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p16INK4a and its regulator miR-24 link senescence
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Anne Dorandeu4, Yves-Marie Pers1,2,5, Jacques Piette6, Rosa Maria Borzi3†, Christian Jorgensen1,2,5†,

Danièle Noel1,2† and Jean-Marc Brondello1,2*†

Abstract

Introduction: Recent evidence suggests that tissue accumulation of senescent p16INK4a-positive cells during the life

span would be deleterious for tissue functions and could be the consequence of inherent age-associated disorders.

Osteoarthritis (OA) is characterized by the accumulation of chondrocytes expressing p16INK4a and markers of the

senescence-associated secretory phenotype (SASP), including the matrix remodeling metalloproteases MMP1/MMP13

and pro-inflammatory cytokines interleukin-8 (IL-8) and IL-6. Here, we evaluated the role of p16INK4a in the OA-induced

SASP and its regulation by microRNAs (miRs).

Methods: We used IL-1-beta-treated primary OA chondrocytes cultured in three-dimensional setting or mesenchymal

stem cells differentiated into chondrocyte to follow p16INK4a expression. By transient transfection experiments and the

use of knockout mice, we validate p16INK4a function in chondrocytes and its regulation by one miR identified by means

of a genome-wide miR-array analysis.

Results: p16INK4a is induced upon IL-1-beta treatment and also during in vitro chondrogenesis. In the mouse model, Ink4a

locus favors in vivo the proportion of terminally differentiated chondrocytes. When overexpressed in chondrocytes,

p16INK4a is sufficient to induce the production of the two matrix remodeling enzymes, MMP1 and MMP13, thus linking

senescence with OA pathogenesis and bone development. We identified miR-24 as a negative regulator of p16INK4a.

Accordingly, p16INK4a expression increased while miR-24 level was repressed upon IL-1-beta addition, in OA cartilage and

during in vitro terminal chondrogenesis.

Conclusions: We disclosed herein a new role of the senescence marker p16INK4a and its regulation by miR-24 during OA

and terminal chondrogenesis.

Introduction

Tissue loss of function and integrity are inherent to aging

and age-related disease onset. Because senescent p16INK4a-

positive cells accumulate within numerous tissues through-

out life [1], recent strong evidence suggested that these cells

contribute to tissue degeneration by sustaining chronic in-

flammation and extracellular matrix remodeling [2]. In-

deed, p16INK4a-positive cells exhibit a specific secretome

called SASP (senescence-associated secretory phenotype)

including pro-inflammatory cytokines (such as interleukin-

6 (IL-6), IL-8, and IL-1β) and matrix remodeling regulatory

metalloproteases (such as MMP1 and MMP13) [2]. Re-

markably, specific conditional elimination of these cells in

a premature aging murine model has revealed their essen-

tial role in the onset of several age-related diseases [3].

Interestingly, Ink4a, which encodes an archetypical cyclin-

dependent inhibitor (CKI) associated with senescence, is

also known to participate in terminal differentiation onset

of several cellular lineages [4,5].

Osteoarthritis (OA) is a chronic degenerative disease

characterized by progressive cartilage erosion and lesions
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in subchondral bone as well as in other joint tissues [6].

The anabolic function of chondrocytes, the major cellular

component of articular cartilage, decreases with disease

progression. This loss of function is associated mainly with

an accumulation of p16INK4a-positive articular chondro-

cytes [7] harboring short telomeres [8] but also features of

hypertrophic/terminally differentiated cells [9,10]. The lat-

ter is normally associated with endochondral ossification

process during bone development [9,10]. Although OA

regulatory mechanisms remain under investigation, it's now

believed that articular mature chondrocytes in response to

either inflammatory cytokines or aberrant developmental

signals exemplified by Notch activation [10] are producing

matrix remodeling enzymes (MMP1 and MMP13) and in-

flammatory cytokines (IL-8 and IL-6) [11,12]. All of these

factors are deleterious for cartilage integrity. Therefore, OA

is a multi-factorial complex disease in which articular chon-

drocytes exhibit characteristics of senescent-like and

hypertrophic-like cells secreting SASP factors leading to

impaired anabolic capacities [7]. Moreover, a reduction of

p16INK4a expression by RNA interference in OA chondro-

cytes was shown to lead to their functional rescue [13].

These results demonstrate a deleterious role for this

senescence-associated CKI on articular chondrocytes. It re-

mains to be understood how p16INK4a increased expression

occurs and could contribute to OA progression.

MicroRNAs (miRs) are small non-coding RNAs that are

part of the miRNA-induced silencing complex (RISC) [14]

and are involved in the regulation of gene expression.

MiRs are key regulators of numerous physiological pro-

cesses that are deregulated in pathological conditions [15],

in particular OA [16,17]. Among miRs identified in OA,

miR-22 targets BMP7, a factor inducing chondrocyte ter-

minal differentiation [18]; miR-140 targets HDAC4, a

histone deacetylase inducer of chondrocyte terminal differ-

entiation [19,20]; and miR-27b targets MMP13, a key re-

modeling enzyme in hypertrophic terminally differentiated

chondrocyte [21]. So far, none of these miRs has been

found to be regulators of p16INK4a-associated senescent

phenotypes during OA progression.

In this study, we demonstrate that p16INK4a accumulates

not only in response to inflammatory stimuli but also dur-

ing chondrogenesis. Ink4a participates in cell cycle exit

required for chondrocyte terminal differentiation onset

during endochondral ossification. Moreover, p16INK4a

overexpression is sufficient to trigger MMP1 and MMP13

production in mature chondrocytes. By genome-wide

microRNA array, we identify miR-24 as a regulator of

p16INK4a in chondrocytes. As expected, miR-24 is re-

pressed in IL-1β-treated chondrocytes, in cartilages of pa-

tients with OA but also at the end of chondrogenesis

while p16INK4a accumulates. Finally, downregulation of

miR-24 by an antagomir approach in primary chondro-

cytes leads to an increase in p16INK4a expression and

MMP1 secretion. Taken together, these data reveal for the

first time that the senescent marker p16INK4a and its epi-

genetic regulator miR-24 are reciprocally involved in both

OA and bone developmental-associated matrix remodel-

ing secretomes.

Materials and methods
Cell culture, chondrocytes, mesenchymal stem cells,

cartilage samples, and mouse models

Primary human chondrocytes were isolated from cartilage

of 11 OA patients (mean age of 62 years) undergoing knee

arthroplasty after informed written consent from patients

and approval by the local and national ethics committee

(‘Cellule de bioéthique de la direction générale pour la

recherche et innovation, Ministère de l’Enseignement

Supérieur et de la Recherche’; registration number DC-

2009-1052) were obtained, as described previously [22].

Cartilages from six healthy adult subjects (mean age of 53

years) were forensic waste from legal medicine with no

need of informed consent after consultation with the na-

tional ethics committee and in strict agreement with

French legislation. OA primary chondrocytes were cul-

tured in Dulbecco’s modified Eagle’s medium (DMEM)

containing 10% fetal calf serum as described [23]. Primary

OA chondrocytes (2.5 × 105 cells) were pelleted by centrifu-

gation in 15-mL conical tubes, placed in three-dimensional

(3D) setting for 7 days in chondrogenic medium—DMEM

supplemented with 0.1 μM dexamethasone (Sigma-Aldrich,

St. Louis, MO, USA), 1 mM pyruvate sodium (Invitrogen,

Paisley, UK), 0.17 mM ascorbic acid (Sigma-Aldrich), 0.35

mM Proline (Sigma-Aldrich), 1% Insulin Transferin

Selenium (Lonza, Basel, Switzerland), 2 mM L-glutamine

(Lonza), 100 U/mL penicillin, and 100 μg/mL streptomycin

(Lonza)—supplemented with transforming growth factor-

beta 3 (TGF-β3) at 10 ng/mL (R&D Systems, Minneapolis,

MN, USA). Treatment with recombinant human IL-1β at

10 ng/mL (R&D Systems) was applied for the first 5 days.

Wild-type or ink4a knockout mice (1 month old) were

obtained as reported [24]. Mice were housed and cared for

in accordance with the laboratory animal care guidelines.

Approval was obtained from the regional ethics committee

on animal experimentation before initiation of the study

(approval CEEA-LR-10042). Experiments were performed

in accordance with the regional ethics committee on ani-

mal research and care.

MicroRNA array analysis

Total RNA was extracted from chondrocytes in micropel-

let treated (or not) with IL-1β by using a miRvana isolation

kit (Ambion, Carlsbad, CA, USA). MiRNA expression pro-

filing was performed by using Miltenyi (Bergisch Gladbach,

Germany) microarray facilities. Labeling and hybridization

were performed in accordance with the protocol of the

manufacturer. Raw data were normalized and additional
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data analysis was performed as described previously [25].

Microarray data are available in the ArrayExpress database

[26] under accession number E-MTAB-2229.

Reverse transcription, microRNA reverse transcription,

and quantitative polymerase chain reaction

One microgram of Trizol-extracted total RNAs including

microRNAs from the different samples were poly(A)-

tailed with poly(A) polymerase (NEB M0276L). Then the

polyadenylated RNA samples were reverse-transcribed as

previously described using 50 units M-MLV Reverse Tran-

scriptase (Invitrogen, Carlsbad, CA, USA) and either ran-

dom primers or dTmiR adapter [27]. For microRNA and

mRNA quantitative analysis, cDNA was mixed with Sybr

Green Master Mix (Roche Diagnostics, Indianapolis, IN,

USA) in 96-well plates containing specific primers for hsa-

miR-24 (universal reverse + specific primer), interest genes

or the ribosomal subunit protein-9, housekeeping gene

(hRSP9). Quantitative polymerase chain reaction (qPCR)

conditions as described [27] used the following primer-

probe combinations: for hRSP9 sense 5′-GATTACATC

CTGGGCCTGAA antisense 5′-ATGAAGGACGGGAT

GTTCAC; for Aggrecan (hACAN) sense 5′- TCGAGGAC

AGCGAGGCC anti-sense 5′-TCGAGGGTGTAGCGTGT

AGAGA; for hCOL2A1, variant 2 (hCol2A1) sense 5′-CA

GACGCTGGTGCTGCT anti-sense 5′-TCCTGGTTGCC

GGA CAT; For hMMP13 sense 5′-TAAGGAGCATGGCG

ACTTCT anti-sense 5′-GTCTGGCGTTTTTGGATGTT;

for hp16INK4a sense 5′- GAAGGTCCCTCAGACATCCCC

anti-sense 5′-CCCTGTAGGACCTTCGGTGAC; for hsa-

miR-24 sense 5′-TGGCTCAGTTCAGCAGGAACAG Uni-

versal Reverse 5′- GCGAGCACAGAATTATACGACT.

cDNA constructs and luciferase reporter assay

Plasmids encoding for miR-24-2 promoter (−2041 base-

pair) Luciferase and CMV β-galactosidase were provided by

Charles Lecellier [28]. Empty vector or p16INK4a encoding

vector were purchased from Addgene [29]. For promoter

activity assay, OA human primary chondrocytes were

transfected at day 0, placed in pellet culture conditions

and treated with IL-1β during 48 hours. Cells were then

lysed according to the dual luciferase/βgal kit (Promega,

Charbonnières-les-Bains, France). Firefly Luciferase and

β-galactosidase activities were detected using specific

substrates with MultiScan FC (Thermo Scientific,

Loughborough, UK). Luciferase activity was normalized

to β-galactosidase activity.

In vitro differentiation of human bone marrow-

mesenchymal stromal cells to chondrocytes

Human bone marrow-mesenchymal stromal cell (hBM-

MSC) culture were established from bone marrow of pa-

tients undergoing Hip replacement surgery, after patient

informed written consent and approval by the local and

national ethics committee (“Cellule de bioéthique de la

direction générale pour la recherche et innovation, Minis-

tère de l’Enseignement supérieur et de la Recherche”;

registration number DC-2009-1052). Human mesenchy-

mal stromal cells (hMSCs) were isolated and amplified by

using a complete alpha-minimum essential medium sup-

plemented with 10% fetal bovine serum + 1 ng/mL of

basic fibroblast growth factor. hBM-MSCs were positive

for CD44, CD73, CD90, and CD105 but negative for

CD14, CD34, and CD45. Chondrogenic differentiation of

BM-MSCs was induced by 21-day culture in micropellet

[30]. Chondrogenesis was monitored by measuring the ex-

pression of chondrocyte-specific markers by reverse

transcription-qPCR (RT-qPCR) as described [30].

Transfections

Human chondrocytes (75 × 104) were transfected with 15

μg of plasmid for 24 hours by using Transit-LT1 Reagent

(Euromedex, Souffelweyersheim, France). Chondrocytes

were transfected with 100 nM of AntagomiR control or

AntagomiR-24 (purchased from Ambion) by using oligo-

fectamine (Invitrogen, USA). After transfection, cells were

trypsinized and pelleted in chondrogenic medium and cul-

tured for 7 days.

Western Blot and enzyme-linked immunosorbent assay

For Western blotting, chondrocytes in pellet cultures were

lysed in RIPA-Benzonase buffer [22]. After the addition of

the lysis buffer, the samples were left on ice for 15 minutes

with vortexing every 5 minutes for 10 seconds. Lysate pro-

tein samples were then sonicated for 5 minutes, followed

by centrifugation at 7000 g for 15 minutes. The protein

quantity loaded on Western blot gel corresponded to 25 ×

104 cells. Primary antibodies and dilutions were anti-

CDKN2A/p16INK4a (ab54210; Abcam; 1:1,000) and

anti-β actin (Sigma-Aldrich A228; 1:8,000). Secondary

antibody used for Western blot analysis was goat anti-

mouse IgG HRP conjugate (Jackson ImmunoResearch

Laboratories, Inc., West Grove, PA, USA; 115-035-003;

1:80,000). Enzyme-linked immunosorbent assays (ELI-

SAs) were performed by using kits (IL-6, IL-8, pro-

MMP13, and MMP1) from R&D Systems on supernatants

stored at −20°C until analysis. Data were normalized and

expressed as picograms per milliliter.

Immunohistochemistry and staining

Samples were fixed in 3.7% paraformaldehyde for 24

hours, washed in phosphate-buffered saline (PBS), and

processed for routine histology. Paraffin-embedded sam-

ple sections (5 μm) were rehydrated through a gradient

of xylene and ethanol. Samples were first incubated for

20 minutes at room temperature with pepsin solution

(EmergoEurope, The Hague, The Netherlands) for anti-

gen retrieval. Endogenous peroxidase blocking was done
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with 1% H2O2 for 20 minutes at room temperature. Sam-

ples were pre-incubated with blocking solution (PBS + 10%

goat serum + 0.1% Triton) for 30 minutes at room

temperature. Endogenous biotins were blocked by using a

Streptavidin/Biotin blocking kit (Vector SP-2002) for 30 mi-

nutes. Primary antibody anti-CDKN2A/p16INK4a monoclo-

nal mouse antibody (1:200; Abcam ab54210) was incubated

for 72 hours at 4°C. Incubation with Biotin-coupled second-

ary antibody, IgG (1:200; ABC kit Vector PK6100) was done

for 1 hour at room temperature. Incubation with Avidin/Bio-

tin complex (ABC kit Vector PK6100) was done for 30 mi-

nutes at room temperature. Immunolocalized antigens were

detected by means of a DAB revelation kit (Sigma-Aldrich).

Safranin-O staining was performed as described [31].

Quantification of proliferating cell nuclear antigen (PCNA)-

positive or PCNA-negative hypertrophic chondrocytes was

performed on four different sections of long bones of four

mice of each genotype by using ImageJ software (D-0426)

in accordance with the instructions of the manufacturer.

Statistical analysis

Experiments were performed with at least three independ-

ent individual chondrocyte or MSC samples. Comparisons

of two conditions were done by using a paired Student t

test. Unpaired Mann-Whitney test was applied for cartil-

age samples by using GraphPad Prism Software (Graph-

Pad Software, Inc., La Jolla, CA, USA). Differences were

considered significant when P values were less than 0.05.

Results and discussion

p16INK4a accumulates with other senescence-associated

secretory phenotype factors in interleukin-1-beta-treated

mature chondrocytes

We first wanted to establish an in vitro model based on

mature chondrocytes, mimicking the senescence-like phe-

notypes found in OA cartilage. This model should associ-

ate a 3D setting reproducing that of chondrocytes within

the tissue, expression of senescence markers such as

p16INK4a, and production of SASP factors. We therefore

isolated primary chondrocytes from OA cartilage patients

and that were placed in pellet culture conditions to main-

tain/reinduce the chondrocyte phenotype. We used IL-1β

as one of the major cytokine inducers of cartilage degrad-

ation in OA [32] to induce senescence-associated pheno-

type. We observed that, in response to chronic IL-1β

treatment for 5 days, mature chondrocytes lose (as ex-

pected) the expression of specific differentiation markers

such as Aggrecan (Figure 1A) [33], concomitantly with

p16INK4a accumulation (Figure 1B), phospho-active form of

p38MAPK (Figure 1C), and production of reactive oxygen

species (data not shown), hallmarks of senescence-

associated signaling pathways [34]. Furthermore, as ex-

pected, IL-1β-treated mature chondrocytes significantly

produce senescence-associated secretory factors such as

MMP1 and MMP13, two markers normally associated

with chondrocyte terminal differentiation onset and IL-6

and IL-8, two pro-inflammatory cytokines (Figure 1D-G).

Therefore, this 3D in vitro model recapitulates the p16INK4a-

associated secretory phenotype characterizing senescent-like

chondrocytes found in OA cartilage.

The senescence marker p16INK4a is expressed during

in vitro chondrogenesis and participates in the terminal

differentiation-dependent cell cycle exit during

endochondral ossification

Besides inflammatory cytokines, aberrant chondrogenic dif-

ferentiation signals can also promote OA features. For in-

stance, Notch activation and HIF-2α transcription factor,

both inducers of OA, are also central in controlling chon-

drocyte terminal differentiation onset during in vitro chon-

drogenesis and in vivo endochondral ossification [9,10].

Thus, we next wanted to determine whether p16INK4a could

also be part of a normal in vitro and in vivo chondrogenic

differentiation process as has been reported for Notch or

HIF-2α. We therefore evaluated the p16INK4a expression

profile in human MSCs from three different donors under-

going TGF-β3-induced chondrogenic differentiation to re-

capitulate in vitro all stages of chondrogenesis. Surprisingly,

p16INK4a expression increases during chondrogenesis in

parallel with a chondrocyte differentiation marker such

as collagen IIB at days 7 to 14 and in a concomitant man-

ner with MMP13, a chondrocyte terminal differentiation

marker, at day 21 (Figure 2A-D). Of note, during chondro-

genesis, p14ARF mRNA, an alternative splicing form of

p16INK4a, was not detected at any time (data not shown).

Thus, the senescence marker p16INK4a, which is known to

be required for astrocyte [4] or epidermal cell [5] differenti-

ation, seems also to play a role during chondrogenesis. To

dissect its in vivo function during chondrogenic differenti-

ation, we compared the endochondral ossification process

of transgenic mice deficient in ink4a locus with that of wild-

type mice. PCNA and Safranin-O staining were used to

quantify proliferative chondrocytes versus non-proliferative

chondrocytes within the growth plate of 1-month-old mice.

Without affecting the total number of chondrocytes, ink4a

ablation reduces the height of hypertrophic terminally dif-

ferentiated non-proliferative chondrocytes by 48% ± 2.2

(Figure 2E-G), demonstrating a role for ink4a locus in

chondrocyte cell fate decision to engage in terminal differ-

entiation. A main function of p16INK4a is to specifically in-

hibit cell cycle progression by targeting G1 CDK4/6

activities [35] and therefore maintain retinoblastoma

(pRb), p107, and p130 under their active unphosphory-

lated forms [36]. These three pocket proteins are known

to control chondrocyte cell fate decision during bone

growth [37-39]. Interestingly, two other CKIs—p27KIP1

and p57KIP2—are also part of the cell cycle regulation

during terminal differentiation through CDK inhibition
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leading to pocket proteins activation [40,41]. But only

p16INK4a plays a major role in both cellular senescence and

differentiation onset as revealed in ink4a knockout mice

studies. Taken together, these findings point at the multiple

roles of several CKIs and their indirect targets—pRb, p107,

and p130—as orchestrators of the differentiation program

and, in particular, in chondrocyte terminal differentiation

during bone development.

Expression of p16INK4a is sufficient for MMP1 and MMP13

secretion by mature chondrocytes

To determine how Ink4a could participate in both OA ini-

tiation and chondrocyte terminal differentiation, we

assessed whether p16INK4a expression impacts the estab-

lishment of matrix remodeling secretome common in

both events. We thus transiently transfected a p16INK4a-

encoding vector in human chondrocytes, before initiating

the pellet culture for 7 days and in the absence of IL-1β.

Overexpression of p16INK4a was checked at the mRNA

level (Figure 3A) and protein level (Figure 3B). Compared

with the control, p16INK4a-overexpressing mature chon-

drocytes produced significantly higher levels of MMP1

and MMP13 but did not modulate IL-6 and IL-8. Of note,

our findings confirm recent published data showing that

p16INK4a is dispensable for the establishment of inflamma-

tory secretome associated with senescent fibroblasts [42].

Taken together, our results revealed that the senescence-

associated CKI, p16INK4a, triggers the secretion of both

MMP1 and MMP13 in mature chondrocytes. These two

metalloproteases are matrix remodeling enzyme family

members playing a central role in physiological and patho-

logical processes occurring in cartilage [33,43,44]. Indeed,

both are expressed during chondrocyte terminal differenti-

ation within the growth plate to coordinate matrix remod-

eling that promotes bone growth [12] but also in OA

articular cartilage during disease progression [45]. How

could p16INK4a control MMPs production? Firstly, ink4a

locus could directly regulate MMP1 transcriptional activa-

tion through its described physical interaction with APA1/

ZNF410 transcription factor which is bound to MMP1

promoter [46]. Secondly, by activating pRb-, p130-, and

p107-dependent terminal differentiation programs

through CDK inhibition, p16INK4a accumulation could also

contribute indirectly to MMPs production in OA and dur-

ing endochondral ossification. Indeed, these three

pocket proteins can modulate gene expression and cell

fate decision through their interactions with chromatin-

modifying enzymes [47]. One found, among these en-

zymes, histone deacetylase (HDAC) family members,

which are controlling chondrocyte pre-hypertrophy/hyper-

trophy transition [16,17]. Remarkably, recent work from

Culley and colleagues [48] reveals that pharmacological

Figure 1 Interleukin-1-beta (IL-1β) induces both p16INK4a expression and a senescence-associated secretory phenotype (SASP) in mature

chondrocytes. Osteoarthritis (OA) human primary chondrocytes were placed in pellet culture and treated with IL-1β (10 ng/mL) for 5 days. (A) Aggrecan

mRNA (Acan) expression level was evaluated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) (n = 3). (B) p16INK4a

protein expression level was measured by Western blotting. (C) P-p38MAPK protein level was detected by immunohistochemistry (IHC) on a

section of paraffin-embedded pellets. Images were taken with a ×20 objective. (D-G) Matrix metalloprotease 1 (MMP1), MMP13, IL-6, and IL-8

secretion were measured by enzyme-linked immunosorbent assay (ELISA) (n = 4). Data are shown as mean ± standard deviation (SD) of fold

changes compared with control. *P <0.05, **P <0.01.
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inhibition of HDACs prevents the expression of metallo-

proteases such as MMP13 by OA chondrocytes. Thus,

p16INK4a contributes to MMP secretion by activating

the pocket protein-HDAC axis in pathological and

physiological conditions.

p16INK4a induction correlates with miR-24 repression in

interleukin-1-beta-treated chondrocytes, osteoarthritic

cartilage, and the end of an in vitro chondrogenesis

We next wanted to identify putative regulators of p16INK4a

in mature chondrocytes. Since miRs have been shown to

Figure 2 MiR-24 and p16INK4a expressions during chondrogenesis and role of p16INK4a in chondrocyte cell cycle arrest. Human primary

mesenchymal stromal cells (MSCs) were placed in three-dimensional (3D) culture conditions for 21 days. RNAs were harvested at indicated time

points. (A-D) Gene expression analysis was performed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) for Collagen

2b, matrix metalloprotease 13 (MMP13), p16INK4a, and miR-24. Data are shown as mean ± standard deviation (SD) (n = 3) normalized to D21.

Immunohistochemistry (IHC) was performed on sections of formalin fixed paraffin-embedded long bones of transgenic mice deficient in

p16INK4a or wild-type at the age of 1 month. (E,F) Growth plate was marked by Safranin-O staining and proliferating cell nuclear antigen

(PCNA) (P, proliferative zone; H, pre-hypertrophic/hypertrophic zone). Images were taken with ×20 objective. (G) Quantification of the

percentage of hypertrophic non-proliferative terminally differentiated cells on total cells within the growth plate in transgenic and wild-type mice

(n = 4) was carried out by using ImageJ software. Data were normalized to 1 for wild-type and are shown as mean ± SD. **P <0.01, ***P <0.001.
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play an important role in cartilage physio-pathology

[16], we asked whether some miRs could regulate p16INK4a

expression in IL1β-treated chondrocytes. miR-array ana-

lysis was performed on small RNAs extracted from chon-

drocytes that were from three different donors and that

were cultured in pellets in the presence or absence of IL-

1β (Figure 4). Bioinformatic analysis revealed that 179

miRs (128 up and 51 down) are differentially expressed in

response to IL-1β compared with untreated cells. These

deregulated miRs have at least a 1.4-fold change and a P

value of less than 0.05 (Figure 4A and data not shown).

Interestingly, we found among them several previously

OA-associated miRs such as miR-27b, miR-199, miR-29a,

miR-26, and miR-365 [16,17].

Figure 3 Cyclin-dependent kinase inhibitor p16INK4a participates in matrix metalloproteinase 1 (MMP1) and MMP13 expression in

mature chondrocytes. Osteoarthritis (OA) human primary chondrocytes were transfected with vector encoding for p16INK4a or empty vector (EV)

for 24 hours and placed in pellet for 7 days. (A) Gene expression analysis was performed by reverse transcription-quantitative polymerase chain

reaction (RT-qPCR) for p16INK4a (n = 5). (B) p16INK4a protein expression was detected by immunohistochemistry (IHC) on pellet paraffin sections.

Images were taken with a ×20 objective. (C-F) MMP1, MMP13, interleukin-6 (IL-6), and IL-8 secretions were measured by enzyme-linked immunosorbent

assay (ELISA) (n = 5). Data are shown as mean ± standard deviation (SD). *P <0.05.
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Since inhibition of miR-processing enzymes such as

Dicer induces senescence-associated phenotypes in pri-

mary cells [49] and promotes chondrocyte terminal differ-

entiation in animal models [50], we focused our attention

on miRs that were repressed by IL-1β (Figure 4A). We

found miR-24, a known negative regulator of p16INK4a,

through the presence of two binding sites for this miR

within its encoding and 3′ untranslated region (UTR) [51].

Figure 4 MiR-24 repression correlates with p16INK4a induction in interleukin-1-beta (IL-1β)-treated chondrocytes and osteoarthritis (OA)

cartilage. OA human primary chondrocytes are placed in pellet and treated with IL-1β at 10 ng/mL for 5 days. (A) List of microRNAs downregulated

by IL-1β. (B,C) Gene expression analysis was performed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) for miR-24 and

p16INK4a (n = 3). (D) Luciferase/β-gal activities of promoter miR-24-2 cluster after IL-1β treatment (n = 3). Data are shown as mean ± standard deviation

(SD). MiR-24 repression in OA cartilage samples is shown. (E,F) MiR-24 repression in OA cartilage: gene expression for miR-24 and p16INK4a on OA

(n = 5) and healthy (n = 6) cartilage samples. *P <0.05, **P <0.01, ***P <0.001.
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We next confirmed, on three independent chondrocyte

samples placed in 3D, that IL-1β significantly repressed

miR-24 expression (Figure 4B) with a concomitant ex-

pected induction of p16INK4a mRNA (Figure 4C).

miR-24 is encoded by two genes: miR-24-1 and miR-24-2

[52]. These genes are organized in a cluster including three

different miRs (miR-23a or b/27a or b/24). Each cluster

is regulated by one promoter common for the three

miRs of the cluster [52]. Our array analysis revealed

that, upon IL-1β stimulation, chondrocytes show a re-

duced expression of several members of these two clus-

ters (Figure 4A), suggesting a global repression of the

transcription of the clusters. In keeping with this hy-

pothesis, we confirmed the transcriptional repression of

miR-24-2 promoter, upon IL-1β addition (Figure 4D),

by using a reporter luciferase assay (Figure 4D) previ-

ously described [28].

An increase in expression of p16INK4a has been demon-

strated in cartilage from patients with OA [13]. We then

checked whether miR-24 expression could be reversely

correlated with that of p16INK4a in OA cartilage compared

with healthy cartilage. By RT-qPCR on mRNA from OA

(n = 5) versus healthy (n = 6) human cartilage samples, we

revealed a significant miR-24 downregulation in OA cartil-

age (Figure 4E) while p16INK4a is increased (Figure 4F).

These results were confirmed at the protein level on

serial sections of OA cartilage samples by using

p16INK4a immunohistochemistry and miR-24 in situ

hybridization (Additional file 1).

Figure 2 shows that p16INK4a mRNA accumulates

throughout the time course of an in vitro chondrogenesis

from days 7 to 21 (Figure 2C). We therefore evaluated,

during chondrogenesis, whether the expression of miR-24

could also be reciprocal to that of p16INK4a expression. By

RT-qPCR, we revealed that, compared with days 0 to 7,

miR-24 level is decreased at day 14 and significantly at day

21 (Figure 2D) in parallel with an increase in expression of

the terminal differentiation marker, MMP13 (Figure 2B),

while p16INK4a remains elevated (Figure 2C). Taken to-

gether, these results demonstrate that the expressions of

Ink4a and its epigenetic regulator are mutually exclusive

in both in vitro and in vivo OA models and during the

end of the chondrogenesis. Moreover, miR-24 downregu-

lation seems to follow and sustain a high level of p16INK4a

rather than initiate p16INK4a accumulation.

MiR-24 downregulation is sufficient to trigger p16INK4a

expression and MMP1 production in mature chondrocytes

Finally, we aimed at determining whether modulation of

miR-24 could be sufficient to promote p16INK4a accumula-

tion and p16INK4a-dependent matrix remodeling secretome

by using our 3D chondrocyte model. Because miR-24 over-

expression has been reported to induce apoptosis by

repressing DNA damage response pathways [53], we relied

on a loss-of-function experiment based on transfection

of chondrocytes by either a specific inhibitor of miR-24

(antagomiR-24) or an irrelevant antagomiR as control. As

expected, transfection of antagomiR-24 led to a dramatic

Figure 5 MiR-24 downregulation is sufficient to trigger p16INK4a expression and matrix metalloproteinase 1 (MMP1) production in

mature chondrocytes. Osteoarthritis (OA) human primary chondrocytes were transfected with irrelevant antagomiR (Ctrl) and antagomiR-24

(A24) at a concentration of 100 nM. They were placed in pellet culture conditions for 7 days. (A,B) Gene expression analysis was performed by

reverse transcription-quantitative polymerase chain reaction (RT-qPCR) for miR-24 and p16INK4a (n = 4). (C) p16INK4a protein expression by

immunohistochemistry (IHC) on pellet paraffin-embedded sections. Images were taken with a ×20 objective. (D-G) MMP1, MMP13, interleukin-6 (IL-6),

and IL-8 secretion were measured by enzyme-linked immunosorbent assay (ELISA) (n = 4). Data are shown as mean ± standard deviation (SD).

*P <0.05.
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downregulation of miR-24 level (Figure 5A) and the con-

comitant significant upregulation of p16INK4a at both

mRNA (Figure 5B) and protein levels as shown by im-

munostaining with p16INK4a antibodies (Figure 5C).

Furthermore, we showed that miR-24 downregulation is

sufficient to promote a marked increase in MMP1 secre-

tion (Figure 5D) but has no significant effect on MMP13,

IL-6, or IL-8 secretion (Figure 5E-G), suggesting the exist-

ence of a direct axis miR-24-p16INK4a-MMP1. The discrep-

ancy between this result and p16INK4a overexpression alone

could be explained by mutual redundancy and interference

between the signaling pathways. Nevertheless, miR-24 is

part of a cluster containing two other miRs and regulated

by the same promoter (Figure 4D). Therefore, miR-24 re-

pression is in vivo always accompanied by that of miR27a/b

and miR23a/b (Figure 4A and D). Remarkably, miR27b was

recently shown to inhibit MMP13 expression in IL-1β-

treated chondrocytes [21] and miR23a/b could negatively

regulate Runx2, a transcription factor involved in chondro-

cyte terminal differentiation, OA, and osteoblastogenesis

[54]. Thus, repression of these clusters during OA progres-

sion within articular cartilage would promote the appear-

ance of several OA-induced features, including p16INK4a,

MMP1, MMP13, but also Runx2. These findings propose

that miR-24-1/miR-24-2 clusters, together with the recently

identified miR-140, which targets ADAMTS5 and HDAC4,

two hypertrophic inducers [19,20], are crucial in preventing

chondrocyte terminal differentiation in OA.

Conclusions
Determining the role and the regulatory pathways control-

ling p16INK4a expression in chondrocytes during OA pro-

gression is essential for future innovative long-term

therapeutic approaches. In the present work, we demon-

strated that the senescence CKI, p16INK4A, is also associ-

ated with chondrocyte terminal differentiation and can

regulate the expression of matrix remodeling metallopro-

teases MMP1 and MMP13. We further showed that miR-

24 expression plays a role as a negative regulator of the

p16INK4a/MMP1 axis.

We propose that—during OA progression, in response to

IL-1β, or during endochondral-induced terminal chondro-

genesis—a repression of miR-24- and miR-24-encoding

clusters takes place. This is likely to trigger p16INK4a,

MMP1, MMP13, and Runx2 expression, thereby pushing

chondrocytes toward a senescent-like phenotype resem-

bling that of terminally differentiated chondrocytes [7].

Accumulation of p16INK4a-positive chondrocytes within

articular cartilage could thus be deleterious not only for

tissue regeneration by blocking cell proliferation and re-

placement but also for tissue integrity through MMPs

secretion [7,55-57]. On the other hand, p16INK4a

accumulation within the growth plate will favor bone

development. One therapeutic strategy for OA treat-

ment could be to restore/maintain the expression level

of miR-24-encoding clusters in order to prevent

p16INK4a-dependent pathways in articular chondrocytes.

Additional file

Additional file 1: p16INK4a and miR-24 are reversely correlated in

osteoarthritis (OA) articular cartilage. (A) p16INK4a immunohistochemistry

(IHC) on a cryosection of OA cartilage comprising superficial and

intermediate layer. (B) miR-24 in situ hybridization on an adjacent section of

the same OA cartilage sample. Results are representative of experiments on

two OA cartilage samples. Chondrocytes expressing either p16INK4a or

miR-24 are marked by arrows showing mutual exclusion. OA cartilage

samples were fixed with 4% paraformaldehyde during 3 hours at 4°C. After

fixation, samples were placed in PBS with sucrose 30% during 24 hours at

4°C. The next day, PBS-sucrose 30% was replaced with Tek OCT solution and

the samples were stored at −80°C. OA cartilage samples were sectioned at

13 μm and collected on Superfrost PLUS slides. In situ hybridization

experiment was performed as described [58]. LNA DIG-hsa-miR-24 probe

and DIG-has-miR-141c (as negative control) were purchased from Exiquon

(Copenhagen, Denmark) and diluted at 1pM. Alkaline phosphatase conjugated

anti-DIG- antibody was diluted at 1:2,000 in blocking solution. This file can be

viewed with Acrobat Reader.
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