N
N

N

HAL

open science

Performance analysis of four nonlinearity analysis
methods using a model with variable complexity and
application to uterine EMG signals.

Ahmad Diab, Mahmoud Hassan, Catherine Marque, Brynjar Karlsson

» To cite this version:

Ahmad Diab, Mahmoud Hassan, Catherine Marque, Brynjar Karlsson. Performance analysis of four
nonlinearity analysis methods using a model with variable complexity and application to uterine EMG
signals.. Medical Engineering & Physics, 2014, 36 (6), pp.761-7. 10.1016/j.medengphy.2014.01.009 .
inserm-00995890

HAL Id: inserm-00995890
https://inserm.hal.science/inserm-00995890

Submitted on 27 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inserm.hal.science/inserm-00995890
https://hal.archives-ouvertes.fr

—

—

AR

'Y

'Y

V¢

\o

1

R4

YA

V4

AR

Yy

Yy

Y¢

Performance analysis of four nonlinearity analysis methods using a model

with variable complexity and application to uterine EMG signals

Ahmad DiaB3**, Mahmoud Hass&nCatherine Marquieand Brynjar Karlssch

®UMR CNRS7338§ Biomécaniquet Bio-ingénierie, Universitéle Technologiede Compiégne, Compiegne,

France
®Schoolof Science and Engineering, Reykjavik University, Reykjavik, laklan

‘LaboratoireTraitement du Signal et de L’ITmage, INSERM , Université de Rennes1, Campus de Beaulieu,

Rennes, France.

E-mail: ahmad.diab@utc.fr (A.Diab), mahmoud.hassan@univ-renn@gllHassan), catherine.marque@utc.fr

(C. Marque), brynjar@ru.is (B. Karlsson).

Abstract

Several measures have been proptsei@tect nonlinear characteristiostime series. Results on time
series, multiple surrogates andithesre are usetb statistically test for the presence or absence of
non-linearity. The z-score itself has sometimes beenasadaneasure of nonlinearity. The sensitivity
of nonlinear method® the nonlinearity level and their robustnéssoise have rarely been evaluated
in the past. While surrogates are important tomlsgorously detect nonlinearity, their usefulness for
evaluating the level of nonlinearitg not clear.In this paper we investigate the performanédour
methods arising from three families that are widely ugsedon-linearity detection: statistics (Time
reversibility), predictability (Sample Entropy, Delay Vector Varianaedl chaos theory (Lyapunov
Exponents)We used sensitivityo increasing complexity and theddnsquare Error (MSE) of Monte
Carlo instances for quantitative comparisgrtheir performances. The methods were appliei a
Henon nonlinear synthetic model which we canvary the complexity degre€D). This was done
first by applying the methods directly to the signal and then using-$kere (surrogates) with and

without added noise. The methods were then appbedeal uterine EMG signals and usén
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distinguish between pregnancy and labor contraction bursts. The discromipatiformances were
comparedto linear frequency based methods classically used for the same purposas 8dean
Power Frequency (MPF), Peak Frequenc¥{)(Bnd Median Frequency (MF). The results show
noticeable difference between different methods, with a clear supewdrggme of the nonlinear
methods (Time reversibility, Lyapunov exponents) over the linear methods. Apphgnmethods

directly to the signals gave better results than using the z-score, except for Sample Entropy.

Keywords

Nonlinear time series analysis, uterine electromyogram, contraction disciamjrgtrrogates.

|. Introduction

One of the most common ways of obtaining information on neurophysiologic syistaamstudy the
features of the signal(s) using time series analysis technifjuiedraditionally rely on linear methods

in both time and frequency domains [1]. Unfortunately, these metadst give information about
purely nonlinear featuresf the signal. Dudo the intrinsic nonlinearity of most biological systems,
these nonlinear features may be presemihysiological data and even be a characteristic of major
interest. Recently, much attention has been fmithe useof nonlinear analysis techniques for the
characterizatiorof a biological signal [2]. Indeed, this type of analysis gives infdomatbout the
nonlinear featuresf these signals, which arise from the underlying physiological procesamg of
which have complex behavior. Thasea growing literature reporting nonlinear analysis of various

biosignal typesEEG[3], ECG [4],HRYV [5] and EMG [6]).

The EHG or electrohysterografelectrical uterine activity recorded on woman’s abdomen) has been
widely studied [7], [8], [9], [10], [11]. Nonlinear characteristics have beenrad$ein the EHG

and some success has been achieved by using these characteristiantdnfobiation of

potential clinical usefulness. Radomski et al. show that nonlinear analysis of EHG based on the sample

entropy statistic could differentiate dynamic states of uterine contragtidhsA comparison between
linear and nonlinear analysis with different conditions was done in [13]. Iteraduded that median

frequencyis the best method among linear methods and that sample entropy is the bestamettgpd
2
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nonlinear methods for term/preterm EHG contractions classification. Sample ergtrepgerior to
median frequency, which indicates that nonlinear analysis is more suitablaéntananalysis for
studying EHG signals. In [14] the progress of labor was evaluated using samppy e@uir team has
examined nonlinear EHG analysis methods. Our results confirm the presence of rignlmé&HG
signals. This character of the signals is useful in discriminating betweenapmgand labor
contractions [15], [2], [16]. Practical disadvantages of the nonlinear anahgtisods have been
reported in [16]. They include excessive calculation timetdseirrogates analysis and promising but
inconclusive results du the small amount of data that can practically be used due to heavy

calculation times.

This paper presents work that extends previous work dooer groupin comparing Approximate
Entropy, Correntropy and Time reversibility [16]. In this work we implemeatititional nonlinear
analysis methods (delay vector variance, Lyapunov exponents) and new ways oftlestingWe
also used a larger database of real signals than preki®us work and we investigated the sensitivity
of the methodso the varying complexity of signals and their robustnéss. kind of sensitivity and
robustness analysed non-linearity measures presented in this paper, are rare or abstra

literature.

Four nonlinear methods: Time reversibility [17], Sample Entropy [18], Delayov&riance [19]
and Lyapunov Exponents [20] were usedhis work. Sensitivity of these methottsthe complexity
degree CD) of a signalaswell asrobustness analysis were daseHenon model synthetic signals
whereCD canbe controlled. The sensitivitp CD was first studied using the direct value provided by
the methodIt was then studied using surrogates and z-sesrie measure permitting evaluation of
the nonlinearity. One objective of this stuidyto show which method(sls most sensitiveto the
change of signal complexity. A second objeciw¢o determine whether the use of surrogates gives
better overall results than the direct application of the methodsisTofisnajor practical importance
for clinical application,as the generation of surrogatés very computationally expensivdhe
methods are also compared using the Mean square error (SE method results for 30 Monte

Carlo instances of the signal. Finally, $e@on-linear methods are compatedhree linear frequency
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based characteristics of the signal, MPF,andMF, when appliedo real EHG signalsin orderto

discriminate pregnancy and labor contractions.

Il. Materialsand M ethods

A) Data

1. Synthetic signals

The Henon maps a well-known two-dimensional discrete-time system givgn

Yt+1 =Cc— Ytz + CD *Xt'

Xt+1 = Yt'

whereY; and X, represent dynamical variablesSD is the complexity degree ardis the dissipation
parameterln this papewe usec = 1 asin [21] andCD ¢ [0, 1]to change the model complexity [22]
(Figure 1). The number of generated poistBxed to 1000. For the robustness analysisaddto the
synthetic signals a white Gaussian noise with the same duration, iitbda5db SNR withCD
varying between 0 and 1 with a step 0.1. In the Monte Carlo analysis, \80 sigmals generated for

eachCD value.

2. Real signals

EHG signals were recorded from 38 subjects using a 4x4 electrode matrix lonatieel subject's
abdomen (Figure 2), during one hour either at rest (woman lying on a bed)jngr ldbor. One signal
channel (bipolar vertical 7: BP7), located on the median vertical axis of thes wiasiused for
subsequent analysis (see [23] for details). After segmentatarbtained 115 labor bursts (recorded

during delivery) and 174 pregnancy bursts (recorded more than 24 hours before delivery).

B) Non-linear Analysis Methods

1. Statistics family
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a) Time reversibility

A time serieds saidto be reversible onlyf its probabilistic properties are invariant with respiect
time reversal. Time irreversibility can be takesa strong signature of nonlinearity [11.this paper

we used the simplest method, describef4] to compute the time reversibiligf a signal @

N
1
Tr@ = =) ). = Su)?

n=t+1

whereN is the signal length andis the time delay.
2. Chaos theory family
a) Lyapunov Exponents

Lyapunov exponent (LE) is a quantitative indicator of system dynamics, which chaextére
average convergence or divergence rate between adjacent tracks in phase space (26§ ihe
method described in [13] to compute LE:

A =Ilim

) 1
i ”Ayl:]r”n_)o(?) log(ll 4y, 11/ 1l 4y, 1),

Where || 4, || and |l 4,, || represent the Euclidean distance between two states of the system,

respectively to an arbitrary tinigand a later time

3. Predictability family

a) Sample Entropy

Sample Entropy §ampEh is the negative natural logarithm of the conditional probability that a

dataset of length, having repeated itself fon samples within a tolerancewill also repeat itself for
m+1 samples. Thus, a lower valoé SampEnindicates more regularityr the time series [18We

used the method describred12] to computé&SampEn
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For a time seriesf N points,x, %, . . .,Xy, We define subsequences, also called template vedfrs,

lengthm, given by:y(m) = (X, X+1,---s %+m—7) Wherei =1, 2,... ,N-m+1

Then the following quantitys defined:B™ () as(N-m-1)* times the number of vectoﬁg’" within r

of X", wherej ranges froml to N-m, andj#i, to exclude self-matches, and then define:

N-m
1
Bm(r) =4 z B{"*(r)
i1

Similarly, we defineA™ () as(N-m-1)*times the numbenf vectorsX]?”+1 within r of X**1, wherej

ranges froml to N-m, wherej#i, and set

N-m
1
Am(r) =y Z A7 ()
i1

The parameteBampEn(m,rjs then definedslimy_,..{— In[A™(r)/B™(r)]}, whichcanbe estimated

by the statistic:
SampEn(m,r,N) = —In[A™(r)/B™(r)]

whereN is the length of the time series is the length of sequencés be compared, andis the

tolerance for accepting matches.
b) Delay Vector Variance

We use the measure of unpredictabiity described in [25]:

Time series can be represented in phase space using time delay embedding. When tiimse delay
embedded into a time series, it can be represented by a set of delay vectgrof(RVgiven
dimensionm. The dimension of the delay vectors can then be express¥dlgs=[X wmy) ---X ol
wherer is the time lag. For every DX (k), there is a corresponding target, namely the next sagple

A setp (m, d)is generated by grouping those DVs that are within a certain Euclideanceidtto

DV X(k).This Euclidean distance will be varied in a standardized manner witlectesp the
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distribution of pairwise distances between DVs. For a given embedding dimensaéomeasure of

unpredictabilitys 2 (target variance) is computed over all setg,of

The meanuy and the standard deviatiary are computed over all pair wise Euclidean distances
between DVs given byx(i) —x()||(i #j). The setspc (m, d) are generated such thA} =
{x(O\llx(k) —x()H|l < d} i.e., sets which consist of all DVs that lie closerXi) than a certain
distanced, taken from the interval-ngoq; uatng-oq] Wherenyis a parameter controlling the span

over which to perform DVV analysis.

For every sep(m, d)the variance of the corresponding targefém, d)is computed. The average
over theN setsp(m, d)is divided by the variance of the time series sigrial ox gives the inverse
measure of predictability, namely target variasite

%2 (1/N) Zﬁ:lalg
o =
2
Ox

C) Surrogates and z-score.

The most commonly used null hypothesis considers that a given time seriegagegehg a Gaussian
linear stochastic process and collected through a nonlinear measurement static fOri®n.
surrogates must have the same linear properties (autocorrelation and amplitude digtadisutie
original signal. However, any underlying nonlinear dynamic structure withinotiggnal data is

altered in the surrogates by phase randomization [16].

The statistics of significance z-score is,

, 20— (@)
score O-q(l)
where g, stands for the statistic on the original time ser{gs(i)) for the mean andy(i) for the
standard deviation of the surrogate, #ef,2,...,M (number of generated surrogate). The critical value

of z-score is 1.96 [26].
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Yey A) Resultson synthetic signals

YeA In this sectionwe study the evolution of the values generated by the four methods antbie

Yed  complexity degree@D) of the Henon synthetic modét four cases; 1) direct application of the
Y1+ method with no added noise, 2) using surrogates with no added noise, 3) directtiappdf the

YUY method with added noise and 4) using surrogates with added noise. The addeid aoigkite

V1Y Gaussian noise (SNR=5 db) whieD varies between 0 and 1, for the Henon model. Our first
V1Y objective isto test the sensitivity of the methotdsvarying CD for signals with and without noise. The
Y1¢  use of surrogates is computationally very expensive and therefore our secatigtenisjéo testif the

Yle  useof surrogates improves the method sensitivitpair .

Y11 We compare the methods using two criteria, the methaehsitivityto the change oED (slope of the

V1V curve "value of the method" vaCD") and the MSEbf the method for different values GD.

V1A Figure 3A1 presents the mean value for each method (direct method value) agienfficCD
Y14 computed from the 30 Monte Carlo instances of the signal generated byritve iHedel. Figure 3-
Y+ A2 presents the MSE of the methods for e@h We seein Figure 3Al thatin the direct case
YWY without noise, the four methodsolve well but with differences their sensitivity (slopes). Tr and
WYY LE are more sensitive than the other methods. In Figk2 &€ observe thatrThas a much loer

YVY MSE thanLE.

‘Wi Figure 3B1 presents the effect of adding noise (SNR=5mtb)he methods. We notice no significant
‘Ve  slope for theLE and SampEn. The sensitivity of Tr and DVV also de@gasth the addition of
YY1 noise. In the other hande find, Figure 3B2, that DVV and Sanipn give the lowest MSE. However
\YY  SampEn does not demonstrate any sersitivithe variation ofCD sothis method is useless for the
‘YA noisy signal. Tr givesin intermediate MSE and the highest sensitivity when comparé¢ide other

'Y4  methods when applied to noisy signals.



YA+ Wethen applied the methods to the synthetic signals with surrogates usirgdbeeas measure, in
YAY  orderto testif the use of surrogates improves the results or not. Fig@re@Besents the z-score for
YAY  eachmethod versu€D. We note that all the methods reflect the non-linearity of the signatajede
YAY by the Henon modedstheirs z-score are always above 1.96. In terms of sensii/@p variation,
YAt SampEnis the best, but with the higgtMSE (Figure 3€2). Tr presents an acceptable evolution for
‘Ao lower CD. But beyondCD = 0.4anunexpected decrease occurshe curve and the Tr value remains
YAT  constant afte€D=0.7. This method however, gives the lowest MSE (Figue2)3-TheDVV method
YAV presentanintermediate slope, contray theLE that presents no change wiiib. BothDVV andLE

YAA have low MSE under these conditions.

VA4 The methods were then appliedthe signals using again surrogates and z-score but with added noise
Y4+ (SNR=5db). All the methods still reveal the nonlinearity of the model. Indeed zisedreve 1.96 for

Y4Y  all the methods, except for DVV wheitegives a z-score value lower then 1.96 @ between 0.4

Y4Y  and 0.6. We can clearly notiem increase in the sensitivigf Tr, Figure 3D1, compared to the case

Y4Y  in Figure 3€1. SampEn has a good evolution bey@id = 0.4 but,on the other had, it presents a

Y4¢  rapid increase in MSE (Figure[®). TheLE and DVV do not evolvasa function ofCD (Figure 3-

V4o D1) and give similar MSEsTr (Figure 3D2).

Y41 B) Resultson real signals

Y4Y  The different nonlinear methods were applidreal uterine EMG signals (EHG), first direct
Y4A  application of the method, and then with surrogates. We also computed three classical lineacyfrequ
Y44 based parameters from these real signals. The values were thén disedminate the pregnancy and

Y++  labor contractions. We used ROC curves in order to test the discriminating power of each case.

Y+Y  Our first objective was to test the useof surrogates improves the discriminatioh EHG bursts
Y+Y  recorded during Pregnancy or Labor. Our second objective was to compare thagerés of linear
Y.¥ and nonlinear methods art@ verify that the nonlinear methods reveal the evolution of EHG
Y+¢  characteristics better than the linear ones. The ROC curves obtainedhevitlifferent methods

Y«o without and with use of surrogates are presented FiguBeaAd Figure 4-C respectively. The
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characteristic®f all the ROC curves without and with use of surrogates are presentetlle | and
Tablell respectively. From these data, it is clear that nonlinear methods improvedtimidiationof
pregnancy and labor signals. Indeed, the highest Area Under Bui®e(0.842), sensitivity (0.86)
and specificity (0.72) are obtained for the Tr method whatever the nanbndinear methods used.
The MPF and E methods also givan acceptable performance (Figure 4-B) with AUC=0.778 and
AUC=0.758 respectively. The performandascorrect discrimination of labor varies markedly from
AUC=0.478 with SampEto AUC=0.842 with Tr. When surrogates are usedR&NIC curves present
approximately the same appearance with the highest AUC=0.650 obtainecdngErs Using
surrogates we notice that the performance of SampEn improves whileoftlaVV remains
approximately the sam@n the other hand, the performance of Tr aftlseemto decrease with the
use of surrogates. Finallyye can conclude from Figure 4 and Table | that nonlinear methods can
provide better discrimination between pregnancy and labor contractionsaio the linear
methods. Furthermore, evénthe use of surrogates improves the performance of some meithods,

does not geneigl improve the discrimination results.

V. Discussion and conclusion

We analyzed, quantitatively anas comprehensivelas possible, four different nonlinear analysis
methods (Tr, SampEn , DVV and LE). These methods were applied on synthetic signals; o orde
test their sensitivity to the change in signal complexity, in normal and moisglitions, with or
without using surrogates. All four methods were fotmdeflect correctly the increasing complexity
of the signalan the noise free case, but with different sensitivitlasthe caseof added noise and
direct application of the methodsexpected, a decreasethe sensitivity of all methods occurratia

low Signalto Noise Ratio (SNR=5db). Indeed, at this low SNR, nohéhe methods detected the
varying complexity of the signal, except for Tr, which clearly reflectedribeeasing non-linearity.
The sensitivly of SampEn increased with the use of surrogatest gjae the highest sensitivity of all
the methodsin the caseof surrogate use with no added noise. Indeed &arhas previously been
shown to be sensitivi® many aspectef the signal characteristics, including the sampling rate of the

signal [14], [11]. Unexpected results were obtaimethe casef surrogate use angith added noise.

10
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Tr was more sensitive when comedrto the previous case, and Sdampstill presented a good
sensitivity.We noticed thain the case of surrogate use, S&amgave the highest sensitivity but also

had the highest MSE, making it unreliable.

In this papemve also preseed results obtained using nonlinear and linear methods for discrimination
of EHG bursts recorded during pregnhancy and labor. Comparison between the rimetivadisd that

Tr, which isa nonlinear method, applied without using surrogasedearly bettelin discriminating
correctly preghancy and labor contractions than the other metAtlsan seealso that the usef
surrogates improves the performance of some methodSd&RkpEn. These results confirm the results
obtained during the study on synthetic sigsaice the sensitivity of @mpEn increase# surrogates

are used, a posteriori justifying the wdehe Henon model.

To sum up, the main findings of this study are the following: (i) Sofnthe studied methods are
insensitiveto varying signal complexity; (ii) Sangm performance depends on the use of surrogates;
(iii) Generally speaking, none of the studied methods performedrbakithe studied situations; (iv)

Tr is very sensitivéo change of model complexity, giving average or good performances, associated

with the lowest MSHENn most situations.

This leaddo the conclusion thagf the four methods tested, Tr performed best for our application on
real EHG. Indeed Tr deals robustly with real, usually noisy, signals and bgasd sensitivityto
complexity, one of the EHG characteristics that permits discriminatiomtefine contraction
efficiency. Using surrogates and the z-scasesa measure of nonlinearity, does not sé¢eiring any

improvemento Tr. Thereforenve will not use them for further work on EHG when using Tr.

There are some weaknes# our study of whiclwe are aware and aite improve. Tris dependent
on the length of the signal and on the chatehe time delay) andwe aimto find a method to
optimize these parametels. further workwe also aimto use all of the available bipolar channels
(VA1L,...,VA12) insteadof only one channelasin this work. This has been shown to dramatically

increase the discrimination raasevidencedn prior work [27].

Acknowledgment:

11



Yed  The authors wisko thank Dr. Jeremy Terrien for his helpful advice.

Y1«  Conflict of interest

ARY No conflict of interest.

Y1y Sourcesof funding for research

Y1¥  French Ministry of Research, French ministry of foreign affair and the EraSysBio+ program.

Yi¢  Ethical Approval

Yie  The measurements in Iceland were approved by the relevant ethical committee (VSN 02-0006-V2),
Y11 those in France approved by the regional ethical committee (ID-RCB 2011-A00500-41) of Amiens

Y1V Hospital.

YA

¥4

YV

ARA

YVy

YVY

Yve

YVo

yYvi

Yvy

YYA

12



yYv4

YA

YA

YAY

YAY

YA¢

YAo

YA

YAY

YAA

YA4

Ya.

AR

yavy

Yay

yYa¢

Y40

AR

yay

YaA

Y44

References:

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Bendat, J.S. and Piersol, A.GRandom Data Analysis and Measurement Procedures.
Measurement Science and Technology, 200QL2): p. 1825.

Hassan, M., Terrien, J., Alexandersson, A., Marque, C., and Karlssadp®inearity of EHG
signals used to distinguish active labor from normal pregnancy contraciio@onf Proc IEEE

Eng Med Biol Sac2010, p. 2387-2390.

Takahashi, T., Cho, Raymond Y., Mizuno, T., Kikuchi, M., Murata, T., Takahashi, K., and Wada,
Y., Antipsychotics reverse abnormal EEG complexity in drug-naive schizophrenia: A multiscale
entropy analysisNeurolmage, 201®&1(1): p. 173-182.

Shiogai, Y., Stefanovska, A., and McClintock, P.VNnlinear dynamics of cardiovascular
ageing.Physics Reports, 201838(2-3): p. 51-110.

Mohebbi, M. and Ghassemian, HRrediction of paroxysmal atrial fibrillation based on non-
linear analysis and spectrum and bispectrum features of the heart rate variability signal.
Computer Methods and Programs in Biomedicine, 2002(1): p. 40-49.

Xie, H.-B., Zheng, Y.-P., Guo, J.-Y., and Chen, &rpss-fuzzy entropy: A new method to test
pattern synchrony of bivariate time seritormation Sciences, 201080(9): p. 1715-1724.
Lucovnik, M., Kuon, R. J., Chambliss, L. R., Maner, W. L., Shi, S. Q., Shi, L., Balducci, J.,
Garfield, R. E.,Use of uterine electromyography to diagnose term and preterm |#mba
Obstet Gynecol Scand, 2020D(2): p. 150-7.

Garfield, R.E., Maner, W. L., MacKay, L. B., Schlembach, Dietmar, Saade, @oRparing
uterine electromyography activity of antepartum patients versus term labor pa#enésican
Journal of Obstetrics and Gynecology, 20083(1): p. 23-29.

Schlembach, D., Maner, W. L., Garfield, R.E., Maul, Mgnitoring the progress of pregnancy
and labor using electromyographiur J Obstet Gynecol Reprod Biol, 20094 Suppl 1: p.

S33-9.

[10] Hassan, M., Alexandersson, A., Terrien, J., Muszynski, C., Marque, C., KarlssdBetter,

pregnancy monitoring using nonlinear propagation analysis of external uterine

13



Y.

RN

Yy

Y

AR

Yo

1

Yyv

YA

¥4

Y.

\RR

Yyy

YyYyY

Yye

YYo

AR

ARAY

YYA

Yya

Y

AR

electromyographylEEE Transactions on Biomedical Engineering, April 2013, 6@): p.

1160 - 1166.

[11] Diab, A., Hassan, M., Karlsson, B., Marque, Effect of decimation on the classification rate of
nonlinear analysis methods applied to uterine EMG sigh@BM journal, 2013 (In press).

[12] Radomski, D., Grzanka, A., Graczyk, S., and Przelaskowski,A8sessment of Uterine
Contractile Activity during a Pregnancy Based on a Nonlinear Analysis of the Uterine
Electromyographic Signalnformation Technologies in Biomedicine, 2008: p. 325-331.

[13] Fele-Zorz, G., Kavsek, G., Novak-Antolic, Z., and JagerAFomparison of various linear and
non-linear signal processing techniques to separate uterine EMG records of term and pre-term
delivery groupsMed Biol Eng Comput, 20086(9): p. 911-22.

[14] Vrhovec, J.,Evaluating the progress of the labour with sample entropy calculated from the
uterine EMG activityElektrotehniski vestnik-Electrotechnical Review, 20084): p. 165-170.

[15] Diab, A., Hassan, M., Marque, C., and Karlsson,(@iantitative performance analysis of four
methods of evaluating signal nonlinearity: Application on uterine EMG sigmal€onf Proc
IEEE Eng Med Biol So@012.

[16] Hassan, M., Terrien, J., Karlsson, B., and MarqueC@mparison between approximate entropy,
correntropy and time reversibility: Application to uterine EMG signMgdical Engineering &
Physics (MEP), oct 2011, vol. 33, p. 980-986.

[17] Diks, C., van Houwelingen, J. C., Takens, F., and DeGoedgeversibility as a criterion for
discriminating time serie®hysics Letters A, 199201(2-3): p. 221-228.

[18] Richman, J.S. and Moorman, J.Rhysiological time-series analysis using approximate entropy
and sample entropyAmerican Journal of Physiology-Heart and Circulatory Physiology, 2000.
278(6): p. H2039-H2049.

[19] Gautama, T., Mandic, D.P., and Van Hulle, M.Mhe delay vector variance method for
detecting determinism and nonlinearity in time serkésysica D: Nonlinear Phenomena, 2004.

190(3-4): p. 167-176.

14



AR

\RRE

Yye

Yro

vy

YYv

YYA

Yya

Yo

ey

Yey

Yey

Yee

Yo

yeu

yev

YEA

Yed

Yo.

Yol

oY

yor

Yot

Yoo

You

Yov

YoA

Yoq

[20] Wolf, A., Swift, Jack B., Swinney, Harry L., Vastano, and John Betermining Lyapunov
exponents from a time serié¢zhysica D: Nonlinear Phenomena, 19B85%3): p. 285-317.

[21] Pincus, S.M. Approximate Entropy as a Measure of System-CompleRityceedings of the
National Academy of Sciences of the United States of America, 88@&): p. 2297-2301.

[22] Casas, G.A. and Rech, P.®ultistability annihilation in the Hénon map through parameters
modulation.Communications in Nonlinear Science and Numerical Simulation, 2I718): p.
2570-2578.

[23] Karlsson, B., Terrien, J., Gudmundsson, V., Steingrimsdéttir, T., and Marquabdaminal
EHG on a 4 by 4 grid: mapping and presenting the propagation of uterine contradgtiochith
Mediterranean Conference on Medical and Biological Engineering and Computing, 2007, p. 139-
425, Ljubljana, Slovenia.

[24] Schreiber, T. and Schmitz, Aurrogate time serie®hys. D, 2000142(3-4): p. 346-382.

[25] Kuntamalla S., R.L.The Effect of Aging on Nonlinearity and Stochastic Nature of Heart Rate
Variability Signal Computed using Delay Vector Variance Methoternational Journal of
Computer Applications, 201Y.0lume 14(No.5): p. 40-44.

[26] Sladana, S., Surrogate data test for nonlinearity of the rat cerebellar electrocorticogram in the
model of brain injurySignal Processing, 20190(12): p. 3015-3025.

[27] Hassan, M., Terrien, J., Alexandersson, A., Marque, C., and Karlssonm@oving the
classification rate of labor vs. normal pregnancy contractions by using EHG multichannel

recordings in Conf Proc IEEE Eng Med Biol Soc. 2010, p. 4642-4645.

15



Yl

AR

A

yay

A}

Yo

¥t

vy

YA

A

Yv.

\RA

ARA

YvYy

Yve

Yvo

yvia

Yvy

YYA

Yva

Amplitude

Amplitude

400

400

i
05 "‘ !
of .
05 -
1C \ | | \ | \ \ 7
0 50 100 150 200 250 300 350
T T
1
0.5 Il '\l
0 ‘
05 | | | | | | |
50 100 150 200 250 300 350
Samples

Fig. 1. Simulated signal generated using Henon maileldifferent complexity degree€D). Top:CD = 0.1, BottomCD = 0.9

16



YA
YA
YAY
YAY
YA¢
YAo
YA

YAY

¢}3PI 4)145—'4 ,d)np? (Dm-’m

OO

,@,BPE 4}.5?5 ¢BPS <I>}51>11

OO

4}3 P3 ¢BP:} ¢ BPY ¢. BP12

RS COOO®

YA Fig. 2. Electrode placement (left), monopolar confidion and the corresponding bipolar signals BPi (right)

17



Evolution Error
Direct method, Without Noise Direct method, Without Noise

4 T 035 T T
Al)|—e=TR . A2)|=e=TR
35{ .+ SampEn PR oaf{'"*" SampEn t 1
=w=LE ™ » =n=lE hd
w 0= DW PR e 025l "0='DWV (R i
° - L )
s M
g % 02 'l l‘
5 = 6l ¢ ]
[ 015 1 1
315 ] 1)
S e FooN
] \}
1} 1
0.5 *
vq . 0 0.1 0.2 03 04 86 06 07 08 09 1
Direct method, With Noise Direct method, With Noise
7 T T T T T 0.07 T T T T T T
B1 B2)[—=TR
L L LR T PR IR R L
Y » L Al gl oce | SampEn| x .
=-—=TR =w=|E . '
w sl SampEn oosl| 0= DWW
B |=w-LE
=
£, DwW o0a
£ 11}
u— (7]
g 3 = 0.03
2
§2.,...........\.\...+.......+ ------- i L I L I o A 002
1?.....@-‘-o-----o'""°'""°'""°'"' 0.01
o 0.1 oTz oia o‘.4 015 0‘.5 017 o‘.s 019 1 X ¥ ¥ y X
¥4y CD cD
With surrogates, Without Noise With surrogates, Without Noise
90 T T T T T T T T 140 T T T T T T T T
C1)[—=TR ot C2) |—==TR
80l s SampEn L 120}{ """ SampEn *
ol|=%-LE e i =n=lE
0= DV 100 "0= DWW i
601 RTL 1 E
¥, ol
O 5ol S, SRS 4
3 N * 9
& wr 1 =
30 ‘,Q- - - *Q:; ."~ b
*” Sy
20 i’
@@
- ]
10 _,.o‘_‘_o‘_‘_..
] 0.1 0.2 03 04 0.5 0.8 0.7 08 08 1
Yay cD
With surrogates, With Noise With surrogates, With Noise
12 I I T T T T T T _J 14 I I T T T T T T
D1) |—e=TR D2) |—e=TR .
1 SampEn 12| " SampEn = 1
Oll-w-LE -a-LE :
=0=DVV 10f{'=@= DWW

I I I I I I I I I
0 0.1 0.2 0.3 04 08 0.7 08 0.9 1

Fay cb

vatg Fig. 3.Results obtained for Henon model using Montscgimulation.On the left: Evolutionof the methods with variable complexity
Yde different cases. On the right: MSf the methods functioof complexity degreén different caseqA) Direct method with no added noise,

a1 (B) Direct method with added noise, (CjttWsurrogate use and no added noise, (D) With surrega&tend added noise.

18



yay

YaA
¥a4q
i .
)
¢y
0.05 x x x x x
s A
&
[
T o i
£
& lLab
-0.05 apor | | | | |
0 20 40 60 80 100 120
02 T T T T T
s
E
[}
g 0 i
£
<, [Pregnancy . | | . |
0 20 40 60 80 100 120
. Time(sec) .
ROC curve for all methods without surrogates ROC curve for all methods with surrogates
1 T T T 1 T T T T T T T
C)
- 0.9.
1 08 1
1 07 J
2 £
2 i £ 06 1
2 2
@ & 05 j
5 5
['3 H © 04 1
= &
- 03 * ® |
O ow
< 0.2 —_— <
X SampEn
a 0.1 <> £ a
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
$aY FPR or (1- Specificity) FPR or (1- Specificity)

R4 Fig. 4. Examplef ROC curves obtained for the detectafiabor with the different linear and nonlinear metho(A) Real Pregnancy and

€.0 Labor contractionsB) Direct method(C) With surrogate use.

19



AR

tAN

AR

Evy

&Yy

£ve

¢yo

AN

ARG

EYA

AR

TABLE | (Direct method)

Comparison of ROC curves for labor detection

Parameter AUC Specificity Sensitivity
Time reversibility 0.842 0.721 0.860
Sample Entropy 0.478 0.382 0.643
Lyapunov Exponent 0.758 0.643 0.756
Delay Vector Variance 0.615 0.582 0.600
Mean Power Frequency 0.778 0.678 0.730
Peak Frequency 0.561 0.582 0.600
Median Frequency 0.654 0.556 0.704
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TABLE Il (with surrogate use)

Comparison of ROC curves for labor detection

Parameter AUC Specificity Sensitivity
Time reversibility 0.560 0.513 0.626
Sample Entropy 0.650 0.593 0.643
Lyapunov Exponent  0.614 0.591 0.530
DWWV 0.642 0.573 0.669
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