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An integrative modeling framework reveals
plasticity of TGF-β signaling
Geoffroy Andrieux1, Michel Le Borgne2 and Nathalie Théret1*

Abstract

Background: The TGF-β transforming growth factor is the most pleiotropic cytokine controlling a broad range of

cellular responses that include proliferation, differentiation and apoptosis. The context-dependent multifunctional

nature of TGF-β is associated with complex signaling pathways. Differential models describe the dynamics of the

TGF-β canonical pathway, but modeling the non-canonical networks constitutes a major challenge. Here, we

propose a qualitative approach to explore all TGF-β-dependent signaling pathways.

Results: Using a new formalism, CADBIOM, which is based on guarded transitions and includes temporal

parameters, we have built the first discrete model of TGF-β signaling networks by automatically integrating the 137

human signaling maps from the Pathway Interaction Database into a single unified dynamic model. Temporal

property-checking analyses of 15934 trajectories that regulate 145 TGF-β target genes reveal the association of

specific pathways with distinct biological processes. We identify 31 different combinations of TGF-β with other

extracellular stimuli involved in non-canonical TGF-β pathways that regulate specific gene networks. Extensive analysis

of gene expression data further demonstrates that genes sharing CADBIOM trajectories tend to be co-regulated.

Conclusions: As applied here to TGF-β signaling, CADBIOM allows, for the first time, a full integration of highly

complex signaling pathways into dynamic models that permit to explore cell responses to complex microenvironment

stimuli.
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Background
Complex signaling by the polypeptide transforming

growth factor TGF-β is one of the most intriguing net-

works that governs multifunctional processes and plays a

pivotal role in tissue homeostasis and morphogenesis [1].

Whereas TGF-β is ubiquitously expressed in all cell types

and tissues, its effects differ according to cellular type and

microenvironment. For example, TGF-β inhibits epithelial

cell growth but can promote stromal cell proliferation.

The confounding pleiotropic effects of TGF-β derive from

the complex nature of its signaling, whose full cha-

racterization requires modeling approaches that are still

lacking. TGF-β signals through a heteromeric complex of

two types of transmembrane serine/threonine kinases, the

type I (TβRI) and type II (TβRII) receptors. TGF-β bind-

ing to TβRII induces the recruitment and phosphorylation

of TβRI, which transduces signals to downstream intracel-

lular substrates, the first of which are the R-Smad proteins.

Once phosphorylated, R-Smad proteins hetero-dimerize

with a common partner, CoSmad, and heterodimeric

complexes move into the nucleus where they regulate the

transcription of TGF-β target genes. Alternatively, non-

Smad pathways involved in TGF-β signaling include sev-

eral MAP kinase pathways, the Rho-like GTPase signaling

pathways, and phosphatidylinositol-3-kinase/AKT path-

ways [2,3]. Hence, combinations of Smad and non-Smad

pathways contribute to the high heterogeneity of cell

responses to TGF-β. Moreover, the molecular actors of

these pathways are part of other cell signaling networks

activated by additional extracellular stimuli, leading to

complex and extensive crosstalk that has been difficult to

model.

Modeling the dynamics of the TGF-β canonical signal-

ing pathway has followed classical differential approaches

that either couple signaling together with receptor traf-

ficking [4] or focus on Smad phosphorylation [5], Smad
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nucleocytoplasmic shuttling [6,7] and Smad oligodimeri-

zation [8]. In addition, integrative models have coupled

receptor trafficking to Smad pathways [9-11]. We have

taken advantage of these existing quantitative approaches

to develop our own models, which we have applied to the

study of the role of the ADAM12 tumor biomarker [12]

and of the TIF1γ tumor suppressor [13]. These advances

suggested that such small differential models could be de-

veloped into useful tools to investigate the role of new

regulatory components of the canonical TGF-β signaling

pathway. A major obstacle, however, is that differential

equation-based models remain limited to a small number

of reactions [14]. Because the explosion in the number of

variables in complex networks makes parameterization in-

tractable at the cellular scale [15], integration of the TGF-

β signaling networks clearly requires other methods.

Alternative qualitative modeling approaches are based

on discrete-event systems where each entity (genes or pro-

teins) is represented by a finite-state variable and rules en-

code the possible states and interactions of biomolecules

[16]. The two-state Boolean logic is the simplest discrete

formalism and has been successfully applied for modeling

specific signaling pathways such as those for the Epithelial

Growth Factor Receptor [17] and insulin [18]. While

Boolean approaches are based on switching functions

and consider networks as logical circuits, other discrete

formalisms such as rule-based methods allow for the

biochemical and biophysical description of multi-state

components [19]. For instance, agent-based modeling

approaches have been employed to describe the behavior

of TGF-β and EGF crosstalk in non-small-cell lung cancer

models [20] and epithelial restitution [21]. Similarly, the

role of TGF-β in epidermal wound healing has been deci-

phered using computational agent-based models [22].

More recently, hybrid models for tumor-stromal environ-

ment centered on TGF-β and EGF canonical pathways

have described interactions between the extracellular

matrix and growth-factor effects [23] and a related hybrid

discrete-element cellular automata model has been pro-

posed to understand how TGF-β modulates tumor-stroma

interactions [24]. While informative, these studies remain

partial and fail to account for the full complexity of TGF-

β dependent signaling networks. A major challenge, then,

is to integrate all available information within a dynamic

model that fully addresses how TGF-β modulates hetero-

geneous cell responses.

The last decades have seen the accumulation of a rich

trove of information about the molecular actors of sig-

naling (extracellular stimuli, membrane receptors, trans-

duction signal proteins, transcriptional factors) and their

associated biochemical reactions (receptor activation,

protein phosphorylation, cytoplasmic-nuclear shuttling,

transcription). Considerable effort has gone into mining

the literature to build signaling databases and provide a

view of cell signaling pathways through descriptive graph-

based representations (KEGG [25], Ingenuity Pathway

[26], Biocarta, Reactome [27], Pathway Interaction Data-

base (PID) [28]). While all of these approaches improve

graph-based analyses of signaling pathways, the transla-

tion schemes used to translate biological data into discrete

variables and the parameterization of reaction times rela-

tive to each other to obtain dynamic models raise many

difficulties. Within a given database, distributed know-

ledge blends various biological concepts such as biochem-

ical reactions and functional processes and includes

heterogeneous levels of details that do not permit auto-

matic translation into discrete models. More recent data-

bases such as Reactome [27] and the Pathway Interaction

Database (PID) [28] use a homogeneous concept of bio-

logical reactions based on mechanistic information to fa-

cilitate further formal interpretations and development of

large-scale systems, and a Boolean framework was recently

proposed for modeling cellular signaling from the whole

Reactome database. In this case, however, parameterization

of time remains to be achieved [29] as discrete models

do not easily lend themselves to the handling of logical

time based on partial ordering of events. In synchronous

time models, all components change simultaneously

while only one component of the state is allowed to

change at each step of model evolution in asynchronous

time models. While mixed-rule dating has been pro-

posed to obtain a more realistic view of biological

events [30,31], these approaches still fall short of suc-

cessfully modeling signaling reactions.

To address these daunting difficulties, we have de-

veloped a new non-ambiguous formal interpretation of

signaling pathways as discrete dynamic models. This

interpretation differs from previous approaches in that it

models the signal rather than the molecular biochemical

network that transmits the signal. The resulting lan-

guage, Computer-Aided Design for BIOlogical Models

(CADBIOM), is based on a simplified version of guarded

transitions [32] in which we introduced temporal param-

eters for each transition. This leads to high degree of

flexibility in signal distribution and allows, for the first

time, the construction of a fully integrative discrete dy-

namic model of TGF-β signaling pathways. To do so, we

integrated the whole PID database into a single unified

model containing 9177 biomolecules that include all

TGF-β related signaling networks. Based on model-

checking methods implemented in the CADBIOM appli-

cation, we further analyzed all trajectories involved in

the regulation of 145 TGF-β target genes included in the

model. Importantly, clustering analyses of signaling tra-

jectories successfully discriminate between Smad versus

non-Smad-dependent genes and identify for the first

time new combinations of extracellular stimuli involved

in the regulation of TGF-β target genes. In addition,
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trajectory analyses are predictive for gene co-regulation

as assessed by experimental gene expression data.

Results and discussion
Building a TGF-β CADBIOM model

To translate and integrate any kind of biological reaction

involved in TGF-β signaling pathways, we developed a

new language, CADBIOM, based on guarded-transition

formalism (see Methods and Additional file 1: Figures S1

and S2). Briefly, a biological reaction is formalized as a

transition from input biomolecules to output biomole-

cules under some conditions or guards. Conditions in-

volve biomolecules as activators or inhibitors and the

biological reaction takes place only if the inputs are

present and the condition is true. We then consider that

the occurrence of a biological reaction induces informa-

tion propagation from each input to each output. Next,

all the biological reactions are integrated by connecting

the biomolecules: the target of a transition becomes the

origin of the next one. The resulting network is turned

into a dynamic system according to the choice of transi-

tions that are fired at each step. To overcome the limi-

tations of synchronous or asynchronous models, we

introduce events, discrete signals that guide or restrain

the choice of fireable transitions. The potential firing of

reactions is dependent on the presence or absence of

events that is formalized within the guard. By default,

events are initially attributed to each transition, except

for the formation or dissociation of complexes that share

the same event since both components are simultan-

eously present.

Taking advantage of the mechanistic view of the PID

database, we extracted TGF-β signaling-pathway know-

ledge by developing a program that automatically trans-

lates XML files from PID into CADBIOM language.

Three TGF-β signaling related pathways have been re-

ported in PID: these include “TGF-β receptor signaling”

(PID Ref: tgfbrpathway), “regulation of cytoplasmic and

nuclear Smad2/3 signaling” (PID Ref: Smad2-3pathway)

and “regulation of nuclear Smad2/3 signaling” (PID Ref:

Smad2- 3nuclearpathway). According to the integrative

rules described in Methods, we built the union of the

three files by automatically removing redundancies

(Figure 1). This model integrates 435 biomolecules and

141 reactions from PID, but only from the canonical

Smad-dependent pathway. To extract all signaling infor-

mation related to the non-Smad TGF-β signaling path-

ways, we had to incorporate information related to MAPK,

Rho-like GTPase and phosphatidylinositol-3-kinase/AKT.

A difficulty immediately arises in that these components

are part of many other PID pathways; accordingly, all bio-

molecules that influence TGF-β signaling pathways need

to be integrated. To overcome this obstacle and identify

all components related to TGF-β, we first built a single

CADBIOM model for the complete PID database. As

illustrated in Figure 2, all 9248 reactions from 137 PID

pathways were integrated into 9264 CADBIOM transi-

tions. Note that transitions and reactions are not

equivalent since a reaction for the formation of a com-

plex between two biomolecules must be translated into

two transitions. In contrast, two different reactions de-

scribed in PID and sharing the same inputs and outputs

can be translated into one or several CADBIOM transi-

tions. The efficiency of integration is demonstrated by

the reduction of the 27876 biomolecules that are part of

the 137 PID pathways to 9177 non-redundant places in

the CADBIOM model. Indeed, one PID biomolecule

can be implicated in several reactions and/or pathways,

while a CADBIOM biomolecule is represented by a

unique place and all of its reactions are either incoming

or outgoing transitions. It is important to note that the

translation and integration of the 137 PID pathways into

a single CADBIOM model does not alter the distribu-

tion of the ontology terms associated with biomolecules,

ruling out loss of information resulting from integration

(Additional file 1: Figure S3).

Based on this complete signaling model, we next sought

to delineate parts of the network that influence TGF-β sig-

naling pathways. We did this by creating an activation

graph from all PID information using biomolecules as

nodes and the dependencies between biomolecules as

edges (Figure 3A). The dependency relationships include

transitions and the influence of conditions on the output

of transitions. The resulting influence graph illustrates all

the relations between the biomolecules of the database,

not only in terms of information propagation, but also in

terms of regulation of reactions. Quite spectacularly, all

the information from PID is highly connected with a

major component containing 8986 nodes (98% of the total

PID content) included TGF-β, indicating that integration

of TGF-β signaling amounts to compiling the entire

database. Most importantly, this integration is achieved

without discarding non-canonical pathways that are not

described as TGF-β-related in PID. Based on the distri-

bution of the connectivity and modularity analysis, we

showed that the network exhibits scale-free behavior

(Figure 3B) and clustering of connected components

identifies a TGF-β related associated module (Figure 3C,

Additional file 2: Table S1). Taken together, our data

provide the first dynamic discrete model of the TGF-β

signaling network, including both Smad and non-Smad-

dependent pathways, which integrates all networks that

influence the cellular response to TGF-β. Because topo-

logical analyses of the activation graph could not be

explain the heterogeneity of TGF-β signaling pathways,

we further explored this highly complex model using

model-checking approaches as described below.
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Figure 1 (See legend on next page.)
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Application to the regulation of TGF-β dependent genes

Understanding how TGF-β induces heterogeneous bio-

logical responses is a critical question, which we ad-

dressed next by exploring the complexity of pathways

that govern the regulation of TGF-β-dependent genes.

Looking for signaling pathways that regulate a gene G

coding for a protein P amounts to searching for all sce-

narios that verify the reachability of a property P (see

Methods and Additional file 1: Figure S4). A scenario is

a list of biomolecules activated at the initialization of the

model. However, due to the size of the model and the

wide set of potential solutions, we focused on minimal

scenarios that take place in 10 steps, the representative

size of solutions in our CADBIOM model. For each

minimal scenario, we analyzed all possible trajectories to

reach the property P, a trajectory being expressed as the

list of biomolecules activated during signal propagation.

Among the 679 genes described in PID, 145 have min-

imal scenarios containing the term TGF-β and corres-

pond to extracellular stimulation by TGF-β.

To decipher the signaling regulatory network of TGF-β,

we searched for all the signaling trajectories played accord-

ing to these scenarios. We identified 15934 such trajector-

ies. Based on their content in biomolecules, clustering

analysis of trajectories showed that the presence or ab-

sence of the Smad intracellular signaling proteins defined

specific groups (Figure 4 and Additional file 3: Table S2).

As shown in Table 1, 18 TGF-β-dependent genes were

reachable only if Smad proteins were present in their

trajectories. An additional set of 5 genes was also found

both with Smad- and non-Smad-dependent trajectories

and clustered within a unique group, suggesting similar

regulation. Four of these genes, DAPK1, COX_2/PTGS2,

JUN and NOS2, are indeed functionally associated within

the "cancer pathways" from the KEGG pathway database.

CADBIOM also identified a much larger number of TGF-

β-dependent genes that were reachable in the absence of

Smad proteins, resulting in a set of 122 genes with non-

Smad-dependent trajectories (See Additional file 4: Table

S3). Importantly, all trajectories containing Smad proteins

are associated with genes regulated by TGF-β as their

unique extracellular stimulus, while trajectories induced

by TGF-β associated with other extracellular stimuli never

contained Smad proteins (Additional file 5: Table S4).

To assess the functional association of target genes

within each group, we performed gene ontology annota-

tion using the Database for Annotation, Visualization and

Integrated Discovery, DAVID (Figure 4C). Remarkably,

genes regulated by the Smad-dependent TGF-β pathway

were found to be specifically associated with the biological

processes that include the GO terms “regulation of cell

proliferation”, “negative regulation of gene expression”

and “regulation of programmed cell death” (blue color). In

contrast, genes regulated by non-Smad-dependent path-

ways (grey or red) were always associated with multiple

biological processes according to the absence or presence

of other extracellular stimuli. The non-Smad pathways

(colored in red) containing only TGF-β were found to

regulate genes with GO terms “immune response and

response to external stimulus”, “positive regulation of cell

proliferation” and “developmental process, behavior and

regulation of programmed cell death”. In cases where

non-Smad pathways linked TGF-β to other stimuli in their

trajectories, we observed gene expression responses that

were part of Smad-dependent TGF-β trajectories (e.g.

“programmed cell death” GO) or of non-Smad-dependent

trajectories (e.g. “immune response” GO), as well as a

broader range of responses belonging to GOs such as

“metabolism”, “development” and “homeostasis”.

Altogether, we identified 31 combinations where

TGF-β was linked to other extracellular stimuli, illus-

trating the high degree of plasticity of TGF-β gene regu-

lation (Additional file 5: Table S4 and Figure 5). Among

these combinations, 18 associate TGF-β with IL12 and

are involved in the regulation of 9 genes: CCR5, GADD45A

and GADD45B, MIP1A and MIP1B, Granzyme A and

Granzyme B and IL17F and IL1RA. Interestingly all these

genes are functionally linked to viral infection/inflamma-

tion and stress response, suggesting that different combi-

nations of stimuli can lead to a similar biological function.

Indeed CCR5 is a beta-chemokine receptor that binds

HIV, and Mip1A and B are major HIV-suppressive factors

that bind CCR5. Additionally, Granzyme A and B are

serine proteases that mediate apoptosis of virus-infected

(See figure on previous page.)

Figure 1 CADBIOM model for the canonical TGF-β pathway. (A) Schematic representation of the canonical pathway. Binding of TGF-β to the

receptor induces recruitment and phosphorylation of Smad2/3. Activated Smad2/3 heterodimerizes with Smad4 and the complex migrates to

nucleus where it regulates gene transcription. (B) Two examples of translations from the PID database (left) into the CADBIOM representation (right).

Top: interaction of Smad2/3 with Smad4. The CADBIOM representation uses two transitions from a component toward the complex, conditioned by

the presence of the other component and leading to the synchronization of the transition. The same event h1 is associated with the two transitions

that occur simultaneously. Bottom: migration of the Smad complex to the nucleus. The CADBIOM representation uses a transition between the two

places “SMAD3_SMAD4_active_cytoplasm” and “SMAD3_SMAD4_active_nucleus” conditioned by the presence of importins within the guard. The

event h1 indicates the timing of the transition. (C) CADBIOM illustration of the canonical pathway after integration of the three PID pathways: “TGF-β

receptor signaling” (PID Ref: tgfbrpathway), “regulation of cytoplasmic and nuclear Smad2/3 signaling” (PID Ref: Smad2-3pathway) and “regulation of

nuclear Smad2/3 signaling” (PID Ref: Smad2-3nuclearpathway).
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Figure 2 A single unified model of the PID database. The 137 pathways from the PID database containing 27876 biomolecules are integrated

into a CADBIOM dynamic model containing 9177 places. Places without input are colored in orange. The insert illustrates an example of

regulation by Smad3/Smad 4 and shows the transition of the p21CIP1 gene to p21CIP1 protein, which represents activation of the p21 gene. The

condition for the transition contains an extensive logical formula that is not detailed here.
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cells and IL1RA and IL17F act as proinflammatory cyto-

kines. Finally, GADD45A/B are transcriptional factors that

mediate global response to environmental stress. These

functional links revealed by CADBIOM analysis have

not been previously reported using other modeling ap-

proaches. Taken together, these data are in accordance

with and strengthen the known concept of Smad- and

non-Smad-dependent TGF-β pathways and provide for

the first time trajectories for regulatory ligands. Of note

also is the identification, through CADBIOM analyses of

trajectories for gene regulation, of the 31 combinations

that associate TGF-β with other extracellular stimuli to

drive gene regulation through Smad-independent path-

ways. In addition, CADBIOM identifies the TGF-β/IL12

association as a novel basic module for signaling networks

involved in the regulation of 9 genes implicated in the

response to viral infection. Because such complex associa-

tions cannot be evaluated by classical experimental

approaches using in vitro cell stimulation, we investigated

the biological relevance of these combinations by analyz-

ing co-expression of genes sharing extracellular stimuli.

CADBIOM trajectories are associated with co-expression

of genes

The cellular microenvironment induces numerous sim-

ultaneous stimuli and cells respond according to the

integration of all of these signals. For a given set of stim-

uli, signaling pathways activate gene expression profiles

that can be identified using transcriptomic methods.

Based on this supposition, we expected that two genes

regulated by TGF-β together with other extracellular

stimuli might be found to be co-regulated in biological

samples. To test this hypothesis, we analyzed gene ex-

pression of each pair of genes sharing extracellular stim-

uli by using experimental data from Gemma, a database

for the meta-analysis of gene expression profiles [33].

Based on the available set of 2110 Gemma human profil-

ing expression studies, we determined whether two

genes sharing a combination of TGF-β and another

stimulus are co-expressed or not. In this case, 19 out of

identified 31 combinations were found to regulate at

least two genes. As shown in Figure 6, gene pairs acti-

vated by similar combinations were found to be

Figure 3 Activation graph of the PID database. (A) The activation graph is built using places from the CADBIOM model as nodes and the

dependencies between places as edges. The dependency relationships include the transitions and the influence of conditions on the output of

transition. The resulting activation graph contains 9077 nodes and 15499 edges. TGF-β belongs to the major connected component containing

8986 nodes (98% of nodes from the activation graph) demonstrating that all information from PID influences TGF-β signaling. Colors distinct from

light blue denote non-connectivity of components. In the zoom view (insert), thin directed edges denote condition dependencies and thick

directed edges transition dependencies. (B) Representation of degree distribution. (C) Modularity based hierarchical agglomerative clustering.

Colors show the different clusters that are further detailed in Additional file 2: Table S1. A major specific module containing 168 places that

include TGF-β, Smad proteins, TGF-β receptors and related molecules such as BMP (members of the TGF-β family) is shown as enlarged

red nodes.
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significantly co-expressed, validating the biological rele-

vance of trajectory analyses. As illustrated in Figure 7 for

CCR5 and MIP1B, CADBIOM analysis can lead to the

identification of genes that are co-expressed and share

combinations, thus uncovering new and highly complex

common trajectory networks.

To generalize this key observation to any genes from the

model, we randomly generated 649 pairs of genes present

in both the CADBIOM model and the Gemma database

(Additional file 6: Table S5). Extracting all gene pairs that

share signaling trajectories from the CADBIOM model

and the corresponding co-expression data from Gemma

reveals that 81% of co-expressed gene pairs in Gemma

share regulatory signaling trajectories in the CADBIOM

model. In contrast, 82% of non co-expressed gene pairs

did not share regulatory pathways. These results demon-

strate that trajectories identified by CADBIOM are highly

predictive for gene co-expression in biological samples.

Figure 4 Analysis of the 15934 signaling trajectories containing TGF-β. (A) Schematic representation of the Smad and non-Smad TGF-β cell

signaling pathways. (B) Trajectories are clustered according to their content in biomolecules using Euclidian distance metrics. Trajectories that

contain Smad protein are colored in red, those that do not in blue and those containing both Smad and non-Smad proteins are in yellow.

(C) Functional annotations of TGF-β dependent gene targets using the Database for Annotation, Visualization and Integrated Discovery (DAVID)

tool. GOs are colored in grey, blue and red as indicated in the text. ES: extracellular stimuli.
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In summary, CADBIOM constitutes a new formalism for

modeling signaling networks and provides the first discrete

dynamic model for TGF-β signaling pathways. Based on

model-checking methods, we describe the highly complex

signaling trajectories that regulate TGF-β-dependent gene

targets and we demonstrate that combinations of TGF-β

with other extracellular stimuli lead to non-Smad-

dependent pathways. Finally, we show that CADBIOM

modeling allows for the identification of complex trajec-

tories induced by multiple extracellular stimuli, success-

fully predicting gene co-expression patterns and biological

functions that cannot be characterized by direct experi-

mental approaches. More generally, we expect that CAD-

BIOM will be of broad use to help unravel other highly

complex pathways that have proven intractable using

classical modeling approaches. To provide for detailed

explorations of signaling models, CADBIOM design and

analysis, all required tools have been implemented into a

user-friendly open-source application package that is read-

ily available to researchers (cadbiom.genouest.org).

Conclusions
Signaling pathway networks orchestrate cell life through

a uniquely connected complex molecular circuitry for

propagation of information. Because of the huge number

of biological reactions that are implicated, modeling cell

signaling to predict cell responses to this huge flow of

information is a major challenge that requires new ap-

proaches if all information is to be dynamically inte-

grated. In the present work, we have developed a new

formalism, CADBIOM, based on guarded transitions

and combined discrete abstraction to propose, for the

first time, a fully integrated model for TGF-β signaling

pathways.

Major issues in modeling biological large-scale phenom-

ena are the collection of information from the literature.

While cell signaling pathways are described in numerous

databases, a recent report demonstrated a high degree of

inconsistencies when different databases are compared

[34]. Based on the Jaccard similarity coefficient, the

authors compared four well understood pathways that

involve the cytokines EGF (Epidermal growth factor),

TGF-β (Transforming growth factor), TNFα (Tumor ne-

crosis factor) and the signaling protein WNT (wingless-

type) described in six databases, including GeneGo (www.

genego.com), KEGG [25], NCI-PID [28], NetPath [35],

PANTHER [36] and Reactome [27]. Only 10% similarity

was found, suggesting that the description of each path-

way is database- or even curator-specific. To circumvent

such potential pitfalls, we extracted instead all relevant in-

formation from TGF-β pathways using a single database,

PID, integrating them into a single unified model. The

choice of PID is fully justified by the observation that, un-

like other databases, PID formalizes signal propagation in-

stead of describing biochemical reactions. This means that

an interaction is described as a biological event that

includes its participating molecules and conditions, an

interaction which consumes its inputs and produces its

outputs. This overall description is close to that used for

guarded-transition systems [32], a state/event formalism

that can represent both flow circulation with transitions

and natural composition rules, and remote influences with

transition guards. The direct translation of the complete

XML-formatted database content into CADBIOM formal-

ism then allows for the integration of information and

automatically creates the first dynamic model of the TGF-

β signaling network.

Table 1 Genes with SMAD-dependent trajectories identified

by CADBIOM

PID ID HUGO ID Description

COX_2* PTGS2 Prostaglandin-endoperoxide synthase 2

DAPK1 * DAPK1 Death-associated protein kinase 1

GSC GSC Goosecoid homeobox

ID1 ID1 Inhibitor of DNA binding 1

IFNB IFNB1 Interferon, beta 1

IgA1 IGHA1 Immunoglobulin heavy constant alpha 1

IL10 IL10 Interleukin 10

IL5* IL5 Interleukin 5 (colony-stimulating factor,
eosinophil)

JUN* JUN Jun oncogene

KLK2 KLK2 Kallikrein-related peptidase 2

Laminin gamma1 LAMC1 Laminin, gamma 1

MEF2C MEF2C Myocyte enhancer factor 2C

NOS2* NOS2 Nitric oxide synthase 2, inducible

p15INK4b CDKN2B Cyclin-dependent kinase inhibitor 2B
(p15, inhibits CDK4)

p21CIP1 CDKN1A Cyclin-dependent kinase inhibitor 1A
(p21, Cip1)

RAB7 RAB7A RAB7A, member RAS oncogene family

SMAD7 SMAD7 SMAD family member 7

SNAI1 SNAI1 Snail homolog 1 (Drosophila)

SOCS3 SOCS3 Suppressor of cytokine signaling 3

TCF3 TCF3 Transcription factor 3

TLX2 TLX2 T-cell leukemia homeobox 2

TRPC6 TRPC6 Transient receptor potential cation
channel, subfamily C, member 6

TRPV1 TRPV1 Transient receptor potential cation
channel, subfamily V, member 1

The Table lists genes with SMAD-dependent trajectories. Gene names (ID)

are given according to their nomenclature in the PID and HUGO databases,

respectively, and are followed by their description. Asterisks denote genes that

are also found with non-SMAD-dependent trajectories (see Text and Additional

file 4: Table S3).
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Three TGF-β signaling pathways are described in PID:

TGF-β receptor signaling, regulation of cytoplasmic and

nuclear Smad2/3 signaling and regulation of nuclear Smad2/

3 signaling (see Figure 1) and summarize the canonical

TGF-β pathway. We compiled these into CADBIOM and,

importantly, also included non-Smad TGF-β pathways

and all their influencing components (see Figure 2). The

resulting single unified CADBIOM model is a highly con-

nected graph containing 9177 places where 98% of nodes

directly or indirectly influence TGF-β-dependent signals.

Note that this high connected component contained also

other receptor/factors. An important point to consider in

automatic translation from a database is the continuous

upgrading of the generated model. PID upgrading was re-

cently stopped and closing of the PID project, a collabora-

tive effort between the National Cancer Institute (NCI,

Besthesda) and the Nature Publishing Group, has been an-

nounced. Fortunately, the Reactome project from the EBI

consortium shares information with PID, which already

imported biological data from Reactome’s BioPAX2. While

some limitations in the specifications of Reactome’s Bio-

PAX2 were previously reported by PID’s authors [28], the

Figure 5 Plasticity of gene responses to combinations of TGF-β with other extracellular stimuli. 49 genes (red nodes) are regulated

through signaling trajectories containing TGF-β (yellow node) and at least one other extracellular stimulus (blue nodes). The size of the nodes is

relative to the number of edges. CCR5, GADD45A/B, MIP1A/B, GranzymeA/B, IL1RA and IL17F are the most represented genes and share the

largest number of combinations in their trajectories.
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recent upgrade of BioPAX 2 to BioPAX3 [37] should

facilitate data extraction from Reactome into CADBIOM.

Besides the straightforward structural analyses of large

integrated graphs, the critical point in building signaling

models is to describe the dynamics of signal propagation.

We have accommodated this key requirement by using

a state/event formalism based on guarded transitions

that differ from traditional ones through the use of

event algebra. Formalisms used in UML (Unified Mode-

ling Language) or in state-charts [38] include an event

in the transition guard but lack an operation for com-

bining events into new events. In contrast, using CAD-

BIOM formalism, the timing of model evolution is

directly linked to the biological reactions by associating

an event to each reaction. Consequently and although

the transition systems use a Boolean expression for the

guard, CADBIOM formalism differ from classical Boolean

approaches [29,39-42] because the temporal order of

the reaction is not forced (synchronous or asynchron-

ous) but included in the guard. CADBIOM modeling

permits simultaneous changes to several reactions and

the exploration of all potential behaviors. The resulting

modeling framework is much richer since simultaneous

reactions are neither excluded nor imposed.

Biological models mainly focus on the search for

steady states [43]. However, while such approaches make

sense for gene regulatory or metabolic networks, they

are not appropriate for modeling signal propagation.

CADBIOM overcomes this limitation by implementing

tools based on model-checking methods to investigate

the reachability of properties instead [44,45]. These ana-

lyses usually require the computation of highly complex

state-transition diagrams, which contain approximately

29000 (102709) states in our model. To avoid graph calcu-

lus, we use propositional logic and SAT solver-based ap-

proaches that have been demonstrated to be efficient for

characterizing biochemical networks [46]. We have used

these approaches to analyze scenarios and trajectories

involved in the activation of the 145 TGF-β-dependent

gene targets identified by our unified model. We demon-

strate that scenarios can indeed discriminate between

Smad and non-Smad-dependent pathways and that TGF-

β associates with other extracellular stimuli to regulate

non-Smad-dependent genes that are functionally related

to shared biological processes. In these cases, the com-

plexity of functions regulated by non-Smad pathways is

mainly due to the association of TGF-β with other extra-

cellular stimuli. We note that such a context-dependent

role for external stimuli has been previously suggested by

a global analysis of the effects of pair-wise ligand combi-

nations [47]. However, these experimental approaches

strongly limit the number of combinations that can be

studied and a broad analysis of signaling trajectories is im-

possible. Using discrete models and model-checking ap-

proaches, we reasoned in the opposite way and, instead of

performing TGF-β stimulation to identify signaling toward

gene targets, we investigated trajectories starting from

genes, thereby allowing identification of complex extracel-

lular stimuli that include TGF-β.

Classical modeling approaches perform simulations

using extracellular stimuli or activation of receptors at

the initialization step to mimic experimental conditions

in cell culture. In contrast, CADBIOM uses reachability

properties to explore all signaling pathways without a

priori on external stimuli that may be combined with

TGF-β. This constitutes a radically different approach

that is closer to the biological reality of cells, which live

in a complex environment where TGF-β is always a part

of stimuli. As a case in point, our study identifies a novel

TGF-β-dependent network containing 9 viral response-

related genes that are regulated by combinations that

chiefly involve IL12, a cytokine with diverse functional

effects [48]. The anti-inflammatory effect of TGF-β has

been proposed to modulate the functions of IL12 in the

Figure 6 Association between extracellular stimuli involving

TGF-β and gene co-regulation. For each gene pairs sharing

combinations of extracellular stimuli (blue), we extracted the

experimental data of gene co-expression from the Gemma database.

Results are expressed as the ratio of co-expressed genes to possible

gene pairs. Controls (red) are random gene pairs (n = 1000)

from Gemma.
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Figure 7 Common-trajectory network for two co-regulated genes, MIP1B and CCR5. Solutions for reachability of MIP1B and CCR5 genes

were calculated using the CADBIOM application and trajectories for each solution were compiled in a graph representation. Blue arrows

symbolize transitions and red arrows conditions. Yellow nodes are specific to CCR5 trajectories, red nodes are specific to MIP1B trajectories and

green nodes are common to both CCR5 and MIP1B trajectories.
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immune response [49,50], but pathological contexts in-

volving changes in environmental stimuli lead to a pro-

inflammatory role for TGF-β [51,52]. These observations

illustrate the need to investigate complex TGF-β models

that include all potential influences and take into ac-

count all physio-pathological contexts. CADBIOM pro-

vides for such integration by creating a new state-event

formalism to integrate biological reactions into a dy-

namic model for signal propagation. Finally, the creation

of the first single unified model of the TGF-β signaling

network, which integrates both Smad- and non-Smad-

dependent pathways, constitutes an important landmark

and provides a unique and powerful tool for the full

exploration of TGF-β-dependent functions. More gener-

ally, the new computational approach provided by

CADBIOM for modeling signaling networks should im-

prove our overall understanding of cellular responses to

complex stimuli, as illustrated here by the extraordinarily

complex example of TGF-β signaling.

Methods
CADBIOM

CADBIOM software is covered by a GNU-public license

that permits the conception, simulation and questioning

of the discrete dynamic models describe in this article.

All these features can be reached using the graphical

user interface or through its application programming

interface (API). Automatic conception of models is made

possible through the PID database translation scheme

(XML format). Resulting models can be stored in Cadlang,

a text representation of CADBIOM models. CADBIOM is

freely available at http://cadbiom.genouest.org/.

Model formalism

CADBIOM formalism is based on guarded transitions and

the introduction of discrete signals called events. A guarded

transition is graphically represented by: A h[Cond]
→ B. A

and B are respectively the origin and target places of the

transition. The guard of the transition is composed by an

event h and a condition Cond, a logical formula with places

as variables and ∨, ∧ and ¬ as logical operators.

Places are state variables that take Boolean values and

represent biomolecules such as proteins or complexes. An

event is the mathematical concept that denotes an occa-

sional occurrence. An event has a name h and a singleton

domain to denote the occurrence of the event. At each

step, an event can occur (denoted by the symbol T) or not

(denoted by the symbol ⊥). A realization of a finite set of

events (hi)i∈I is a sequence of elements of {T, ⊥}I \{ ⊥ I }. To

handle integrated models containing large amount of data,

we combine events and states. Operations on events are

well known in computer science. The two basic operators

are a merge that corresponds to multiplexing and a selec-

tion of occurrences corresponds to under-sampling.

CADBIOM borrows the default operator and the when

operator from the Signal language [53]. The default oper-

ator merges the two events h1 and h2. The event h = (h1
default h2) is present when either the event h1 or the event

h2 is present, h is absent otherwise. The when operator is

an operator between events and logical combinations of

state variables and selects occurrences of an event when

the propositional formula evaluates to True on its right-

hand side. The event h = (h1 when B) is present when h1 is

present and B is True, it is absent otherwise.

Model simulation

The system evolves according to transition firings that

change the value of places, which is either True or False

at any step. Given a guarded transition A h[C]
→

B, we

define the transition event as htr = h when (A ∧C). The

transition event htr is present if and only if h is present

and (A ∧ C) is True, that is, when the input place is True

and the condition C is verified. When a transition is

fired, the source is inactivated and the target is activated.

The evolution function of a state A relies on the current

value Ak+1 at step k to the next value Ak+1 at step k + 1.

The state of a place changes if either an in-transition or

an out-transition is fired. In the case of simultaneous fir-

ing, we postulate that activation prevails over inactivation.

We define two events associated with a place A by:

hin ¼ default tr∈T in htr

hout ¼ default tr∈Tout htr

The hin event is present if at least one of the in-

transitions is fired. The hout event is present if at least

one of the out-transitions is fired. The mathematical

formalization of the rules is given by:

A’ ¼ hin default �jhoutð ÞdefaultA

where A’ is the value of A at next step.

The initial condition for simulation analyses requires

the design of activated places (called scenario) and a spe-

cific timing. CADBIOM proposes either a manual selection

or an automatic selection of “frontier” places. Frontier is

the set of places which cannot be activated from inside the

model. In guarded transition models, places without input

transitions belong to the frontier. The script for events tim-

ing is provided during reachability analyses as a txt file that

can be loaded in simulation tool

Property search

The temporal properties of models are explored using

methods based on model checking. The aim of these

methods is to determine an allocation of state variables

and event timing that verify a property, that is, any logical

formula composed of model places and logical operators

∨, ∧ and ¬. To investigate the reachability of biological
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properties such as "how to express a given gene?", we

search for the allocation of states variables and event tim-

ing that lead to the activation of the place symbolizing the

gene. We focus on frontier places because signaling net-

works are usually polarized from the extracellular environ-

ment to the nucleus. A frontier is the set of places without

any in-transitions that cannot be activated from inside the

model. All other places are initialized in an inactivated

state.

We first generated the formulas that describe the

evolution of the system. Using the evolution rules above,

dynamic models are translated into propositional logic

formulas using the Tseitin translation. The resulting

formulas are under conjunction normal form (CNF) and

qualify the dynamics between steps i and i + 1. We then

unfold the trajectory from step 0 to n. The whole formula

is then given to a SAT solver to find an allocation of state

variable and event timing that satisfies the formula.

We next define a scenario as the (F; T ) pair, where F is

a set of places which are activated at the initialization step

and T is a sequence of sets of events h. This reachability

property is then used to search for minimal scenarios such

that the property is not achieved as soon as one compo-

nent is removed in the initialization places or as soon as a

component of event timing is disabled. A scenario is said

to be minimal if, for any place A ∈ F, (F \ {A}, T ) is not an

activation condition and for any i < n and any h ∈ Hi, (F;

(H1,….,Hi \{h}, …,Hn-1)) is not an activation condition. Any

scenarios can be simulated to retrieve all the activated

places that lead to reachability of the property. These

activated places compose a trajectory.

Compilers

CADBIOM software includes several compilers sharing

the same back-end. The front-ends compile PID XML

files, CADBIOM XML files and Cadlang files into an inter-

mediate representation of guarded-transition models. The

common back-end generates logical constraints in propos-

itional clause form. During this step, constant propagation

and common sub-expression elimination optimizations

are performed. Combined with many peephole optimi-

zations, these techniques allow the back-end to generate

reduced sets of constraints that facilitate the work of

the SAT solver.

Resources

The CADBIOM model is a translation of the PID database

content (http://pid.nci.nih.gov/). See Additional file 1:

Figure S1 for the complete translation scheme. Model-

checking analysis is performed using the cryptominisat

SAT solver (http://www.msoos.org/cryptominisat2/). Graph

representations of solutions are displayed using Gephi, an

open-source platform for graph visualization (https://gephi.

org/).

Additional files
Additional Material. The following additional data

are available with the online version of this paper.

Additional data file 1 is a figure describing the scheme

for translating biological reactions from PID database into

CADBIOM formalism. Additional data file 2 is a figure

illustrating translation schemes for the TGF-β model.

Additional data file 3 is a figure showing the conserva-

tion of ontology during the translation process. Additional

data file 4 is a figure detailing the procedure for calculat-

ing reachability. Additional data file 5 is a text detailing

mathematicals semantics for CADBIOM formalism.

Additional file 1: Figure S1. Translation scheme for biological reactions

into guarded transitions. Figure S2. Illustration of translation schemes for

the TGF-b model. Figure S3. Conservation of biological annotations.

Figure S4. Reachability of a property P. Supplementary Methods.

mathematical semantics.

Additional file 2: Table S1. Modularity classes in activation graph. The

activation graph has a significant modularity score of 0,819 that reveals a

non-random distribution of edges and a high connectivity between

nodes inside classes. Most of TGF-β signaling-related components,

including TGFβ, TGFβR and SMAD proteins belong to modularity class 10

that contains also TGF-β superfamily members like BMP.

Additional file 3: Table S2. Vector matrix of trajectories that regulate

BCL_X_L, JUNB, CRP, FGG, IRF1, CEBPD, RANKL genes. The occurrence of

components is expressed as 0 (absent) and 1 (present) in trajectories.

Additional file 4: Table S3. Genes with non_Smad-independent trajectories

identified by CADBIOM. The Table lists genes with non-Smad-dependent

trajectories. Gene names (ID) are given according to their nomenclature in the

HUGO and PID databases, respectively, and are followed by their description.

Additional file 5: Table S4. Target genes regulated by combinations of

extracellular stimuli identified by CADBIOM. Proteins that serve as

extracellular stimuli and their combinations thereof are listed together

with their target genes, listed according to the PID nomenclature.

Additional file 6: Table S5. List of the 649 pairs of genes randomly

chosen to evaluate the association between co-expression and

trajectories.
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