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ABSTRACT

Analytic multi-compartment models have gained a tremen-

dous popularity in the recent literature for studying the brain

white matter microstructure from diffusion MRI. This class of

models require the number of compartments to be known in

advance. In the white matter however, several non-collinear

bundles of axons, termed fascicles, often coexist in a same

voxel. Determining the optimal fascicle configuration is a

model selection problem. In this paper, we aim at proposing a

novel approach to identify such a configuration from clinical

diffusion MRI where only few diffusion images can be ac-

quired and time is of the essence. Starting from a set of fitted

models with increasing number of fascicles, we use Akaike

information criterion to estimate the probability of each can-

didate model to be the best Kullback-Leibler model. These

probabilities are then used to average the different candidate

models and output an MCM with optimal fascicle configura-

tion. This strategy is fast and can be adapted to any multi-

compartment model. We illustrate its implementation with

the ball-and-stick model and show that we obtain better re-

sults on single-shell low angular resolution diffusion MRI,

compared to the state-of-the-art automatic relevance detection

method, in a shorter processing time.

Index Terms— diffusion MRI, multi-compartment mod-

els, model selection, model averaging, semioval center.

1. INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) is a tool of

choice for the analysis of the brain white matter (WM). The

diffusion of thermically agitated water molecules in the axons

is indeed restricted by the cylindrical geometry of such cells

with largest diameters around 20 µm. The typical spatial res-

olution in clinical dMRI is 2×2×2 mm3 cubic voxels, which

implies that hundreds of non-collinear axons can presumably

populate a given voxel. Axons are usually assumed to be dis-

tributed in orientationally homogeneous bundles termed fas-

cicles. Water in a voxel then populates the different fascicle

environments and the extra-axonal space in unknown propor-

tions. Multi-compartment models (MCM) rely on finite mix-

tures of distributions and are thus well suited to model the

voxelwise diffusion-induced molecular displacements. Exist-

ing MCMs include the 47 models reviewed in [1] and Diffu-

sion Directions Imaging [2]. The number of fascicles how-

ever needs to be known in advance, which is not the case in

practice. So far, this model selection problem has been solved

either by brute-force methods or using Bayesian frameworks.

In brute-force approaches, a set of nested candidate

MCMs with increasing number of fascicles is fitted to the

data. The best MCM is then identified as the candidate model

that best fits the data, where the comparison usually relies on

an F-test [3]. Since the more complex the model, the better

the fit, the F-test often tends to favor MCMs that overfit the

data when the same data is used for estimation and to assess

goodness of fit. To limit overfitting, the Bayesian information

criterion has been introduced to penalize model complexity

that increases with the number of fascicles [4]. Recently, the

generalization error has been proposed to choose the “opti-

mal” MCM based on its ability to predict new data [5], thus

avoiding the overfitting issue. These approaches limit their

search of the “optimal” MCM to a predefined candidate set.

Differently, Bayesian frameworks try to estimate the best

MCM as the one that maximizes a posterior distribution on

the models. They rely on a careful choice of a prior distri-

bution for MCMs. For instance, [6] uses Markov random

fields (MRF) while [7] resorts to Automatic Relevance De-

tection (ARD) in which non-informative priors are assigned

to all the MCM parameters except the mixture weights that

are assumed to be Beta-distributed. Such priors automatically

prune an entire compartment if it is not supported by the data.

These methods simultaneously perform model estimation and

selection. When translated to clinics, Bayesian methods how-

ever have limitations. They are prohibitively computationally

expensive: ARD (resp., MRF) requires MCMC simulations

(resp., optimization) to come up with a usable posterior dis-

tribution. Moreover, dMRI clinical protocols often include

a single b-value and a maximum of 30 diffusion-sensitizing

gradients (DSG) [8]. With such small sample sizes, the pos-

terior distribution strongly depends on the prior, making the

Bayesian information updating potentially ineffective.



In this paper, we propose to combine the two previous ap-

proaches. Starting with a candidate set, we search for the best

Kullback-Leibler (KL) MCM (i.e., at minimal KL divergence

to the true unknown diffusion model) as a combination of the

candidate models. In section 2.1, we show that we can esti-

mate the probability of any MCM to be the best KL MCM

using only the Akaike Information Criterion (AIC) and we

explain how these probabilities can be used to generate the

best KL MCM from the candidate set. In section 2.2, we im-

plement our method for the ball-and-stick model [7], which

allows us to set up a pilot study (Section 3) to compare our

results to the ARD method on standard clinical data. Results

are presented in section 4 and discussed in section 5.

2. PROPOSED APPROACH

2.1. Model averaging from Akaike information criterion

The AIC is widely used in brute force approaches where the

best model is often chosen as the one with minimal AIC.

However, by definition, it has a fundamental role in model

averaging [9] that this section aims at summarizing.

The AIC is an asymptotically unbiased estimator of the

relative expected KL divergence between an estimated model

and the true unknown model. It is defined as follows:

AIC = −2 logL+ 2K , (1)

where L is the maximized value of the likelihood for the esti-

mated model and K is the number of parameters of the esti-

mated model. When the sample size N is small, the following

corrected AIC is recommended to avoid overfitting:

AICc = −2 logL+ 2K +
2K(K + 1)

N −K − 1
. (2)

Since the true model is unknown, its AIC is approximated

by the minimal AIC among those of candidate models. Let

{Mℓ}ℓ=0,...,L be the set of candidate models. The AIC dif-

ference ∆ℓ = AICc (ℓ)−mink∈J0,LK AICc (k) of model Mℓ

can then be used to define its so-called Akaike weight wℓ:

wℓ =
exp {−∆ℓ/2}∑L

k=0 exp {−∆k/2}
. (3)

The Akaike weight wℓ approximates the probability for

Mℓ to be the best KL model. Such probabilities happen to

be very useful. For instance, if we sort the candidate mod-

els from largest to smallest Akaike weight, we can establish

a 95% confidence set of models by keeping the first p mod-

els such that
∑p

ℓ=0 wℓ = 0.95. An evidence ratio between

model Mℓ1 and Mℓ2 can also be estimated as wℓ1/wℓ2 and

used to assess how strongly Mℓ1 is more likely to be the best

KL model compared to Mℓ2 . Finally, a model-averaged es-

timate of any parameter θ across all candidate models can be

obtained as follows:

θ̂ =

∑L

ℓ=0 wℓ1Θℓ
(θ)θ̂ℓ∑L

ℓ=0 wℓ1Θℓ
(θ)

, ∀θ ∈ Θ0 ∪Θ1 ∪ · · · ∪ΘL , (4)

where 1Θℓ
is the characteristic function of the parameter set

Θℓ of model Mℓ and θ̂ℓ is the estimate of θ under model Mℓ.

2.2. Ball-and-stick model averaging

The ℓ-fascicle ball-and-stick model. It assumes that the

expected MR signal S
(ℓ)
i induced by a DSG with b-value b and

direction ui has the following parametric form for ℓ ≥ 1 [7]:

S
(ℓ)
i

S0
=


1−

ℓ∑

j=1

f
(ℓ)
j


 e−bd(ℓ)

+

ℓ∑

j=1

f
(ℓ)
j e

−bd(ℓ)
(

u
T
iµ

(ℓ)
j

)2

,

(5)

in which S0 is the expected MR signal in absence of DSG

and Θℓ =
{(

±µ
(ℓ)
1 , f

(ℓ)
1

)
, . . . ,

(
±µ

(ℓ)
ℓ , f

(ℓ)
ℓ

)
, d(ℓ)

}
is the

parameter set of the ℓ-fascicle ball-and-stick MCM where:

• the fascicle orientations ±µ
(ℓ)
1 , . . . ,±µ

(ℓ)
ℓ ∈ S

2;

• the fascicle occupancies f
(ℓ)
1 , . . . , f

(ℓ)
ℓ ∈ [0, 1];

• the free diffusivity d(ℓ) ≥ 0.

When ℓ = 0, it reads S
(0)
i = S0e

−bd(0)

and Θ0 =
{
d(0)

}
.

Model averaging. We can observe that, for ℓ ∈ J0, LK,

only the parameter d appears in more than one MCM with

the same interpretation as the free diffusivity (it actually ap-

pears in all of them). Indeed, MCMs with an increasing num-

ber ℓ of fascicles are nested and there is thus no pairwise

matching of the fascicle compartments between two differ-

ent MCMs, making model-averaged estimates of the fascicle

orientations/occupancies hard to define. For example, when

L = 3, the unique fascicle of the 1-fascicle MCM M1 can

be averaged either with the first or with the second fascicle

of the 2-fascicle MCM M2. Each of these two combinations

can further be averaged with one of the 3 fascicles of the 3-

fascicle MCM M3, leading to a total of 6 averaged fascicles.

In general, a candidate set made of MCMs from 0 to L fasci-

cle compartments can generate up to L! fascicles. To address

this issue, we express the candidate MCMs with a same fixed

number L! of fascicle compartments, while ensuring a pair-

wise matching of the compartments between the MCMs. This

is achieved by the indexing k = (m−1) L!
(ℓ−1)!+(j−1)L!

ℓ! +p

where p ∈
q
1, L!

ℓ!

y
and m ∈ J1, (ℓ − 1)!K, which yields the

following reformulation of eq. (5):

S
(ℓ)
i

S0
=

(
1−

L!∑

k=1

f
(ℓ)
L,k

)
e−bd(ℓ)

+

L!∑

k=1

f
(ℓ)
L,ke

−bd(ℓ)
(

u
T
iµ

(ℓ)
L,k

)2

,

(6)

where f
(ℓ)
L,k = ℓ

L!f
(ℓ)
j and µ

(ℓ)
L,k = µ

(ℓ)
j . Note that this formu-

lation remains valid for ℓ = 0. Finally, we can apply eq. (4)



to eq. (6) to obtain model-averaged estimates of the ball-and-

stick parameters as follows:

d̂ =

L∑

ℓ=0

wℓd̂
(ℓ) , f̂L,k =

L∑

ℓ=0

wℓf̂
(ℓ)
L,k and

µ̂L,k = E1 [DL,k] with DL,k =

∑L

ℓ=1 wℓµ̂
(ℓ)
L,kµ̂

(ℓ)T

L,k∑L

ℓ=1 wℓ

, (7)

where E1 [·] is the principal eigenvector operator.

3. MATERIAL & METHODS

3.1. Description of the data

Raw data. We conducted a pilot study in which two

healthy volunteers (S1 and S2) underwent a series of 10
diffusion MRI scans on the same MR scanner (Siemens 3T

Verio) with the same protocol. This protocol lasted 7 min and

comprised a single non-weighted diffusion image B0 and

30 diffusion-weighted (DW) images acquired at b = 1000
s/mm2 along 30 non-collinear DSG directions ui uniformly

spread over the north hemisphere. The following parameters

were used: 128 × 128 × 60 image resolution with 2 × 2 × 2
mm3 voxels, TR= 11 s and TE= 99 ms.

Preprocessing. We preprocessed the data with FSL [10]:

(i) For each scan, we performed (a) a rigid registration of the

DW images on the B0 to correct for subject motion and ro-

tated the gradient tables accordingly and (b) an affine regis-

tration of the DW images on the B0, guided by the previously

estimated rigid transformation, to correct for distortions.

(ii) We performed a rigid registration of the B0 images of

the different scans on the B0 image of the first scan and ap-

plied the corresponding transformation to the subsequent DW

images. We rotated the gradient tables accordingly.

(iii) For each scan, we reduced the noise in the images using

the Rician-adapted non-local means filter [11].

(iv) We extracted the brain using the BET algorithm.

(v) We computed a WM mask using the FAST algorithm.

3.2. Experimental setup

Maximal number of candidate MCMs. According to

known anatomy [12], the semioval center is an area where

association, commissural and projection fascicles cross. The

number L of fascicle compartments in the candidate models

thus needs to be at least 3 (L ≥ 3). We aim at showing that

it is reasonable to set L = 3. To this end, we observed that

the estimate of free water occupancy is highly biased for low

L and gets better and stabilizes as L increases. Hence, we

performed the model averaging procedure for L = 3, 4 and

compared the resulting free water occupancy maps by means

of Dice coefficient for different occupancy thresholds ranging

in ]0, 1[: if these two maps are highly similar, the contribution

of the 4-fascicle MCM to the best MCM is negligible.

Comparison to ARD. Next, we propose to compare our

approach to the ARD method as implemented in FSL [10] us-

ing L = 3. ARD alters the estimation of the fascicle occupan-

cies in such a fashion that fARD

L estimates the probability that

the L-fascicle MCM contributes to the best unknown MCM.

With our approach, this probability is given by the Akaike

weight wL of the L-fascicle MCM. In order to compare fARD

3

and w3,we computed these indices on 100 bootstrap DW im-

ages generated out of the original 10. For both indices, we

then performed an FDR-corrected z-test of nullity in all WM

voxels. The aim is to compare the areas where the methods

detect a statistically significant contribution of the 3-fascicle

MCM to the best MCM, with respect to known anatomy. To

this end, we focused on the semioval center and computed the

mean of both indices wherever significantly non null. We also

provide a qualitative visualization of the estimated fascicles.

4. RESULTS

Maximal number of candidate MCMs. We computed

the Dice coefficient between binarized free water occupancy

maps obtained with L = 3, 4. Results are summarized in

table 1. For all thresholds employed, the Dice coefficient

remains greater than 0.95, which means that including a

4-fascicle MCM in the averaging does not bring much ad-

ditional information. We can thus reasonably conclude that

the contribution of the 4-fascicle MCM to the best MCM is

negligible in the WM.

f0 Map Threshold 0.2 0.4 0.6 0.8

Dice Score
S1 0.9987 0.9899 0.9818 0.9568
S2 0.9993 0.9940 0.9953 0.9957

Table 1. Dice similarity index between free water occupancy

(f0) maps obtained assuming L = 3, 4 fascicle compart-

ments. Different thresholds were used to binarize the maps.

Comparison to ARD. Figure 1 shows the results of the

model selection obtained with our approach (left) and with

ARD (right) on S1. A global coronal view of the statistically

significant mean probabilities w3 (Figure 1(a)) and fARD

3 (Fig-

ure 1(b)) with same window level reveals that our approach

offers a more robust detection of statistically significant con-

tributions of the 3-fascicle MCM to the best MCM. We also

zoomed on the semioval center (Figures 1(c) and 1(d)) where

one expects to see predominantly 3 distinct fascicles. Results

show that ARD hardly identifies voxels with 3 fascicles. It

also requires to set a threshold on the fascicle occupancies

(here, 0.05) to discard fascicles with too low occupancy, on

which the resulting fascicle configurations highly depend. In

contrast, our approach does not need to set any parameters

and, most of the time, correctly identifies 1 fascicle in the

corpus callosum and 3 fascicles in the semioval center. Com-

parative performances were identical for S2.



(a) w3 - Global view (b) fARD
3

- Global view

(c) w3 - Semioval center (d) fARD
3

- Semioval center

Fig. 1. Model selection results in the semioval center.

Coronal view of the mean probabilities w3 (left) and fARD

3

(right) masked with the result of FDR-corrected z-test of nul-

lity. Second row focuses on the semioval center and estimated

fascicles are overlaid as equally shaped cones. Fascicle ori-

entations are color-coded and match the cone orientations.

5. DISCUSSION

We presented a new approach to the model selection problem

that enables the use of MCMs in a clinical setting. We com-

bined ideas from brute-force approaches starting with a set of

candidate models and ideas from Bayesian estimation quanti-

fying the probability of each candidate to be the best one. We

focused on the best KL model, which only requires AIC com-

putation which is instantaneous. The use of a bias-corrected

AIC makes the procedure robust to small sample sizes thus

suited to clinical data. On such data, our method proved to be

more efficient than ARD in correctly identifying 3-fascicle

crossing areas. It is worth noting that no user-defined pa-

rameters are required contrary to ARD. From a computational

point of view, the averaging procedure is very fast (a few sec-

onds) but requires the estimation of MCMs up to 3 fascicles,

which is a longer step. Nonetheless, estimation and averaging

took about 5 hours for ARD and only 1 hour for our approach

on an 8-core computer, which makes it closer to a clinically

acceptable running time. Future works will focus on the ac-

curacy of the estimated fascicle orientations. This is a tricky

problem since (i) no ground truth is available and (ii) the op-

timal fascicle configurations might be model-dependent.
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