet de bord.

Résultats: La valeur globale de l’erreur de type I à 5% a bien été retrouvée. Les résultats montraient un très net

effet de bord avec un gradient décroissant du taux de participation depuis le centre vers le bord, les WDC étant

plus souvent situés en zone centrale.

Conclusions: Lors de la mise en œuvre des CDT sur données réelles, les détections de clusters près du bord d’une

région d’étude doivent être examinées avec la plus grande attention, ces dernières étant très rares en l’absence de

cluster réel. Il est maintenant nécessaire d’orienter de futurs développements vers la combinaison de ces résultats à

ceux des études de puissance, et ce dans le but d’optimiser les performances des CDT.

Background

Spatial clusters can be detected using a wide range of

statistical tests [1,2] many of which are available in free

software such as R [3,4]. Epidemiologists use cluster

detection tests (CDTs) to detect clusters without a priori

knowledge either of their number or their location, and

to determine their significance. CDTs performance being

a function of epidemiological and geographical context

[1,5-11], it is recommended to perform power studies be-

fore using these tests in a particular region for a given

phenomenon. However, statistical power is not the only test

characteristic determining performance. Performance at

large depends on two type of risks: type I and type II errors.

In presence of clusters, usual statistical power (1-β) is

not sufficient to assess CDT performance to reject the

null hypothesis of risk homogeneity. At worst, a CDT

could have a maximum power to reject this null hypoth-

esis of risk homogeneity but never correctly locate the

true cluster. Similar concern can be raised for type I

error. A CDT could, under the null hypothesis of no

cluster, generate wrongly detected clusters (WDC) pref-

erentially localized in particular zones of the studied

region. The overall type I error could effectively be equal

to its predefined value usually set to 5%, but the inter-

pretation of the analyses would certainly not be the same

for detected clusters inside or outside such zones.

In the case of statistical power, authors have since used

either evaluation of power and location by different indi-

cators [6,12-14] or concomitant evaluation of both with

a single measure such as the extended power [15,16].

The development of single measure of performance

taking into account both power and location accuracy

has enabled systematic spatial evaluation of performance

on entire regions [15]. The question of the spatial evalu-

ation of CDT is, so far, not totally answered with regards

to power because evaluation of factors such as relative

risks or cluster shape and size are still assessed by a

non-systematic approach based on more or less arbitrary

settings in simulation designs.

The question of relative risks and clustering character-

istics is not relevant in the spatial evaluation of type I

error, other factors have to be taken into account, how-

ever. First, there is still one epidemiological factor that

requires setting: the baseline risk. For an applicative

purpose, the use of the baseline incidence of the studied

disease is the evident choice, but for research, a system-

atic evaluation over a wide range of this factor should be

carried out. Second, simulation studies evaluating type I

error are much more likely to be influenced by edge

effect [17-19] than power studies. Indeed, in the majority

of simulation studies assessing power, edge effect is

largely lessened by designs simulating clusters wholly

within the studied region.

We aimed to evaluate CDTs regarding the spatial dis-

tribution of type I error. Such description was carried-

out at the level of the spatial unit (SU) introducing the

concept of SU’s participation rate. We proposed a statis-

tic to quantify and test for edge effect which was of par-

ticular interest. We used Kulldorff spatial scan statistic

as an example of CDT, whose behavior is otherwise well

known, and performed a simulation study using realistic

parameters from survey data on birth defects.

Methods

Disease modeling

The study region was the Auvergne region (France),

divided into n = 221 spatial units (SUs) equivalent to U.S.

ZIP codes. We applied two baseline risks (incidences) of

birth defects to the same at-risk population, whose size

was approximated by mean annual number of live births.

For a realistic analysis, we used data archived in CEMC

(birth defects registry for the Auvergne region) and INSEE

(National Institute of Statistics and Economic Studies)

databases. We collected two categories of data from 1999
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to 2006: all birth defects and cardiovascular birth defects.

Both datasets were sorted by SU. The number of live

births was approximated by the number of birth decla-

rations in the at-risk population. Global annual inci-

dences of all birth defects (Iall) and cardiovascular birth

defects (Icv) were estimated at 2.26% and 0.48% of births,

respectively.

Datasets

We generated 20 000 datasets for each baseline risk, i.e.

a total of 40 000 datasets.

Each dataset is entered as a table of 221 rows and 5

columns. The rows contain the coordinates (longitude

and latitude) of a SU, the observed number of cases, the

size of the at-risk population (i.e., the number of live

births) and the expected number of cases in the specified

SU. This last quantity is the product of the global inci-

dence (Iall or Icv) and the at-risk population size in the

SU. The observed case numbers are assumed as inde-

pendent Poisson variables such that

E N ið Þ ¼ μi;N iePois μið Þ; i ¼ 1;…; n

where Ni is the observed number of cases, and μi denotes

the expected number of cases in the ith SU under the null

hypothesis of risk homogeneity.

Figure 1 Representation of the medial axis of the Auvergne

region.

Figure 2 Empirical distribution of WDC size (number of SUs) over 20 000 simulated datasets for two baseline incidences of birth

defects: 2.26% (Iall) and 0.48% (Icv).
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Assessment of type I error

Overall rate

The global type I error rate was estimated by the proportion

of WDC over the 20 000 datasets for each baseline risk.

Spatial distribution

SU participation rate: Participation rate of each WDC in

the overall type I error is equal to 1/m, with m the number

of WDCs. Participation rate of each SU in the overall type I

error was estimated by a weighted sum of the number of

times each SU was included in a WDC. This weight is a

function of m and the length of each WDC (number of SUs

within). For each SU i among the n SUs of the region, the

participation rate Pi in the overall type I error is such that

Pi ¼
Xm

j¼1

Iij mlj
� �

−1

where m is the number of WDCs, lj is the length of the

jth WDC and I ij a binary indicator equal to 1 when

the ith SU is within the jth WDC and 0 otherwise. By

construction, Pi ≥ 0 and
Xn

i¼1

Pi ¼ 1, where n is the num-

ber of SUs in the region.

Edge effect: The edge effect is defined here as an in-

homogeneous distribution of Pi characterized by a

gradient from the medial axis (or cut locus or skeleton)

of the region to its edge. This gradient can either be

ascending or descending. The medial axis is the set of

all points having more than one closest point on the

region’s edge [20-23]. The Figure 1 shows the medial

axis of the region under studya. For such a simple poly-

gon, the medial axis is a tree whose leaves are the verti-

ces and whose edges are straight segments reflecting

local symmetries of the shape.

To confirm the presence of an edge effect, we propose

a test whose statistic, referred to as E, is such that

Ε ¼
Xn

i¼1

εi Pi−n
−1

� �

εi ¼ 1−
2di

D

� �

8
>>><
>>>:

Where di is the minimal Euclidian distance between

the centroid of the ith SU and the edge of the region,

D the maximum Euclidian distance between any point

of the medial axis and the region closest edge, and n the

number of SUs in the region. By construction, as 0 ≥ di ≥

D, -1 ≥ ε i ≥ +1. The coefficient εi is a continuous indi-

cator quantifying how much a point can be considered

“on the edge” of the region. It is referred to as “the edge

Figure 3 SUs participation rates computed over 20 000 simulated datasets for each map. (a) Observed values for baseline incidence of

birth defects set to 2.26% (Iall). (b) Observed values for baseline incidence of birth defects set to 0.48% (Icv).
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coefficient” in the remainder of this paper. For any point

in the region, the closer to the edge, the higher the edge

coefficient, and the closer to the medial axis, the smaller

the edge coefficient. The edge coefficient ranges from -1

for the most “central/medial” points of the region to +1

for points on the edge. For a study region divided into

census tract, each SU is attributed the edge coefficient of

its centroid. All SUs with the same edge coefficient are at

the same distance to the edge and the closer to the medial

axis, the smaller the edge coefficient, tending to -1 for the

most “central” SUs of the region.

The test hypotheses are expressed by

H0 : E ¼ 0
H1 : E≠0

�

The quantity n-1 is the expected participation rate for

all SUs under the null hypothesis of spatial homo-

geneity in type I error. When Pi is higher than expected

towards the edge of the region, by construction, it is

lower towards the center (as
Xn

i¼1

Pi ¼ 1) and there is an

ascending gradient. On the contrary, when Pi is higher

towards the center of the region, there is a descending

gradient. The statistic E is positive when there is an

ascending gradient of Pi and negative when the gradient is

descending. Indeed, in case of an ascending gradient

� central SUs will tend to have

εi < 0; Pi−n
−1

� �
< 0 ð1Þ

� border SUs will tend to have

εi > 0; Pi−n
−1

� �
> 0 ð2Þ

and E will tend to be highly positive.

In case of a descending gradient

� central SUs will tend to have

εi < 0; Pi−n
−1

� �
> 0 ð3Þ

� border SUs will tend to have

εi > 0; Pi−n
−1

� �
< 0 ð4Þ

and E will tend to be highly negative.

Finally, under H0 of spatial homogeneity of type I error,

the sum of all Pi, equal to 1, is homogeneously distributed

among the n SUs with an expected participation rate

Figure 4 Empirical distribution of SUs participation rates computed over 20 000 simulated datasets for two baseline incidences of

birth defects: 2.26% (Iall) and 0.48% (Icv).
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equal to n-1. Under this null hypothesis, the expected value

of (Pi − n− 1) is null and independent to εi. Consequently,

under null hypothesis, the expected value of E is null.

Since the variance of the E statistic under H0 (spatial

homogeneity of type I error) is unknown, we used

Monte Carlo simulation where the n observed Pi were

randomly distributed 99 999 times among the n SUs in

the region. The p-value was the proportion of elements

among the collection of simulated and observed statistics

which were greater than or equal to the observed value.

The precision of this p-value was thus of 10-5 digits.

Kulldorff’s spatial scan statistic

In this study, we selected Kulldorff ’s spatial scan statistic

[24,25] as a well-known and widely used CDT whose per-

formance has been studied by many authors [1,6,10,26].

The spatial scan statistic detects the most likely cluster

on locally observed statistics of likelihood ratio tests.

The scan statistic considers all possible zones z defined

by two parameters: a center that is successively placed

on the centroid of each SU, and a radius varying

between 0 and a predefined maximum. The true geog-

raphy being delineated by administrative tracts, each

zone z defined by all SUs whose centroids lie within the

circle, is irregularly shaped. Let Nz and nz be respect-

ively the size of the at-risk population and the number

of cases counted in zone z (over the whole region, these

quantities are the total population size N and the total

number of cases n). The probabilities that an at-risk

case lies inside and outside zone z are respectively

defined by pz = nz/Nz and qz = (n-nz)/(N-Nz). Given the

null hypothesis of risk homogeneity H0: pz = qz, versus

the alternative H1: pz > qz and assuming a Poisson

distribution of cases, Kulldorff defined the likelihood

ratio statistics as proportional to

nz

λNz

� �nz n−nz

λ N−Nzð Þ

� �n−nz

Ι nz > λNz½ �;

Figure 5 Size of the at-risk population for each SU in the Auvergne region, as defined by mean number of live births per year between

1999 and 2006 (source: INSEE). Q1: ≤ 17; Q2: > 17 and≤ 35; Q3: > 35 and≤ 70; Q4: > 70.
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where λ (here equal to Iall or Icv depending on the case

considered) is the global incidence and the indicator

function I equals 1 when the number of observed cases

in zone z exceeds the expected number under H0 of

risk homogeneity, and 0 otherwise. The circle yielding

the highest likelihood ratio is identified as the most

likely cluster. The p-value is obtained by Monte Carlo

inference.

Over the 40 000 simulated datasets, each test was per-

formed with a maximum size of zone z set to 50% of the

total at-risk population, a number of 999 Monte Carlo sam-

ples for significance measures, and an alpha level set to 5%.

Software

Data simulation and analysis were performed on R 2.14.0

[3,27-29], using the function “kulldorff” of the SpatialEpi

package [27] to perform the Kulldorff ’s spatial scan.

Results

Overall rate and WDC characteristics

The overall type I error rate was 5.11% (1021 WDC

over 20 000 datasets; CI 95% [4.80%, 5.42%]) for Iall

and 5.06% (1012 WDC over 20 000 datasets; CI 95%

[4.76%, 5.38%]) for Icv. The average size of WDCs was

21.4 SUs (minimum 1SU, median 11 SUs, maximum

116 SUs) and 23.4 SUs (minimum 1SU, median 11 SUs,

maximum 132 SUs), respectively. The Figure 2 shows

the empirical distribution of the WDC size for each

baseline risk.

SUs participation rates

Figure 3 shows the SUs participation rates for baseline

risks Iall (Figure 3a) and Icv (Figure 3b). The expected

participation rate (n-1) for each SU is equal to 0.452%.

With 0.452% ± 0.147% (mean ± standard deviation) for Iall
and 0.452% ± 0.148% for Icv, the two observed distribu-

tions of participation rates were very close to each other

(Figure 4). The observed values varied from 0.097% to

0.877% for Iall and from 0.091% to 1.03% for Icv.

We sought for a correlation between Pi and size of the

at-risk population (Figure 5) by Spearman’s rank test.

Both coefficients were negative but none resulted in

significant relationship (r = -0.13 with p-value = 0.056 for

Iall and r = -0.11 with p-value = 0.1 for Icv).

Figure 6 Values of the edge coefficient εi computed over a regular sampling of 500 000 points within the region.
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Edge effect

Figure 6 shows the value of the edge coefficient εi com-

puted for a regular sampling of 500 000 points within

the region. Figure 7 shows the value of the edge coeffi-

cient computed for the n = 221 SUs within the region.

With E equal to -0.086 for Iall and -0.074 for Icv, both

simulations resulted in descending gradient of Pi, i.e.

higher Pi for central SUs. As shown by E values, this

gradient was stronger for Iall than for Icv.

As shown in Figure 8, the SUs contributing to the

overall type I error for more than n-1 (Pi > n
-1) were

mostly located away from the border of the region. The

black line delineates a central zone where the edge coef-

ficient is negative and a complementary zone where the

edge coefficient is positive. Within the central zone, red

SUs contribute negatively to E (see Equation 3), on the

contrary, outside the central zone, red SUs contribute

positively to E (see Equation 4).

Both tests were highly significant, with Monte Carlo

p-values both equal to 10-5 (99 999 replicates). Figure 9

shows the simulated null distributions of E and the

observed values for the two simulated baseline risks.

Discussion

We have shown that type I error is heterogeneously dis-

tributed with a descending gradient from center to edge.

Even if global type I error is very near the predefined 5%,

WDCs are rarely located on the edge of the map. In a

survey system, where sensitivity matters over specificity,

it could be argued that since global type I error is pre-

served, the global cost in unfruitful secondary investiga-

tion is not affected by the spatialization of type I error.

Our work did not aim to test for clustering in type I

error rate and thus we did not used CDTs to analyze

the spatial distribution of Pi. We note, however, that

methods such as Bayesian smoothing could be of

interest in the description of the spatial distribution

of type I error. As the presence of an edge effect with

descending gradient was obviously expected, our contri-

bution aimed to describe, quantify and test for this edge

effect. Furthermore, within a given region, the spatial de-

scription of type I error makes possible to see with pre-

cision which detected clusters should be carefully

considered because they are less likely to coincide with

false alarm.

Figure 7 Values of the edge coefficient εi computed for each SU within the region. Each SU is assigned the value of the edge coefficient εi

computed for its centroid.
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Figure 8 Overlaying of the sign of the difference between observed and expected values of SUs participation rates (computed over 20

000 simulated datasets for each map) and the sign of the edge coefficient εi (εi negative in hatched area). (a) Baseline incidence of birth

defects set to 2.26%. (b) Baseline incidence of birth defects set to 0.48%.

Figure 9 Histograms of the null distribution (99 999 replicates) and observed values of E for two baseline incidences of birth defects:

2.26% (Iall) and 0.48% (Icv).
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The edge effect was present and strong, no matter the

baseline risk. Only two levels have been tested for this

risk. One could wonder about a possible correlation

between edge effect and the level of baseline risk. Levels

at regular interval between these two baseline risks are

currently being explored and there is no evidence of

such a correlation so far (data not shown).

The edge effect is indisputable in this study (Figure 8)

and the statistic E has consequently resulted in a highly

significant test. This statistic is based on the edge coefficient

εi that defines what is “on the edge” of the map and what is

not. By using medial axis, we proposed a distance-based

definition, but other parameters could be considered. For

instance, it could be useful to distinguish between two SUs

at the same distance to the edge but in different configura-

tions with one in a “peninsula” (between two edges) and

thus more isolated than the others. To be accounted for,

this factor needs geometrical tools to characterize the

spatial isolation.

Aside from a purely geometrical definition of what is

an edge, confounding factors should also be taken into

account. Suppose that the at-risk population is heteroge-

neously distributed, with more populated areas centrally

localized. Then, suppose again that the at-risk popula-

tion size is negatively correlated to participation rate

(this was not the case in our study). Our test for edge

effect might turn out to be significant, concluding in an

ascending gradient of Pi from center to edge, only due

to this confounding factor. In our simulations, the

at-risk population is effectively more centrally localized.

If the negative correlation between population size and

Pi had been significant, we would have an even stronger

evidence for a descending edge effect regarding Pi from

center to edge, because our results, that turned out to be

significant, would have actually been underestimated.

Even if we did not find any relationship between popu-

lation size and participation rate, other factors (such as

the number of neighbors, the accessibility by road or rail

system, etc.) should be evaluated. The best way to deal

with these confounding factors might be to integrate

them in the construction of ε i for geographical factors

or to replace the constant n-1 by a vector of expected

participation rates for epidemiological factors. For the

E statistic to be equal to 0 under H0 (spatial homogen-

eity of type I error), this last adaptation should be done

in such a way that the sum of all expected participation

rates stays equal to 1.

Our results highlight the edge effect in type I error,

and thus can help the interpretation of real data analysis.

It could be even more useful to provide a way to inte-

grate spatial heterogeneity of type I error in the analysis

itself. Furthermore, adjustment in CDT behavior should

be done to address this issue only if it does not impede

the tests’ power. In a previous simulation study on CDT

performance, we proposed a method to build perform-

ance map based on a systematic spatial evaluation [15].

The now available data for both H1 (single clusters of

4SUs in this previous study) and H0 (risk homogeneity)

in similar settings (same baseline risk and population

size) will enable us to study whether and how it could

be gainful to add a spatial adjustment of type I error.

Conclusion

Spatial heterogeneity of type I error should be consid-

ered when interpreting analysis of real data, because of

the strong edge effect. This work clearly shows that a

detected cluster on the edge of the region of interest

is less common when no alarm should be raised. To

explore all avenues, assessment of edge effect and its

factors, as well as development of tools to integrate it in

routine health survey, should be considered.

Endnotes
aComputation of the straight skeleton was performed

using [30] and the results were imported and displayed with

JTS Topology Suite [31], a software under GNU license.

Abbreviations

WDC: Wrongly detected cluster; CDT: Cluster detection test; H0: Null

hypothesis; H1: Alternative hypothesis; Iall: Incidence of all birth defects;

Icv: Incidence of cardiovascular birth defects.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

AG and LO conceived the design, performed the study and drafted the

manuscript. AG was responsible for statistical programming and data analysis. YG

contributed to the construction of the E test. JD, JG, YG, XL and JYB contributed

to manuscript revision. All authors read and approved the final manuscript.

Acknowledgments

Data have been provided by the CEMC (birth defect registry of Auvergne),

with the participation of the Regional Health Agency of Auvergne, InVS

(National Institute for Health Surveillance) and INSERM (National Institute of

Health and Medical Research).

Author details
1Department of Biostatistics, Medical Informatics and Communication

Technologies, Clermont University Hospital, Clermont-Ferrand F-63000,

France. 2UMR CNRS UDA 6284 ISIT, Auvergne University, Clermont-Ferrand

F-63001, France. 3UMR 912 SESSTIM (INSERM IRD AMU), Aix-Marseille

University, Marseille F-13005, France. 4Assistance Publique Hôpitaux de

Marseille, Biostatistic and Modelisation, Marseille F-13005, France. 5La Tronche

University School of Medicine, FRE CNRS 3405 AGIM, J. Fourier University,

Saint-Martin-d’Hères F-38700, France.

Received: 10 March 2014 Accepted: 17 May 2014

Published: 27 May 2014

References

1. Kulldorff M, Tango T, Park PJ: Power comparisons for disease clustering

tests. Comput Stat Data Anal 2003, 42:665–684.

2. Sankoh OA, Becher H: Disease cluster methods in epidemiology and

application to data on childhood mortality in rural Burkina Faso. Inform

Biom Epidemiol Med Biol 2002, 33:460–472.

3. Gomez-Rubio V, Ferrandiz J, Lopez A: Detecting clusters of diseases with R.

J Geogr Syst 2003, 7:189–206.

Guttmann et al. International Journal of Health Geographics 2014, 13:15 Page 10 of 11

http://www.ij-healthgeographics.com/content/13/1/15



4. Robertson C, Nelson TA: Review of software for space-time disease

surveillance. Int J Health Geogr 2010, 9:16.

5. Aamodt G, Samuelsen SO, Skrondal A: A simulation study of three

methods for detecting disease clusters. Int J Health Geogr 2006, 5:15.

6. Ozonoff A, Jeffery C, Manjourides J, White LF, Pagano M: Effect of spatial

resolution on cluster detection: a simulation study. Int J Health Geogr

2007, 6:52.

7. Jeffery C, Ozonoff A, White LF, Nuño M, Pagano M: Power to detect spatial

disturbances under different levels of geographic aggregation. J Am Med

Informat Assoc 2009, 16:847–854.

8. Olson KL, Grannis SJ, Mandl KD: Privacy protection versus cluster detection in

spatial epidemiology. Am J Public Health 2006, 96:2002–2008.

9. Puett R, Lawson A, Clark A, Aldrich T, Porter D, Feigley C, Hebert J: Scale and

shape issues in focused cluster power for count data. Int J Health Geogr

2005, 4:8.

10. Goujon-Bellec S, Demoury C, Guyot-Goubin A, Hémon D, Clavel J: Detection

of clusters of a rare disease over a large territory: performance of cluster

detection methods. Int J Health Geogr 2011, 10:53.

11. Jacquez GM: Cluster morphology analysis. Spat Spatiotemporal Epidemiol

2009, 1:19–29.

12. Li X-Z, Wang J-F, Yang W-Z, Li Z-J, Lai S-J: A spatial scan statistic for

multiple clusters. Math Biosci 2011, 233:135–142.

13. Wang T-C, Yue C-SJ: A binary-based approach for detecting irregularly

shaped clusters. Int J Health Geogr 2013, 12:25.

14. Jones SG, Kulldorff M: Influence of spatial resolution on space-time

disease cluster detection. PLoS One 2012, 7:e48036.

15. Guttmann A, Ouchchane L, Li X, Perthus I, Gaudart J, Demongeot J,

Boire J-Y: Performance map of a cluster detection test using extended

power. Int J Health Geogr 2013, 12:47.

16. Takahashi K, Tango T: An extended power of cluster detection tests.

Stat Med 2006, 25:841–852.

17. Griffith DA: The boundary value problem in spatial statistical analysis.

J Reg Sci 1983, 23:377–387.

18. Dreassi E, Biggeri A: Edge effect in disease mapping. J Ital Stat Soc 1998,

7:267–283.

19. Meter EMV, Lawson AB, Colabianchi N, Nichols M, Hibbert J, Porter DE,

Liese AD: An evaluation of edge effects in nutritional accessibility and

availability measures: a simulation study. Int J Health Geogr 2010, 9:40.

20. Blum H: A transformation for extracting descriptors of shape. In Models

Percept Speech Vis Forms. Boston: MIT Press; 1967:362–380.

21. Thom R: Sur le cut-locus d’une variété plongee. J Differ Geom 1972,

6:577–586.

22. Blum H: Biological shape and visual science I. J Theor Biol 1973,

38:205–287.

23. Wolter F-E: Cut Locus and Medial Axis in Global Shape Interrogation and

Representation, Sea Grant College Program, Massachusetts Institute of

Technology. 1993.

24. Kulldorff M: A spatial scan statistic. Commun Stat Theor M 1997,

26:1481–1496.

25. Kulldorff M, Nagarwalla N: Spatial disease clusters: detection and inference.

Stat Med 1995, 14:799–810.

26. Ribeiro SHR, Costa MA: Optimal selection of the spatial scan parameters

for cluster detection: a simulation study. Spat Spatiotemporal Epidemiol

2012, 3:107–120.

27. Chen C, Kim AY, Ross M, Wakefield J, Venkatraman ES: SpatialEpi: Performs

Various Spatial Epidemiological Analyses. 2013.

28. Team RC: R: A Language and Environment for Statistical Computing. Vienna,

Austria: 2012.

29. Keitt TH, Bivand R, Pebesma E, Rowlingson B: Rgdal: Bindings for the

Geospatial Data Abstraction Library. 2012.

30. Straight Skeleton Builder. http://polyskeleton.appspot.com/.

31. JTS Topology Suite. http://tsusiatsoftware.net/jts/main.html.

doi:10.1186/1476-072X-13-15
Cite this article as: Guttmann et al.: Spatial heterogeneity of type I error
for local cluster detection tests. International Journal of Health Geographics
2014 13:15.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Guttmann et al. International Journal of Health Geographics 2014, 13:15 Page 11 of 11

http://www.ij-healthgeographics.com/content/13/1/15

http://polyskeleton.appspot.com/
http://tsusiatsoftware.net/jts/main.html

	Abstract
	Background
	Methods
	Results
	Conclusions

	Résumé
	Contexte
	Méthodes
	Résultats
	Conclusions

	Background
	Methods
	Disease modeling
	Datasets
	Assessment of type I error
	Overall rate
	Spatial distribution

	Kulldorff’s spatial scan statistic
	Software

	Results
	Overall rate and WDC characteristics
	SUs participation rates
	Edge effect

	Discussion
	Conclusion
	Endnotes
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

