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In silico prediction of protein-protein interactions
in human macrophages
Oussema Souiai1,2*, Fatma Guerfali1, Slimane Ben Miled1,3, Christine Brun2 and Alia Benkahla1

Abstract

Background: Protein-protein interaction (PPI) network analyses are highly valuable in deciphering and

understanding the intricate organisation of cellular functions. Nevertheless, the majority of available protein-protein

interaction networks are context-less, i.e. without any reference to the spatial, temporal or physiological conditions in

which the interactions may occur. In this work, we are proposing a protocol to infer the most likely protein-protein

interaction (PPI) network in human macrophages.

Results: We integrated the PPI dataset from the Agile Protein Interaction DataAnalyzer (APID) with different meta-data

to infer a contextualized macrophage-specific interactome using a combination of statistical methods. The obtained

interactome is enriched in experimentally verified interactions and in proteins involved in macrophage-related biological

processes (i.e. immune response activation, regulation of apoptosis). As a case study, we used the contextualized

interactome to highlight the cellular processes induced upon Mycobacterium tuberculosis infection.

Conclusion: Our work confirms that contextualizing interactomes improves the biological significance of bioinformatic

analyses. More specifically, studying such inferred network rather than focusing at the gene expression level only, is

informative on the processes involved in the host response. Indeed, important immune features such as apoptosis are

solely highlighted when the spotlight is on the protein interaction level.
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Background
Nowadays, infectious respiratory diseases such as

tuberculosis (TB) are no longer a major concern for

third world countries only. According to the WHO,

one third of the worldwide population is infected

with Mycobacterium tuberculosis (MTB) in a latent

(Latent form Tuberculosis; LTB) and about ten million

cases of Active Tuberculosis (ATB) occur annually [1].

The HIV-TB co-infection also plays a major role in the

increase of active tuberculosis cases around the world [1].

Although TB is curable by an adequate antibiotic

treatment, patient compliance is often problematic

and many clinical cases show multi-drug resistance [2].

These cumulated observations underscore the importance

of continued investigation into the mechanisms used

by the infectious agent, Mycobacterium tuberculosis,

to persist and overturn inside the host cell. The TB

infection mostly occurs by aerosols and MTB infects

alveolar macrophages, which then provide an environment

for replication and persistence of bacilli. To do so,

the bacterium uses several host cellular pathways such

as the PI(3)kinase network around PKB/AKT1 [3] to

subvert the immune response and to persist into the

macrophage. In response, the host activates the same

pathway to trigger the elimination of the pathogen

[4]. The intricacy of these mechanisms on one hand,

and the potential utility of protein-protein interaction

(PPI) network analyses to understand the various cellular

mechanisms on the other hand, led us to hypothesise that

identifying the PPI network in infected macrophages,

would provide new insights concerning the infection and

the persistence of the pathogen within its host cell.

Indeed, PPI are key elements in the organisation of

cellular functions [5]. In the post-genomic era, most

of these interactions have been identified by either of

two high-throughput methods: the yeast two-hybrid

(Y2H) system [6] and affinity purification followed by
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mass spectrometry (AP-MS) [7]. Numerous methods

aiming at inferring interactions have also been proposed,

based on sequence signatures and similarities, domain

profiling or bayesian predictions [8-11]. Overall, the

assembly of all these PPI added to those identified by

small-scale experiments, form large networks called

‘interactomes’ [12]. Bioinformatic analyses of these net-

works have led to numerous functional insights such as

function prediction for uncharacterised proteins [13-18],

evolution of the function of the duplicated genes [19-21]

and the organisation of the signalling pathways [22,23].

However, it is important to note that these interactomes

are devoid of spatio-temporal information. Indeed, inter-

actions identified by the Y2H techniques are biophysically

possible but physiologically context-less. They therefore

remain hypothetical until their characterisation in

particular conditions in vivo [24]. In this context, the

reconstruction of contextualised macrophage interactome

is a crucial methodological step towards a comprehensive

study of MTB infection. To support and strengthen the

potential occurrence of the interactions discovered using

high-throughput and bioinformatic inference methods in

particular physiological contexts, additional functional

features such as co-expression correlations, genetic interac-

tions, and functional protein annotations have been routinely

used as secondary meta-data to contextualize interactomes

[25-27] particularly in a bayesian framework [28].

In this work, we propose a contextualised macro-

phage PPI network resulting from the combination of

PPIs with functional annotations and expression data.

To achieve this, we used as an initial step, statistical

and functional criteria to select a Confidence Subset

(CS) of interactions containing those likely occurring

in vivo in the human macrophage. After showing the

reliability of the CS, we used it as a cornerstone to

infer the most likely macrophage interactome. The

summary of the complete pipeline is illustrated in

Figure 1.

We then verified the specificity of the contextualized

macrophage interactome composed of 30,182 interactions

by showing that it is enriched in proteins related to

the immune response, expressed in macrophages

according to the Human Protein Atlas [29] and HPRD

[30] and belonging to the host regulatory network

during MTB infection [31] as well as in interactions

reported to occur in macrophages according to InnateDB

[32]. As a last step, aiming at pointing towards the

modifications of the macrophage interactome induced

by MTB exposure, we used the contextualized inter-

actome to highlight the cellular processes at work

upon MTB infection. Interestingly, we showed that

considering protein interactions rather than differen-

tially expressed genes provides complementary functional

information.

Figure 1 From an initial heterogeneous context-less dataset (FS). We extracted a confidence subset (CS) of interactions with high potential

to occur within a human macrophage. This subset was statistically and functionally assessed. Using a metric we identified a subset of interactions

having close characteristics to the confidence subset called contextualised interactome (CI).
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Results
Contextualizing the interactome

Integrating data to constitute a full dataset

We extracted the human interaction dataset from the APID

database [33]. Additional information was integrated to

describe each interaction. The following qualitative

and quantitative descriptors were used: independent

methodological proofs and reports of the interaction, gene

co-expression in macrophage, functional co-annotation

and sub-cellular co-localisation of the interaction partners

(see Material & Methods for the detailed processing of the

descriptors). For the sake of clarity, the full dataset

composed of the values taken by the descriptors of

each interaction was named the Full Set (FS).

Defining a confidence subset (CS) of macrophage

interactions

From the FS composed of 38,832 interactions involving

9,813 proteins, we extracted a Confidence Subset (CS)

composed of interactions that likely occur in macrophages,

using functional and statistical parameters. For this,

we used principal component analysis (PCA) that

allows assembling parameters showing similar behaviours

(see Material & Methods for details). According to the

correlations obtained, the number of reports and

evidences are correlated as well as the number of

common Gene Ontology terms describing the cellular

components and biological processes in which protein

pairs are involved (Figure 2). These statistical observations

are used to discriminate the CS interactions.

Considering that gene co-expression is routinely used

as a parameter in contextualization attempts [25,26], we

included only interactions between the products of genes

co-expressed in macrophages in the CS. Ultimately,

considering that proteins composed of known interacting

domains have higher confidence in the PPI network, we

selected only interactions between partners sharing

interacting domains according to PFAM annotations.

Overall, each interaction belonging to the CS obeys the

following criteria (Figure 3, Material & Methods for details):

1) the genes encoding the interacting proteins must be

co-expressed in normal, uninfected macrophages;

2) the protein partners must share interacting domains

according to PFAM;

3) protein partners must share functional Gene

Ontology annotations;

4) the interaction must have been identified several

times by independent experiments.

In this way, a CS composed of 530 interactions involving

594 proteins was obtained. The analysis of the Gene

Ontology terms annotating those proteins showed

that the CS is enriched in terms related to immune

#CC

#BP

# evidences

# pubmed 
references

Go proxy distance

Co-expression value

# Kegg pathways

iPFAM

Dimension1 (39,07%)

D
im

e
n
s
io

n
2
  

(3
1
,8

9
%

)

Variable factor map PCA

Figure 2 The Principal component analysis compresses on the first axis 39% of information, on the second axis 69%. The coverage

reaches 81% if we extend to the third axis. The number of publication is correlated with the number of experimental evidences as well as the

number of common GO common biological process and the number of common GO cellular component.
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system development (Fold Change, FC = 3, p-value =

1.06 × 10−5), to regulation of apoptosis processes (FC =

3.29, p-value = 2.2 × 10−26), to regulation of cell death

(FC = 3.6, p-value = 8.1 × 10−29) and to regulation of

I-kappaB kinase/NF-kappaB cascade (FC = 5.1, p-value =

5.7 × 10−11) (Additional file 1: Table S1).

Aiming to further gain confidence in the CS, we

compared our empirical filtering process to clusters

obtained upon applying an unsupervised clustering

method to the FS. Interestingly, the Self Organizing Map

(SOM) [34] analysis showed that 64% of the interactions

contained in the CS are grouped in a single cluster, the

remaining interactions being located in 5 out of 16 clusters

(Figure 4). This shows that the interactions grouped into

the CS according to the criterion empirically chosen

(described above) are in agreement with clusters obtained

mathematically using an unsupervised algorithm.

In conclusion, the functional enrichment of relevant

groups of genes and the satisfactory comparison to unsuper-

vised clustering reinforce the hypothesis that the interac-

tions composing the CS likely occurring in the macrophage.

Delineating the macrophage protein interaction network

To identify the most likely macrophage PPI network, the

interactions most resembling those of the CS were selected

by computing a similarity distance. To this end, the CS in-

teractions barycentre was first identified and compared to

the descriptor values of the FS interactions. In this case, the

barycentre is computed as the centre of mass of all the CS

interactions. In other words, considering that CS interac-

tions represents a cloud of points in a multidimensional

space with an axis for each of the variables (descriptors),

the barycentre of these interactions is defined by the mean

of each variable. The barycentre is identified for CS ele-

ments as a centroid point whose coordinates represent a

vector as follows: 1
n

X

n

i¼1

CSd1;
1
n

X

n

i¼1

CSd2;…;

1
n

X

n

i¼1

CDd8

" #

,

where CSdi represents the confidence subset descriptor

index.

Second, we computed and compared the distribu-

tions of the Euclidean distance values between the

barycentre and the CS interactions on one hand, and

the FS interactions on the other hand (Figure 5). We

then considered as possible in a macrophage, all the

FS interactions showing a distance value to the barycentre

less than 4.2, i.e. the value corresponding to 95% of the

surface of the CS distribution. In other words, this cut-off

was used to select a CS-like behaviour among the FS

interactions.

Figure 3 The filtering process leading to the constitution of the confidence subset (CS) composed of 530 interactions through 4

cumulative filters. The 1st filter box excludes interaction in which protein partners are not co-detected in untreated macrophage. The 2nd filter

holds only interactions which partners are known to share interactiong domain according to iPFAM. The 3rd filter maintains interactions with

satisfying annotation parameters (GO Biological process, GO cellular component). The 4th parameter checks the reproducibility of the interaction

with different experimental evidences or in different Pubmed publications.
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The resulting Contextualized Interactome (= CI) is

composed of 30,182 interactions involving 8,633 pro-

teins, corresponding to 75% of the initial FS. This

ratio can be taken to mean that nearly 75% of the

interactions composing an interactome are possible

in a given tissue [35].

Validating the macrophage protein interaction network

In order to increase our confidence in the context-

ualisation process, we verified the functional enrich-

ment of the CI compared to the FS. We found that

interactions involved in regulation of apoptosis (FC = 1.05,

p-value = 1.05 × 10−7) and cellular death mechanisms

Figure 4 Self Organizing Map: The grid (4 4) resulting of the SOM method, applied to the inferred dataset formed by 30182

interactions, shows that the confidence subset is mainly (85% of the CS elements) distributed on 2 neighbor clusters: the node (1, 4)

contains 339 elements, the node (1, 3) contains 109 interactions.

Figure 5 The density distribution of distances of CS elements to the barycentre (green curve) and the FS elements to the barycentre

(blue curve). The cut-off of CS like elements corresponds to 95% of the surface of the green curve. FS elements having distance lower than 95%

the computed threshold were considered as similar to the CS and consequently possible within a macrophage.
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The expression signatures of macrophages infected

with MTB have been characterized in three independent

studies [31,36,37]. By combining these data, we obtained

two lists of down-regulated and up-regulated genes

upon MTB infection. Based on the SAM algorithm

(Additional file 5: Figure S1), we have ultimately

cumulated 3,724 under-expressed genes and 1,651

over-expressed genes from the three transcriptomic

experiments. We focused on these genes, knowing

that MTB infection regulates the activity of particular

host genes and cellular processes to its own benefits.

To evaluate the insights brought by a PPI level

analysis versus a classical differential gene expression

approach, we extended the list of genes revealed by

SAM to their first interactors in the CI, thus defining

two sub-networks of 2,966 and 1,435 interactions

anchored respectively on the 3,724 under-expressed

and the 1,651 genes over-expressed upon infection

(note that not all the modulated genes have interactions in

the CI). We then compared the functional enrichments of

the modulated gene lists and their resulting sub-networks.

As shown in Additional file 6: Table S3, whereas the GO

terms ‘response to oxygen levels’, ‘cell substrate adhesion’,

‘cell matrix adhesion’, ‘positive T cell selection’ are the

most enriched terms when only under-expressed

genes are considered, ‘regulation of programmed cell

death’, ‘negative and positive regulation of apoptosis’

or ‘response to wounding’ are found to be over-

represented when the interactors are taken into ac-

count. Similarly, considering the up-regulated genes

and their associated sub-network led to the same

finding (see Additional file 7: Table S4).

Therefore, focusing on the interactions involving

the products of the regulated genes rather than only

on the expression of the genes favours the emergence

of functional aspects caused by MTB infection.

Among these aspects, the regulation of the apoptosis

is known to be highly targeted and controlled by the

pathogen during the different phase of infection and

persistence in the macrophage, as is nicely discussed

by Lee and colleagues [38]. Notably, although these

regulatory aspects are crucial for the outcome of

infection, they are more significantly and extensively

revealed at the systemic scale by focusing on the PPI.

These findings highlight the need to consider infec-

tion of the host by a pathogen at the level of the

functional module, defined as a group of interacting

proteins involved in the same pathway or biological

process, instead of focusing solely on genes or their

products.

Moreover, considering the interactome revealed that

the products of the down-regulated genes after infection,

are closer to each other in the network than the rest of

the CI proteins. This supports the hypothesis that MTB

targets proteins participating to the same pathways.

Indeed, the shortest path values between the down-

regulated genes are significantly lower than the shortest

path between the CI proteins (Mean paths for CI and

down-regulated genes within the CI are respectively 3.3

and 4.5 (p-values 0.002557; t-test)).

Figure 7 Overlap of the CI with other contextualised sources: The CI contains 736 interactions among 814 and 165 interactions among

201 provided respectively by the contextualised Protein Atlas macrophage interactome and the HPRD macrophage interactome. Both

overlaps are significant with hyper-geometric p-values respectively equal to 3.56 x 10-22 and 0.027.
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Overall, these results suggest that the bacillus acts

upon key proteins, which are closely connected within

the network to regulate the host response.

Discussion and conclusions
Interactomes are undoubtedly a remarkable means to

investigate infectious diseases. By multiplying data types

and sources, we are able to increase the pertinence of the

downstream conclusions.

In this study, we proposed a method to contextualise

the interactome of a particular cell type by integrating

diverse information. In the data integration process, the

expression correlation is subject of debate. Even though

this parameter has been taken into account to propose

contextualised interactomes [25], this hypothesis has to

be considered carefully. Indeed high mRNA expression

levels do not necessarily imply a correlated protein

expression level and moreover, do not imply the

interaction between partner proteins [39].

An interaction requires the presence of both interacting

proteins for its accomplishment. This condition is

necessary but not sufficient. In the competitive cellular

environment, the occurrence of a particular interaction

rather than another possible interaction depends on

physico-chemical factors (temperature, pH, covalent

modifications such as phosphorylation) [40]. These

observations have to be taken into consideration to

improve the contextualisation process. Nevertheless,

although integrating tissue and cell type information

into interaction network is certainly a desirable goal

(see discussion of [41]), few attempts have been

reported. Interestingly, only a few types of data were

integrated at one time: Bossi and Lehner [25] pro-

posed tissue specific interactomes by integrating gene

expression and PPI showing that most ‘housekeeping’

proteins have important tissue-specific interactions;

similarly, Rachlin and colleagues [27] provided networks

dedicated to particular biological processes by con-

textualizing them with Gene Ontology terms. The

multiplicity of the integrated data sources was also

brought together in a bayesian framework, aiming at

proposing functional maps to help the user to build

functional hypothesis [28] and in the analysis of a

diverse collection of genome-wide data sets (gene

expression, protein interactions, growth phenotype

data, and transcription factor binding) to decipher the

yeast system modular organisation [42]. Our approach

relies on the fact that we used multiple sources of

data in order to be able to propose a tissue-specific

network of high confidence. The use of multiple data

descriptors offers a global view and aims at minimizing

the biases for interactome contextualisation.

Second, we used a learning approach based on the

constitution of a statistically and functionally reliable CS

in order to select the interactions likely to occur in a

macrophage. Contextualising networks and defining

dense sub-networks and functional modules governing

the host response to infection offers a complementary

approach to classical analysis for the investigation of

infectious diseases. Moreover, considering the modular

composition of the host interactomes allows inclusion in

the analyses of major actors of the immune response

and maintenance of cell fate that would not have

been tractable if considering gene or protein data

alone. Overall, our work suggests that contextualizing

interactomes improves the biological significance of

bioinformatics analyses.

Methods
Human interactome descriptors

From APID we extracted an interactome dataset composed

of 38832 interactions involving 9831 proteins. Features

were added to compose a dataset of interactions described

by functional and quantitative descriptors:

1. # methods: This information is extracted from APID

and corresponds to the number of experimental

validations describing the interaction according to

the molecular interaction controlled vocabulary

PSI-MI [43]. Only leaves of the PSI-MI experimental

validation tree were selected.

2. # publications: extracted from APID. Corresponds

to the number of articles indexed in PubMed and

reporting the interaction.

3. iPFAM value: extracted from APID. Identifies

whether the interactors pair contains domains

known as interacting according to the Pfam

database [44].

4. GO-proxy: this program is part of the GOToolBox

suite [45]. It computes a similarity index between

the interactors on the basis of the GO annotation

terms they share. The similarity index corresponds

to Czekanowski-Dice formula [13,46].

5. # of common GO biological process terms:

represents the number of common GO biological

processes shared by the interacting proteins. For

sake of precision, we only consider terms found at

level 3 in the ontology tree.

6. # of common GO cellular component terms:

corresponds to the number of common GO cellular

components shared by interactors.

7. # of common KEGG pathways: corresponds to the

number of KEGG pathways shared by the

interactors.

8. Co-expression value: macrophage expression data

from Chaussabel and colleagues [36], downloaded

from the Gene Expression Omnibus database (GEO)

[47]. Each probe set corresponds to a mRNA and
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was categorized either by Present, Absent or Marginal.

The Presence/Absence call of the mRNA was

calculated according to the MAS5.0 algorithm [48].

To evaluate the occurrence of the interaction considering

the Presence/Absence status of the mRNA, we assumed

the following hypotheses:

i. the presence of the mRNA implies the presence of

the corresponding protein: the mRNA is detected as

present according to the SAM algorithm [49];

ii. for a couple of proteins interacting in vitro, if both

proteins are considered as present within a targeted

cell according to the hypothesis (i), we assume that

the interaction is bio-physically possible in that

condition.

Enrichment/depletion analysis parameters
The functional analysis webtool from DAVID (http://david.

abcc.ncifcrf.gov/) [50] was used to statistically investigate

the terms over-/under-represented in the set of proteins

belonging to the CS and the CI. The human genome

was used as reference to compare the FS and the CI

enrichments (Additional file 3: Table S5).

The set of proteins composing the FS interactions was

used as reference to compute the enrichment of the CS

(Additional file 1: Table S1) and the enrichment of the

CI (Additional file 2: Table S2).

The set of proteins composing the CI interactions

was used as reference to compute the enrichment of

the sub-networks of down-regulated genes and their

first interactors (Additional file 6: Table S3) and the

enrichment of the sub-networks of up-regulated genes

and their first interactors (Additional file 7: Table S4).

The p-values were calculated using a hyper-geometric

law and corrected for multi-testing with the Benjamini

and Hochberg correction.

Confidence subset statistical relevance

The CS relevance was assessed by using two distinct

clustering algorithms.

Self organizing Map (SOM)

We used an unsupervised neural network method, the

Self-Organizing Map (SOM) [34] for clustering and

visualising the high-dimensional complex inferred data

on a single map. We applied a Euclidean SOM to the

APID original dataset composed of 38832 interactions,

with the following parameters: map size 5 × 10, Gaussian

as neighbour, linear initialisation and rectangular

topology. The subset composed of 530 interactions

was distributed on three neighbouring clusters. The

first one contains 437 interactions, the second contains 83

and the third 10.

Principal component analysis (PCA)

The R graphical library Rcmdr was used to import and

normalise the FS.

This PCA allowed summarising 81% of the global

information.

Contextualised interactomes: We compared the CI

to other contextualised macrophage interactome from

various data sources:

Protein atlas contextualised interactomes: We queried

Protein Atlas [29] (http://www.proteinatlas.org/), to extract

a list of proteins having a strong expression in macrophages

(1990). To generate a contextualized interactome, we

retained only the interactions of the FS between proteins

pairs having a macrophage protein expression.

HPRD macrophage interactome: From HPRD database

(HPRD_Release9_041310), we selected a subset of proteins

localised in the macrophage. We finally obtained 201 inter-

actions between interacting partners both localised in the

macrophage based on the tissular expression field of the

database.

Additional files

Additional file 1: Table S1. Enrichment analysis of the Confidence

subset (CS) using the The FS as reference.

Additional file 2: Table S2. Enrichment analysis of the Contextualized

interactome (CI) using the The FS as reference.

Additional file 3: Table S5. Enrichment analysis of the Confidence

subset (CI) and the FS as reference using the genome as reference.

Additional file 4: Figure S2. Top 50 comparison enrichment terms

p-values between CI and five randomised CI(s): The CI enrichments

p-values (black line) are more enriched than the observed randomised

CI enrichments p-values (p1, p2, p3, p4 and p5). T-test comparisons were

performed between the CI and each randomised set of interactions

(p1 to p5). The difference remains significant in each case with t-test

p-values varying from 4.166e-05(p2) to 0.03316(p1).

Additional file 5: Figure S1. Constitution of down-regulated and

up-regulated gene sets. These genes were identified through SAM

analysis (Significance analysis of microarray) with respect to median false

discovery rate of 1%. Red points correspond to up-regulated genes and

green points correspond to down-regulated genes. Top analysis [37];

Medium analysis [31]; Bottom analysis [36]. Ultimately these analyses

allowed respectively the constitution of respectively 3724 and 1651

up-regulated and down-regulated gene sets.

Additional file 6: Table S3. Enrichment of the sub-networks of

down-regulated genes and their first interactors.

Additional file 7: Table S4. Enrichment of the sub-networks of

up-regulated genes and their first interactors.
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