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Abstract    

Several measures have been proposed to detect nonlinear characteristics in time series. Results on time    

series, multiple surrogates and their z-score are used to statistically test for the presence or absence of    

non-linearity. The z-score itself has sometimes been used as a measure of nonlinearity. The sensitivity    

of nonlinear methods to the nonlinearity level and their robustness to noise have rarely been evaluated    

in the past. While surrogates are important tools to rigorously detect nonlinearity, their usefulness for    

evaluating the level of nonlinearity is not clear. In this paper we investigate the performance of four    

methods arising from three families that are widely used in non-linearity detection: statistics (Time    

reversibility), predictability (Sample Entropy, Delay Vector Variance) and chaos theory (Lyapunov    

Exponents). We used sensitivity to increasing complexity and the Mean square Error (MSE) of Monte    

Carlo instances for quantitative comparison of their performances. These methods were applied to a    

Henon nonlinear synthetic model in which we can vary the complexity degree (CD). This was done    

first by applying the methods directly to the signal and then using the z-score (surrogates) with and    

without added noise. The methods were then applied to real uterine EMG signals and used to    
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distinguish between pregnancy and labor contraction bursts. The discrimination performances were    

compared to linear frequency based methods classically used for the same purpose such as Mean    

Power Frequency (MPF), Peak Frequency (PF) and Median Frequency (MF). The results show    

noticeable difference between different methods, with a clear superiority of some of the nonlinear    

methods (Time reversibility, Lyapunov exponents) over the linear methods. Applying the methods    

directly to the signals gave better results than using the z-score, except for Sample Entropy.      

Keywords    

Nonlinear time series analysis, uterine electromyogram, contraction discrimination, surrogates.    

I. Introduction    

One of the most common ways of obtaining information on neurophysiologic systems is to study the    

features of the signal(s) using time series analysis techniques. This traditionally rely on linear methods    

in both time and frequency domains [1]. Unfortunately, these methods cannot give information about    

purely nonlinear features of the signal. Due to the intrinsic nonlinearity of most biological systems,    

these nonlinear features may be present in physiological data and even be a characteristic of major    

interest. Recently, much attention has been paid to the use of nonlinear analysis techniques for the    

characterization of a biological signal [2]. Indeed, this type of analysis gives information about the    

nonlinear features of these signals, which arise from the underlying physiological processes, many of    

which have complex behavior. There is a growing literature reporting nonlinear analysis of various    

biosignal types (EEG [3], ECG [4], HRV [5] and EMG [6]).    

The EHG or electrohysterogram (electrical uterine activity recorded on woman’s abdomen) has been    

widely studied [7], [8], [9], [10], [11]. Nonlinear characteristics  have  been observed  in  the EHG     

and  some success  has  been  achieved  by  using  these  characteristics  to  obtain  information  of     

potential clinical usefulness. Radomski et al. show that nonlinear analysis of EHG based on the sample    

entropy statistic could differentiate dynamic states of uterine contractions [12]. A comparison between    

linear and nonlinear analysis with different conditions was done in [13]. It was concluded that median    

frequency is the best method among linear methods and that sample entropy is the best method among    
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nonlinear methods for term/preterm EHG contractions classification. Sample entropy is superior to    

median frequency, which indicates that nonlinear analysis is more suitable than linear analysis for    

studying EHG signals. In [14] the progress of labor was evaluated using sample entropy. Our team has    

examined nonlinear EHG analysis methods. Our results confirm the presence of nonlinearity in EHG    

signals. This character of the signals is useful in discriminating between pregnancy and labor    

contractions [15], [2], [16]. Practical disadvantages of the nonlinear analysis methods have been    

reported in [16]. They include excessive calculation time due to surrogates analysis and promising but    

inconclusive results due to the small amount of data that can practically be used due to heavy    

calculation times.     

This paper presents work that extends previous work done in our group in comparing Approximate    

Entropy, Correntropy and Time reversibility [16]. In this work we implemented additional nonlinear    

analysis methods (delay vector variance, Lyapunov exponents) and new ways of testing them.  We    

also used a larger database of real signals than in the previous work and we investigated the sensitivity    

of the methods to the varying complexity of signals and their robustness. The kind of sensitivity and    

robustness analyses of non-linearity measures presented in this paper, are rare or absent in the    

literature.    

Four nonlinear methods: Time reversibility [17], Sample Entropy [18], Delay Vector Variance [19]    

and Lyapunov Exponents [20] were used in this work. Sensitivity of these methods to the complexity    

degree (CD) of a signal as well as robustness analysis were done on Henon model synthetic signals    

where CD can be controlled. The sensitivity to CD was first studied using the direct value provided by    

the method. It was then studied using surrogates and z-score, as the measure permitting evaluation of    

the nonlinearity. One objective of this study is to show which method(s) is most sensitive to the    

change of signal complexity. A second objective is to determine whether the use of surrogates gives    

better overall results than the direct application of the methods. This is of major practical importance    

for clinical application, as the generation of surrogates is very computationally expensive. The    

methods are also compared using the Mean square error (MSE) of the method results for 30 Monte    

Carlo instances of the signal. Finally, these non-linear methods are compared to three linear frequency    
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based characteristics of the signal, MPF, PF and MF, when applied to real EHG signals, in order to    

discriminate pregnancy and labor contractions.    

II. Materials and Methods    

A) Data    

1. Synthetic signals    

The Henon map is a well-known two-dimensional discrete-time system given by:    

                  
         

where Yt and Xt represent dynamical variables, CD is the complexity degree and c is the dissipation    

parameter. In this paper we use c = 1 as in [21] and CD ϵ [0, 1] to change the model complexity [22]    

(Figure 1). The number of generated points is fixed to 1000. For the robustness analysis, we add to the    

synthetic signals a white Gaussian noise with the same duration, with a fixed 5db SNR with CD    

varying between 0 and 1 with a step 0.1. In the Monte Carlo analysis, we use 30 signals generated for    

each CD value.      

2. Real signals    

EHG signals were recorded from 38 subjects using a 4x4 electrode matrix located on the subject's    

abdomen (Figure 2), during one hour either at rest (woman lying on a bed) or during labor. One signal    

channel (bipolar vertical 7: BP7), located on the median vertical axis of the uterus was used for    

subsequent analysis (see [23] for details). After segmentation we obtained 115 labor bursts (recorded    

during delivery) and 174 pregnancy bursts (recorded more than 24 hours before delivery).    

B) Non-linear Analysis Methods    

1. Statistics family    
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a) Time reversibility    

A time series is said to be reversible only if  its probabilistic properties are invariant with respect to    

time reversal. Time irreversibility can be taken as a strong signature of nonlinearity [17]. In this paper     

we used the simplest method, described in [24] to compute the time reversibility of a signal Sn:     

                        
      

where N is the signal length and  is the time delay.     

2. Chaos theory family     

a) Lyapunov Exponents     

Lyapunov exponent (LE) is a quantitative indicator of system dynamics, which characterizes the     

average convergence or divergence rate between adjacent tracks in phase space [20]. We used the     

method described in [13] to compute LE:     

      
 
                                 

Where       and       represent the Euclidean distance between two states of the system,     

respectively to an arbitrary time t0 and a later time t.     

3. Predictability family     

a) Sample Entropy     

Sample Entropy (SampEn) is the negative natural logarithm of the conditional probability that a     

dataset of length N, having repeated itself for m samples within a tolerance r, will also repeat itself for     

m+1 samples. Thus, a lower value of SampEn indicates more regularity in the time series [18]. We     

used the method described in [12] to compute SampEn :     
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For a time series of N points, x1, x2, . . . ,xN, we define subsequences, also called template vectors, of     

length m, given by: yi(m) = (xi, xi+1,..., xi+m−1) where i = 1, 2,...,N-m+1.     

Then the following quantity is defined:        as (N-m-1)−1 times the number of vectors     within r     

of    , where j ranges from 1 to N-m, and j≠i, to exclude self-matches, and then define:     

                    
    

Similarly, we define        as (N-m-1)-1 times the number of vectors       within r of      , where j     

ranges from 1 to N-m, where j≠i, and set     

                    
    

The parameter SampEn(m,r) is then defined as                         , which can be estimated     

by the statistic:     

                               
where N is the length of the time series, m is the length of sequences to be compared, and r is the     

tolerance for accepting matches.     

b) Delay Vector Variance     

We use the measure of unpredictability     described in [25]:     

Time series can be represented in phase space using time delay embedding. When time delay is     

embedded into a time series, it can be represented by a set of delay vectors (DVs) of a given     

dimension m. The dimension of the delay vectors can then be expressed as X (k) =[x (k-mĲ) …x (k-Ĳ)],     

where Ĳ is the time lag. For every DV X (k), there is a corresponding target, namely the next sample xk.     

A set βk (m, d) is generated by grouping those DVs that are within a certain Euclidean distance d to     

DV X(k).This Euclidean distance will be varied in a standardized manner with respect to the     
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distribution of pairwise distances between DVs. For a given embedding dimension m, a measure of     

unpredictability ı*2 (target variance) is computed over all sets of βk.     

The mean μd and the standard deviation ıd are computed over all pair wise Euclidean distances     

between DVs given by                 . The sets βk (m, d) are generated such that                             i.e., sets which consist of all DVs that lie closer to X(k) than a certain     

distance d, taken from the interval [μd-nd*ıd; μd+nd*ıd] where nd is a parameter controlling the span     

over which to perform DVV analysis.     

For every set βk(m, d) the variance of the corresponding targets ık
2(m, d) is computed. The average     

over the N sets βk(m, d) is divided by the variance of the time series signal     , ık gives the inverse     

measure of predictability, namely target variance ı* 2.      

                     

C) Surrogates and z-score.     

The most commonly used null hypothesis considers that a given time series is generated by a Gaussian     

linear stochastic process and collected through a nonlinear measurement static function. Thus     

surrogates must have the same linear properties (autocorrelation and amplitude distribution) as the     

original signal. However, any underlying nonlinear dynamic structure within the original data is     

altered in the surrogates by phase randomization [16].     

The statistics of significance z-score is,     

                         

where q0 stands for the statistic on the original time series,         for the mean and ıq(i) for the     

standard deviation of the surrogate, for i=1,2,…,M (number of generated surrogate). The critical value     

of z-score is 1.96 [26].     
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III. Results     

A) Results on synthetic signals     

In this section we study the evolution of the values generated by the four methods with variable     

complexity degree (CD) of the Henon synthetic model in four cases; 1) direct application of the     

method with no added noise, 2) using surrogates with no added noise, 3) direct application of the     

method with added noise and 4) using surrogates with added noise. The added noise is a white     

Gaussian noise (SNR=5 db) while CD varies between 0 and 1, for the Henon model. Our first     

objective is to test the sensitivity of the methods to varying CD for signals with and without noise. The     

use of surrogates is computationally very expensive and therefore our second objective is to test if  the     

use of surrogates improves the method sensitivity or not. .     

We compare the methods using two criteria, the method’s sensitivity to the change of CD (slope of the     

curve "value of the method" vs. "CD") and the MSE of the method for different values of CD.     

Figure 3-A1 presents the mean value for each method (direct method value) as a function of CD     

computed from the 30 Monte Carlo instances of the signal generated by the Henon model. Figure 3-    

A2 presents the MSE of the methods for each CD. We see in Figure 3-A1 that in the direct case     

without noise, the four methods evolve well but with differences in their sensitivity (slopes). Tr and     

LE are more sensitive than the other methods. In Figure 3-A2 we observe that Tr has a much lower     

MSE than LE.      

Figure 3-B1 presents the effect of adding noise (SNR=5db) on the methods. We notice no significant     

slope for the LE and SampEn. The sensitivity of Tr and DVV also decreases with the addition of     

noise. In the other hand we find, Figure 3-B2, that DVV and SampEn give the lowest MSE. However     

SampEn does not demonstrate any sensitivity to the variation of CD so this method is useless for the     

noisy signal. Tr gives an intermediate MSE and the highest sensitivity when compared to the other     

methods when applied to noisy signals.     
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We then applied the methods to the synthetic signals with surrogates using the z-score as measure, in     

order to test if  the use of surrogates improves the results or not. Figure 3-C1 presents the z-score for     

each method versus CD. We note that all the methods reflect the non-linearity of the signal generated     

by the Henon model as theirs z-score are always above 1.96. In terms of sensitivity to CD variation,     

SampEn is the best, but with the highest MSE (Figure 3-C2). Tr presents an acceptable evolution for     

lower CD. But beyond CD = 0.4 an unexpected decrease occurs in the curve and the Tr value remains     

constant after CD=0.7. This method however, gives the lowest MSE (Figure 3-C2). The DVV method     

presents an intermediate slope, contrary to the LE that presents no change with CD. Both DVV and LE     

have low MSE under these conditions.     

The methods were then applied to the signals using again surrogates and z-score but with added noise     

(SNR=5db). All the methods still reveal the nonlinearity of the model. Indeed z-score is above 1.96 for     

all the methods, except for DVV where it gives a z-score value lower then 1.96 for CD between 0.4     

and 0.6. We can clearly notice an increase in the sensitivity of Tr, Figure 3-D1, compared to the case     

in Figure 3-C1. SampEn has a good evolution beyond CD = 0.4 but, on the other hand, it presents a     

rapid increase in MSE (Figure 3-D2). The LE and DVV do not evolve as a function of CD (Figure 3-    

D1) and give similar MSE as Tr (Figure 3-D2).     

B) Results on real signals     

The different nonlinear methods were applied to real uterine EMG signals (EHG), first direct     

application of the method, and then with surrogates. We also computed three classical linear frequency     

based parameters from these real signals. The values were then used to discriminate the pregnancy and     

labor contractions. We used ROC curves in order to test the discriminating power of each case.     

Our first objective was to test if  the use of surrogates improves the discrimination of EHG bursts     

recorded during Pregnancy or Labor. Our second objective was to compare the performances of linear     

and nonlinear methods and to verify that the nonlinear methods reveal the evolution of EHG     

characteristics better than the linear ones. The ROC curves obtained with the different methods     

without and with use of surrogates are presented Figure 4-B and Figure 4-C respectively. The     
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characteristics of all the ROC curves without and with use of surrogates are presented in Table I and     

Table II  respectively. From these data, it is clear that nonlinear methods improve the discrimination of     

pregnancy and labor signals. Indeed, the highest Area Under Curve AUC (0.842), sensitivity (0.86)     

and specificity (0.72) are obtained for the Tr method whatever the nonlinear or linear methods used.     

The MPF and LE methods also give an acceptable performance (Figure 4-B) with AUC=0.778 and     

AUC=0.758 respectively. The performances in correct discrimination of labor varies markedly from     

AUC=0.478 with SampEn to AUC=0.842 with Tr. When surrogates are used, all ROC curves present     

approximately the same appearance with the highest AUC=0.650 obtained for SampEn. Using     

surrogates we notice that the performance of SampEn improves while that of DVV remains     

approximately the same. On the other hand, the performance of Tr and LE seem to decrease with the     

use of surrogates. Finally, we can conclude from Figure 4 and Table I that nonlinear methods can     

provide better discrimination between pregnancy and labor contractions compared to the linear     

methods. Furthermore, even if  the use of surrogates improves the performance of some methods, it     

does not generally improve the discrimination results.     

IV. Discussion and conclusion     

We analyzed, quantitatively and as comprehensively as possible, four different nonlinear analysis     

methods (Tr, SampEn , DVV and LE). These methods were applied on synthetic signals, in order to     

test their sensitivity to the change in signal complexity, in normal and noisy conditions, with or     

without using surrogates.  All four methods were found to reflect correctly the increasing complexity     

of the signals in the noise free case, but with different sensitivities. In the case of added noise and     

direct application of the method, as expected, a decrease in the sensitivity of all methods occurred at a     

low Signal to Noise Ratio (SNR=5db). Indeed, at this low SNR, none of the methods detected the     

varying complexity of the signal, except for Tr, which clearly reflected the increasing non-linearity.     

The sensitivity of SampEn increased with the use of surrogates and it gave the highest sensitivity of all     

the methods, in the case of surrogate use with no added noise. Indeed SampEn has previously been     

shown to be sensitive to many aspects of the signal characteristics, including the sampling rate of the     

signal [14], [11]. Unexpected results were obtained in the case of surrogate use and with added noise.     
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Tr was more sensitive when compared to the previous case, and SampEn still presented a good     

sensitivity. We noticed that in the case of surrogate use, SampEn gave the highest sensitivity but also     

had the highest MSE, making it unreliable.     

In this paper we also presented results obtained using nonlinear and linear methods for discrimination     

of EHG bursts recorded during pregnancy and labor. Comparison between the methods indicated that     

Tr, which is a nonlinear method, applied without using surrogates is clearly better in discriminating     

correctly pregnancy and labor contractions than the other methods. We can see also that the use of     

surrogates improves the performance of some methods like SampEn. These results confirm the results     

obtained during the study on synthetic signal, since the sensitivity of SampEn increases if  surrogates     

are used, a posteriori justifying the use of the Henon model.     

To sum up, the main findings of this study are the following: (i) Some of the studied methods are     

insensitive to varying signal complexity; (ii) SampEn performance depends on the use of surrogates;     

(iii) Generally speaking, none of the studied methods performed best in all the studied situations; (iv)     

Tr is very sensitive to change of model complexity, giving average or good performances, associated     

with the lowest MSE in most situations.     

This leads to the conclusion that, of the four methods tested, Tr performed best for our application on     

real EHG. Indeed Tr deals robustly with real, usually noisy, signals and has a good sensitivity to     

complexity, one of the EHG characteristics that permits discrimination of uterine contraction     

efficiency. Using surrogates and the z-score, as a measure of nonlinearity, does not seem to bring any     

improvement to Tr. Therefore we will not use them for further work on EHG when using Tr.     

There are some weaknesses in our study of which we are aware and aim to improve. Tr is dependent     

on the length of the signal and on the choice of the time delay (Ĳ) and we aim to find a method to     

optimize these parameters. In further work we also aim to use all of the available bipolar channels     

(VA1,...,VA12) instead of only one channel, as in this work. This has been shown to dramatically     

increase the discrimination rate as evidenced in prior work [27].      
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Fig. 1. Simulated signal generated using Henon model with different complexity degrees (CD). Top: CD = 0.1, Bottom: CD = 0.9     
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Fig. 2. Electrode placement (left), monopolar configuration and the corresponding bipolar signals BPi (right).     
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Fig. 3.Results obtained for Henon model using Monte-carlo simulation. On the left: Evolution of the methods with variable complexity in     

different cases. On the right: MSE of the methods function of complexity degree in different cases. (A) Direct method with no added noise,     

(B) Direct method with added noise, (C) With surrogate use and no added noise, (D) With surrogate use and added noise.     

Evolution Error 
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Fig. 4. Example of ROC curves obtained for the detection of labor with the different linear and nonlinear methods. (A) Real Pregnancy and     

Labor contractions, (B) Direct method, (C) With surrogate use.      
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TABLE I (Direct method) 

Comparison of ROC curves for labor detection 

Parameter AUC  Specificity Sensitivity 

Time reversibility 0.842 0.721 0.860 

Sample Entropy 0.478 0.382 0.643 

Lyapunov Exponent 0.758 0.643 0.756 

Delay Vector Variance 0.615 0.582 0.600 

Mean Power Frequency 0.778 0.678 0.730 

Peak Frequency 0.561 0.582 0.600 

Median Frequency 0.654 0.556 0.704 
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TABLE II (with surrogate use) 

Comparison of ROC curves for labor detection 

Parameter AUC Specificity Sensitivity 

Time reversibility 0.560 0.513 0.626 

Sample Entropy 0.650 0.593 0.643 

Lyapunov Exponent 0.614 0.591 0.530 

DVV 0.642 0.573 0.669 


