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Population pharmacokinetics (PK) is increasingly used in 
drug development and is based on nonlinear mixed-effect 
models (NLMEMs).1 Several software algorithms developed 
to estimate the parameters of these models have been 
compared, as by Plan et al.2 The first and most popular 
software is NONMEM and, since version 7, several estima-
tion algorithms have been available, such as first-order con-
ditional estimation with interaction (FOCEI) and stochastic 
approximation expectation maximization (SAEM). Gibian-
sky et al.3 compared the performance of NONMEM estima-
tion methods in simulated examples of a target-mediated 
drug disposition model using either default options or by 
designing the options to get the best possible results for 
each algorithm (“expert” options). They demonstrated the 
importance of the estimation options in the algorithm per-
formance by comparing standard errors of NONMEM esti-
mates with those predicted using PFIM 3.2 optimal design 
software.4 The SAEM algorithm provided estimates similar 
to those of FOCEI.

For a given model, when population parameters are esti-
mated, individual parameters from individual observations 
can be estimated by a Bayesian approach using the  maximum 
a posteriori method. If the data are from the individuals used 
to estimate population parameters, the same approach is 
used, but it is an empirical Bayes estimation. These individual 
parameter estimates are useful for investigating the influence 
of the individual’s baseline characteristics on the individual 
parameters.5

Population analysis allows the use of sparse sampling, 
but the sampling design influences the precision of popula-
tion estimates.6 The informativeness of a data set in param-
eter estimation is a function of the number of subjects and 
of the number and timing of the samples.7 Optimal design 
methodology allows determination of the most informative 

design with constraints. It computes a criterion, such as the 
D-optimality criterion, from the Fisher information matrix 
(M

F
), which depends on the structural model, the parameter 

values, and the design.8

Thus, the design also greatly influences the precision of 
empirical Bayes estimates (EBEs). For a rich design, the a 

posteriori distributions of the individual random effects are 
centered on the true values with small standard deviations. 
When little information is available for each individual (sparse 
design), the means of these distributions regress towards 
the population mean with larger SDs. A formula from lin-
ear mixed-effect methodology has been used to predict this 
shrinkage of EBEs associated with a design.9 This shrinkage 
should be evaluated before conducting a clinical trial. Using a 
simulation study, we provide here a good prediction of shrink-
age using the Bayesian Fisher information matrix (M

BF
)9,10, 

avoiding the use of extensive simulations.
In a study of the impact of shrinkage on model building, 

Savic and Karlsson11 show that covariate relationships may 
be masked or falsely induced and that the shape of the true 
relationship may be distorted when examined using a test of 
the correlation between the EBEs and the covariates. Savic 
and Karlsson11 recommend as follows: “When shrinkage is 
high, other diagnostics and more direct population model 
estimation need to be employed in model building and evalu-
ation.” They suggest more extensive use of the likelihood ratio 
test (LRT) test for covariate evaluation and selection when 
shrinkage is large, which is much more time consuming than 
selection from EBEs.

However, to our knowledge, no one has compared the 
power of LRT with the power of the correlation test (CT) with 
respect to design selection and its expected shrinkage. We 
therefore compared type 1 errors and power in detecting the 
effect of a continuous covariate using either the LRT or the 
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We compared the powers of the likelihood ratio test (LRT) and the Pearson correlation test (CT) from empirical Bayes estimates 
(EBEs) for various designs and shrinkages in the context of nonlinear mixed-effect modeling. Clinical trial simulation was 
performed with a simple pharmacokinetic model with various weight (WT) effects on volume (V). Data sets were analyzed with 
NONMEM 7.2 using first-order conditional estimation with interaction and stochastic approximation expectation maximization 
algorithms. The powers of LRT and CT in detecting the link between individual WT and V or clearance were computed to explore 
hidden or induced correlations, respectively. Although the different designs and variabilities could be related to the large 
shrinkage of the EBEs, type 1 errors and powers were similar in LRT and CT in all cases. Power was mostly influenced by 
covariate effect size and, to a lesser extent, by the informativeness of the design. Further studies with more models are needed.
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CT based on EBEs according to various designs, along with 
various associated shrinkages.

Through an extensive Monte–Carlo simulation of a simple 
one-compartment PK model, we compared the performances 
of FOCEI and SAEM algorithms before evaluating the type 1 
errors and powers of the tests to detect covariate influences 
on individual parameters. We also created several scenarios 
to vary the informativeness of the PK design and therefore 
the associated shrinkage.

RESULTS

Figure 1 summarizes the different clinical trial simulations 
performed.

Algorithm performance

Figure 2 presents, for each scenario and each design with 
N = 500, the boxplots of relative errors on parameters esti-
mated using either FOCEI or SAEM with NONMEM 7.2. 
SAEM always provided more accurate estimates than FOCEI, 
except for ω

ka
 in scenario 2. Estimates with the FOCEI algo-

rithm were often slightly biased, mainly for volume (V), clear-
ance (CL), ω

V
, and ω

CL
, and for residual error parameters. 

Bias was more marked for designs D2 and D3. Median val-
ues of relative errors using SAEM were less influenced by the 
design and were always close to 0%.

Considering that SAEM gave more accurate esti-
mates than FOCEI, only SAEM power estimates are pre-
sented below. FOCEI power estimates are available in the  
Supplementary Materials online.

Prediction of shrinkage

Figure 3 shows predicted shrinkage vs. boxplots of observed 
shrinkage on V (left) and CL (right) for each design and 
each scenario without covariate effect. The simulated sce-
narios generated predicted shrinkage values that increased 
from D5 to D2. Confirming previous results,9 M

BF
 gave a 

good prediction of observed shrinkage. The boxplots were 
closely centered on the identity line, with small deviations for 
low shrinkages, for which there was a trend to predict lower 
shrinkages (but by less than or around 10% from median val-
ues of observed shrinkage).

Evaluation of tests

Figure 4 presents the boxplot of the error on β estimates 
for each scenario, design, and covariate effect. The covari-
ate effect was always correctly estimated. When comparing 
the effect of the total number of subjects, the boxplots clearly 
show an increase in the SD of estimates with decrease in 
number of subjects.

Type 1 errors and the powers of tests between weight (WT) 
and V are presented in Table 1 for all scenarios and designs 
and are illustrated in Figure 5. Type 1 error was similar for 
LRT and CT, even for high values of shrinkage, and in all 
cases, it was within the prediction interval of 3.65–6.35%. The 
power of LRT was equal to the power of CT in all scenarios, 
even with high shrinkage, the greatest difference being 2% 
for D5 with 200 subjects in scenario 1. Figure 5a illustrates 
how LRT and CT have very similar type 1 error and power.

The power was 95% for scenario 1 and 86% for scenario 2, 
with rich designs and a strong effect of WT. Figure 5b shows 
the lack of trend between shrinkage and power across sce-
narios and covariate effects. As expected, the power of tests 
was directly linked to the covariate effect. For both scenarios, 
a design modification led to a 25% increase in power when, 
for a given scenario and design, a change in covariate effect 
size induced a 50% increase.

When comparing N = 500 with D2 and N = 200 with D5, 
both with the same total number of samples, power was 
higher for D2 with a similar type 1 error.

When the covariate effect on CL was explored, type 1 error 
was similar for LRT and CT in all cases (Table 1). When no 
covariate effect was simulated on V, type 1 error remained 
within the range of the prediction interval, around 5%. Sur-
prisingly, this type 1 error increased with the β value, espe-
cially in scenario 2. Type 1 errors were in all cases around 5% 
in scenario 1, except for D3 with β = 0.5 (N = 500, 6.4% for 
LRT) and for D5 with β = 1 (N = 500, 6.6% for CT). Consider-
ing scenario 2, the type 1 error computed for a strong covari-
ate effect led to a significant increase in the type 1 error, for 
D2 (8.7% for LRT and 8.2% for CT), D3 (9.7% for CT and 
9.6% for LRT), and D5 (N = 500, 6.9% for LRT). In this sce-
nario, the increase in type 1 error is linked to higher corre-
lation between individual V and CL. The median correlation 
was −0.25 for D2 and −0.23 for D3. Median correlation was 
−0.13 for scenario 2, D5, whereas for scenario 1, almost no 
correlation in the EBEs was found.

DISCUSSION

We have compared, for different scenarios and different PK 
sampling designs leading to various amounts of shrinkage, 
the type 1 error and power of two tests to detect the effect of 
a continuous covariate on a PK parameter: the LRT, which 
compares the log-likelihoods of two nested models; and a 
correlation test between the covariate and the EBEs.

Surprisingly, both tests showed the same power irrespec-
tive of the scenario or the design considered. Indeed, even 
if LRT is based on the fitting of two models to get the two 
likelihoods, it did not show greater power than a simple CT 
based on EBEs, even with high shrinkage. As a conclusion, 
because of its faster execution, we think that the CT should 
be used in a first screening of the relevant covariates, and 
then the selected covariates can be tested in a stepwise pro-
cedure to build the full covariate model using the LRT.

Savic and Karlsson11 highlighted a possible issue when 
using the CT to screen covariates when there is high shrink-
age in the EBEs and recommended a test that does not 
rely on EBEs. Our study shows that such a test, the LRT 
for instance, does not behave differently from the CT, what-
ever the shrinkage. Indeed, the loss of power associated with 
high shrinkage in CT has the same influence in the LRT and 
is linked with less information in the design. It also showed 
that the size of the covariate effect is the main factor linked 
to any covariate detection issue. Bertrand et al.12 showed a 
similar link between power and covariate effect. To a lesser 
extent, the information in the design also has an impact on 
the power, which decreases when the number of sampling 
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times per subject decreases. Furthermore, when comparing 
the two designs with the same number of samples, power 
was found to be greater for 500 subjects (D2) than for 200 
(D5), though the latter has lower shrinkage (Table 1, with β = 
1, with WT effect on V). This decrease in power for 200 sub-
jects can be explained by the very challenging conditions we 

used to simulate the covariate effect (rather small variance 
of WT and rather small covariate effect). These results are in 
accordance with the loss of power associated with decreased 
number of subjects reported by Liu et al.13 and Bertrand et 

al.14 Nevertheless, even if the LRT was not significant, the 
covariate effect, β, was always correctly estimated.

Figure 1 Global scheme of the clinical trial simulations. CL, clearance; CT, correlation test; FOCEI, first-order conditional estimation with 
interaction; LRT, likelihood ratio test; SAEM, stochastic approximation expectation maximization; V, volume; WT, weight.
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D5: ξD5 = (0.05, 0.15, 0.3, 0.6, 1) ND5 = 500 or ND5 = 200

D2: ξD21
 = (0.05, 0.3,) ND21

 = 167; ξD22
 = (0.05, 1) ND23

 = 167; ξD23
 = (0.3, 1) ND23

 = 166

No effect
of WT on V

Medium or
strong effect
of WT on V

Scenario 1
ω = 50%; σslope = 30%

β = 0

β fixed at 0 β estimated β fixed at 0 β estimated

Scenario 2
ω = 20%; σslope = 40%

β = 0

Scenario 1

Estimation

Results R 3.0.1

R 3.0.1

WT effect on V

WT effect on CL

Power of CT

Power of LRT

Type 1 error of CT

Type 1 error of LRT

Type 1 error of CT

Algorithm
performance

Shrinkage

Type 1 error of LRT

Type 1 error of CT

Type 1 error of LRT

NONMEM 7.2
FOCEI or SAEM

ω = 50%; σ
slope = 30%

β = 0.5 or β = 1

Scenario 2
ω = 20%; σslope = 40%

β = 0.2 or β = 0.5

D3: ξD5 = (0.05, 0.3, 1) ND3 = 500



CPT: Pharmacometrics & Systems Pharmacology

Power of LRT and CT for Various Shrinkages in PK
Combes et al.

4

Considering the induction of correlation due to high 
shrinkage, a slight inflation of type 1 error in scenario 2 was 
found. This inflation could be explained by the EBE corre-
lation between V and CL. The influence of design on EBE 

correlation should be investigated in future work. Further 
work is also needed to explore the influence of design on a 
full covariate modeling process, with several covariates influ-
encing the parameters.

Figure 2  Boxplot of relative error (RE; %) on estimated fixed effects (top) without covariate effect, random effects (middle), and residual 
error parameters (bottom) according to scenario 1 or 2, the design, and the estimation algorithms. Boxplots represent the median, quartiles, 
and 5–95% percentiles. Colors stand for the design and the scenario. For the same color, the dark areas represent the first-order conditional 
estimation with interaction algorithm and the pale areas denote the stochastic approximation expectation maximization algorithm. Sc., scenario.
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This simulation study also confirms the good prediction of 
shrinkage using the Bayesian Fisher information matrix, as 
already shown in ref. 9, when planning clinical studies. This 
could be helpful in the design of population studies wherein 
individual estimation of individual parameters with small 
shrinkage is needed.

As expected, our investigations showed that the SAEM 
algorithm reliably and accurately estimates population 
parameters, even for sparse designs. FOCEI gave surpris-
ingly biased results for such a simple model even with rather 
informative designs. This bias could be explained by the 
rather large residual error used in our simulations, inducing 
bias in the linearization during FOCEI.15 This result is not 
unusual considering previous comparisons of FOCEI and 
SAEM for continuous data. Girard and Mentré reported that 
methods without likelihood approximations, such as SAEM 
(using a version that later became MONOLIX (MOdèles NOn 
LInéaires à effets miXtes)) perform better than first order or 
FOCEI.16 Using a previous version of NONMEM (5 and 6β), 
Dartois et al.17 reported very good estimation of parameters 
despite some discrepancies in residual error estimates and 

recommended the use of exact methods such as SAEM 
instead of FOCEI. At the time of these two studies, SAEM 
was not implemented in NONMEM. In addition, Ueckert et 

al.18 and Johannson et al.19 showed the same loss of “robust-
ness” and “precision” of FOCEI compared with SAEM, for 
continuous data, especially when mu-modeling is used for 
SAEM in NONMEM 7. Finally, Plan et al.2 compared vari-
ous algorithms using NONMEM, Statistical Analysis System, 
MONOLIX, and R and found that FOCEI was in some cases 
more biased than SAEM, especially for sparse designs, 
along with issues related to the convergence of the algorithm.

Results for the power of CT and LRT for data sets analyzed 
using the FOCEI algorithm can be found in the Supplementary 

Materials online for designs D2 and D5 with N = 500 subjects. 
Despite some rather biased estimations of population param-
eters with FOCEI, there was no bias in the estimation of β. Type 
1 error and power were similar for FOCEI and SAEM, with only 
a slight inflation of the type 1 error in scenario 2 for sparse 
designs. Our selection of the NONMEM 7.2 algorithm and 
options relied on advice and results presented in ref. 3. Further 
work is needed to explore the influence of the algorithm options 
(number of samples and iterations for Monte Carlo importance 
sampling (IMP) algorithm) on the likelihood computation.

Larger residual error variances than those used in our 
study may be rather unusual in the field of pharmacometrics. 
We performed our study for a wide range of shrinkages, and 
the tests performed similarly whether the generated shrink-
age was low or high (Table 1). The use of different error mod-
els and the magnitude of those errors could affect the amount 
of generated shrinkage.9,20 A high residual error would obvi-
ously decrease the power of the test. Further work is needed 
on the extent to which similarities between CT and LRT are 
influenced by the level and form of residual error.

In our simulation study, we used a rather narrow distribution 
of covariates and challenging medium covariate effects. This 
was done on purpose because, for greater covariate distribu-
tion and larger covariate effect, the power was very high and 
we could not investigate the influence of other factors. We 
studied covariate effects using a power function along with an 
exponential form of random effects. These forms are the most 
used in population PK modeling. Studies using other forms of 
random effects and covariate models are therefore needed.

We only explored the power of covariate detection using 
LRT and CT with different designs and variabilities. LRT and 
CT are still the most used in population PK. Future work 
should focus on other covariate selection methods, such as 
Generalized Additive Modeling (GAM) analysis21 and Least 
Absolute Shrinkage and Selection Operator (LASSO),22 but 
these are mainly used when several covariates are consid-
ered. Furthermore, the impact of structural model misspecifi-
cation could be evaluated along with the effect of design on 
the covariate selection process.23

The main objective of our work was to compare the perfor-
mance of CT and LRT for different shrinkages. Although we 
used a rather simple model, the outcomes provided important 
information in line with the findings of Savic and Karlsson,11 and 
the screening of covariates was done with CT instead of the 
more time-consuming LRT. The next step will be to confirm our 
results with a more complex model, such as a target-mediated 
drug disposition model, which involves the use of differential 

Figure 3  Predicted shrinkage (%) value vs. boxplot of observed 
shrinkage (%) with the stochastic approximation expectation 
maximiz ation algorithm for the 1,000 replicates without covariate 
effect, for parameters volume (V) and clearance (CL), each design, 
and scenarios 1 or 2. Colors stand for the design and the scenario. 
Sc., scenario.

0

0

20

40

P
re

d
ic

te
d

 s
h

ri
n

ka
g

e
 (

%
)

60

80

100
D2, Sc. 1
D3, Sc. 1
D5, Sc. 1
D2, Sc. 2
D3, Sc. 2
D5, Sc. 2

20 40 60

Observed shrinkage (%)

80 100

0

0

20

40

P
re

d
ic

te
d
 s

h
ri

n
ka

g
e
 (

%
)

60

80

100

20 40 60

Observed shrinkage (%)

CL

V

80 100



CPT: Pharmacometrics & Systems Pharmacology

Power of LRT and CT for Various Shrinkages in PK
Combes et al.

6

equations and for which use of CT should be all the more bene-
ficial in a model development process, considering the runtime 
that such a system requires for parameter estimation.

METHODS

Models and notations

For a given individual, let y
i
 be the vector of n observed con-

centrations at n sampling times ξ
i
 = {t

i,1
,…,t

i,n
} for subject i and 

f be the known function describing the PK model. So, y
i
 was 

assumed to be modeled as follows:

y fi i i i= ( ) +θ ,ξ ε (1)

where θ
i
 is the p vector of individual PK parameters, θ

i
 = 

(θ
i,1

,…,θ
i,p

)T; ε
i
 is the random error, following a normal distri-

bution with zero mean and variance Σ(θ
i
, ξ

i
). Here, Σ(θ

i
, ξ

i
) is 

defined as the variance matrix of a combined error model 

with an additive component σ
inter

 and a proportional one σ
slope

; 
hence, Σ(θ

i
, ξ

i
) = diag ((σ

inter
 + σ

slope
 f(θ

i
, ξ

i
))2).

Individual parameters θ
i
 are defined as θ

i
 = g(θ, η

i
) where 

θ is the vector of p fixed effects and η
i
 is the vector of p 

individual random effects η
i
 = (η

i,1
,…,η

i,p
)T. Random effects 

η
i
 follow a normal distribution with zero mean and variance Ω. For Ω, a diagonal p × p matrix of variances of random 

effects Ω = …diag( )pω ω1
2 2, ,  was assumed. For g(θ,η

i
), an 

exponential model, where g( )θ η θ η
k i,k k,   e i,k=  was consid-

ered, k = {1,…,p}. The vector Ψ of population parameters is 
composed of θ θ ω ω σ σ1 p 1

2
p
2

inter
2

slope
2, , , , , , ,… …{ } .

In PK modeling, population parameters are estimated by 
the method of maximum likelihood. Individual parameters 
are estimated by a Bayesian approach using the maximum 
a posteriori as follows:

ˆ |η ηi i iargmax= ( )( )p y

 

(2)

Figure 4  Boxplot of error on the estimated β value with the stochastic approximation expectation maximization algorithm and for a covariate 
effect on volume (V), according to scenarios 1 or 2, the design, the simulated covariate effect value, and the number of subjects. Boxplots 
represent the median, quartiles, and 5–95% percentiles. Colors stand for the design and the scenario. For D5, pale and dark areas are used, 
respectively, for designs with 500 and 200 subjects. Sc., scenario.
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Table 1 Type 1 error (%, β = 0), power (%, β ≠ 0) of LRT and CT tests for covariate effect, and predicted shrinkage on V and CL for all scenarios, simulated 

covariate effect levels, and designs

n N Test

WT on V WT on CL

Scenario 1

ω = 50%; σ
slope

 = 30%

Scenario 2

ω = 20%; σ
slope

 = 40%

Scenario 1

ω = 50%; σ
slope

 = 30%

Scenario 2

ω = 20%; σ
slope

 = 40%

Predicted 

shrinkage

Power (%)

Predicted 

shrinkage

Power (%)

Predicted 

shrinkage

Power (%)

Predicted 

shrinkage

Power (%)

β β β β

0 0.5 1 0 0.2 0.5 0 0.5 1 0 0.2 0.5

2 500 LRT 56 3.8 29.7 84.8 84 4.2 14.3 59.4 43 4.7 4.6 4.6 85 5.5 6.2 8.7

CT 3.9 29 83.6 4.0 14.3 60.1 4.5 4.5 4.5 4.8 5.8 8.2

3 500 LRT 37 4.6 38.3 91.6 78 4.6 18.6 76.2 22 5.8 6.4 6.3 69 5.6 6.8 9.6

CT 4.3 37.7 90.6 4.9 18.0 75.2 6.1 6.1 6.3 5.4 6.1 9.7

5 500 LRT 31 4.8 43.5 95.4 72 5.0 25.0 85.7 14 6.1 5.6 5.8 59 4.8 4.7 6.9

CT 4.7 43.4 93.9 5.0 24.0 84.8 6.0 5.8 6.6 4.3 4.9 6.3

5 200 LRT 31 5.7 20.5 64.1 72 4.7 11.7 47.7 14 5.6 5.3 5.0 59 5.2 5.3 6.1

CT 5.9 19.6 62.1 4.8 11.6 47.4 5.1 5.2 5.2 5.0 4.9 5.6

Population parameters were estimated using the SAEM algorithm. Type 1 errors outside the prediction interval are written in bold.

CL, clearance; CT, correlation test; LRT, likelihood ratio test; SAEM, stochastic approximation expectation maximization; V, volume; WT, weight.
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where p(η
i
|y

i
) is the probability distribution of η

i
 given y

i
, 

which can be expressed using the Bayes theorem as shown 
below:

p y
p y p

p y
η

η η
i i

i i

i

|
|

.( ) =
( ) ( )

( )
 (3)

To estimate η̂i by maximum a posteriori is equivalent to 
minimizing, with respect to η

i
:

− × ( )( ) + ( )( )( )2 ln lni i ip y p| η η (4)

This is equal to

j

n

y f g t

f g t
=

∑
− ( )( )( )

+ ( )( )( )
1

i,j i i,j

2

inter slope i i,j

, ,

, ,

θ η

σ σ θ η
22

inter slope i i,j

i

ln ,+ + ( )( )( )





















+
=

∑

σ σ θ η

η

f g t

k

p

,
2

1

,,k

k

2

2ω .
 

(5)

PK model of the simulation study

A simulated example involving a one-compartment model 
with a single oral administration was used. The three param-
eters are the absorption rate (ka), the apparent volume of 
distribution (V), and the apparent clearance (CL). For a given 
dose D, the prediction at time t

i,j
 is shown below:

f t
D ka

V ka
V

V
t

ka tθi i,j
i

i i
i

i

CL

CL
e e

i

i
i,j

i i,j,( ) =
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× −










−
− ×
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We chose θ
ka

 = 10, θ
V
 = 0.2, and θ

CL
 = 0.5 with a dose D = 1. 

As this model is theoretical, we did not consider any specific 
units. The PK profile for these typical values of parameters is 
shown in Figure 6. To explore the influence of shrinkage in 
various situations, two scenarios were considered: for sce-
nario 1, ω = 50% for each parameter and σ

slope
 = 30%;, for 

scenario 2, ω = 20% and σ
slope

 = 40%. Σ
inter

 was set to 0.15 in 
both cases, which is small with respect to the range of con-
centrations covered by the PK model (see Figure 6 for the 
mean concentration–time course profile).

Study design

N = 500 subjects were simulated using three designs. 
First, a design with five samples (D5) per subject, ξ

D5
 = 

{0.05, 0.15. 0.3, 0.6, 1}, was simulated and is presented in  
Figure 6. The simulation code is provided in the Supple-

mentary Materials online. For these sampling times, the 
most informative design with three samples (D3) was 
then determined using a D-optimality approach: ξ

D2
 = 

(0.05,0.3,1}. Finally, from ξ
D3

, a two-sample design (D2) with 
three groups of one-third of the N subjects each was cre-
ated: ξD21

= { }0 05 0 3. , .  (ND21
= 167 subjects), ξD22

= { . , }0 05 1  
(ND22

= 167 subjects), and ξD23
={0.3, 1} (ND23

=166  
subjects). Design D5 was also evaluated with N = 200 
subjects, which corresponds to the same total number of 
observations as D2 with 500 subjects.

Evaluation of estimation

In the first step, R = 1,000 data sets were simulated without 
covariate effect for each design (D2, D3, and D5 with N = 
500) and each scenario. Each data set was analyzed using 
NONMEM 7.224 with FOCEI and with SAEM to explore algo-
rithm performances. Expert options inspired by Gibiansky et 

al.3 were used for the setting of the SAEM algorithm (INTER-
ACTION NBURN=15000 ISAMPLE=3 NITER=5000 

SIGL=8 CTYPE=3 CINTERVAL=100). NONMEM codes 
are available in the Supplementary Materials online. Rela-
tive errors of estimations of population parameters, (in per-
centage), were computed for each component as in Eq. 7:

Figure 5  Power of likelihood ratio test (LRT) between weight (WT) 
and volume (V) (%), for all scenarios and designs (estimation with 
stochastic approximation expectation maximization algorithm) vs. (a) 
correlation test (CT; %; the black line represents the identity line). (b) 
Observed shrinkage on V (%) and covariate effect. Colors stand for 
the design and the scenario. Covariate effect is expressed by the 
background and colors: no effect with a colored line around dots, 
medium effect with fully colored dots, and strong covariate effect with 
black line around a colored dot. For D5, pale and dark areas are used 
respectively for designs with 500 and 200 subjects. Sc., scenario.
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REr,k
r,k k

k

=
−

×
ψ̂ ψ

ψ
100 (7)

where ψ̂r,k is the kth component of the vector of the esti-
mated population parameter for the rth data set and ψk is the 
value used in the simulation.

Prediction of shrinkage

As in the study by Combes et al.,9 the predicted shrinkage is 
computed as I−W(ξ) where

W I M

I

ξ ξ( ) − ( )
− −=

and  is the identity matrix  such that

BF

1 1
Ω ,

, ::

I W M− ( ) = ( )
− −ξ ξBF

1 1Ω

 

(8)

M
BF

 can be approximated by a first-order linearization of 
the model25:

M H F F HT T

BF , , ,ξ θ ξ θ ξ θ ξ( ) = ( ) ( ) ( ) +
∞ − −Σ Ω

1 1 (9)

where H = diag(θ
1
,…,θ

p
) and F

f
T

θ ξ
θ ξ

θ
,

( )
( ) =

∂

∂

,
. As Ω is 

diagonal, the diagonal elements of I−W, given in the Eq. 8,  
represent the ratio of the predicted variance of estimation using 
a Bayesian estimation and the a priori variance. When MBF

−1 is 
close to Ω (no information for the individual), I−W is close to I. 
In that case, shrinkage is expected to be high, close to 100%.

The selected designs and scenarios were chosen to lead to 
a wide range of predicted shrinkages on V and CL, between 
31 and 84% for volume and between 14 to 85% for clearance 
(see results in Table 1).

For each data set r, the observed shrinkage of each com-
ponent k was computed as follows:

Sh
var

k,r
k,r

k,r

= −
( )

×
ˆ

ˆ
1 100

2

η

ω
 (10)

The distribution of the 1,000 observed shrinkages from the 
1,000 data sets was compared with the predicted shrinkage.

Evaluation of tests for covariate detection

We then considered a covariate model describing the influ-
ence of the weight (WT) on volume using a power function:

θ θ
β

η
V,i V

iWT
e

WT
V,i= 






 (11)

We assumed a log-normal distribution of WT with a median 
WT  kg= 70  and a coefficient of variation of 10% (quantiles 
2.5–97.5%: 57–85 kg). We considered this distribution range so 
as to avoid a very large distribution, which would contribute to 
very powerful covariate detection whatever the test and design. 
Designs involving 500 subjects led to powers close to 100% for 
LRT and CT, whatever the number of samples per individual.

R = 1,000 data sets for each design and scenario were 
simulated. For scenario 1, we first considered a case close to 
an allometric effect with β = 1. We then considered a smaller 
value of that effect β = 0.5 (medium effect) and no effect β = 0. 
Regarding scenario 2, as smaller variances were considered, 
we reduced the values of β to generate a strong covariate 
effect (β = 0.5), a medium effect (β = 0.2), or no effect (β = 0).

Using these simulations, we evaluated the properties of two 
tests in detecting the effect of the weight (WT) on volume (V). 
First, the LRT, which compares the log-likelihoods of the two 
nested models (with β fixed to 0 or β on V estimated), was con-
sidered significant when the difference in −2 × log-likelihood 
was greater than 3.84, (the 95% limit of a χ2 distribution with 
one degree of freedom). The second test was a parametric 
correlation Pearson test between EBEs of volume from a pop-
ulation analysis with no covariate in the model and weights.

Data sets were analyzed with the SAEM algorithm for 
population estimation. Likelihood was then computed by 
importance sampling (algorithm IMP in NONMEM 7.2 with 
10 iterations and 3,000 samples).

We first estimated the covariate effect by exploring the 
error on the estimated β values as the estimated value of β 
minus the true value used for simulation.

Type 1 error α was then computed as the percentage of 
significant tests (P value < 0.05) in the R replicates simulated 
assuming a null hypothesis H

0
 (β = 0). We computed the 95% 

prediction interval for a binomial distribution with a probability 
of 0.05 and 1,000 replicates using the 2.5 and 97.5% per-
centiles. The prediction interval was 3.65–6.35%. For a test 
with α = 0.05, we expect the estimated type 1 error to lie 
within this interval. The power of tests was computed as the 
percentage of significant tests in the R replicates simulated 
assuming the alternative hypothesis H

1
 (β ≠ 0).

Finally, in order to evaluate the risk of induction of covariate 
effects because of shrinkage,11 the same tests were evalu-
ated for the relationship between WT and CL, although no WT 
effect was simulated in CL. We computed type 1 error for CT 
and LRT in the effect of WT on CL. Results (tests, predicted 
and observed shrinkage) were computed using R 3.0.1.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 

TOPIC?

 3 In population analysis, tests based on correla-
tion (CT) between empirical Bayes estimates 
(EBEs) and covariates can be misleading when 
those estimates are greatly shrunk. Tests rely-
ing on EBEs are therefore not recommended 
for high shrinkage (Savic and Karlsson). There 
is no study of the extent to which the loss of 
power in the likelihood ratio test (LRT) is also 
associated with sparser design.

WHAT QUESTION DID THIS STUDY ADDRESS?

 3 This study compares the performances of the 
LRT and the CT in detecting a continuous 
covariate effect, according to different covariate 
effect sizes and designs.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE

 3 This study shows that for a simple PK model, 
LRT and CT perform similarly, whatever the 
covariate effect size and design, even in the 
case of high shrinkage.

HOW THIS MIGHT CHANGE CLINICAL  

PHARMACOLOGY AND THERAPEUTICS

 3 If the results are confirmed with more complex 
models, CT should be used to screen covari-
ates, without any loss of power compared with 
LRT and with a faster execution time.
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