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Surface-Constrained Nonrigid Registration for Dose

Monitoring in Prostate Cancer Radiotherapy
Guillaume Cazoulat, Antoine Simon*, Aurelien Dumenil, Khemara Gnep, Renaud de Crevoisier, Oscar Acosta,

and Pascal Haigron

Abstract—When no means are available for directly measuring
3D dose distribution, online imaging could be employed for dose
monitoring in image guided radiotherapy (IGRT). This paper
addresses the issue of cumulative dose estimation from CBCT
images in prostate cancer radiotherapy cases. It focuses on the
dose received by the surfaces of the main organs at risk, namely
the bladder and rectum. We have proposed both a surface-
constrained dose accumulation approach and its extensive eval-
uation. Our approach relied on the nonrigid registration (NRR)
of daily acquired CBCT images on the planning CT image. This
proposed NRR method was based on a Demons-like algorithm,
implemented in combination with mutual information metric.
It allowed for different levels of geometrical constraints to be
considered, ensuring a better point to point correspondence,
especially when large deformations occurred, or in high dose
gradient areas. The three following implementations of the NRR
approach with different levels of constraints were considered:
(i) full iconic NRR; (ii) iconic NRR constrained with landmarks
defined interactively at the surface of organs (LCNRR); (iii) NRR
constrained with full delineation of organs (DBNRR). To assess
dose accumulation accuracy, we designed a numerical phantom
based on finite-element modeling and image simulation. This
model provided known deformations of organs and a reference
accumulated dose. The methods were assessed on both the
numerical phantom and real patient data in order to quantify
uncertainties in terms of dose accumulation. The LCNRR method
appeared to constitute a good compromise between dose monitor-
ing capability and compatibility with clinical practice constraints
(low interactivity level).

Index Terms—Nonrigid registration, Cone Beam CT, radio-
therapy, dose accumulation, prostate cancer.

I. INTRODUCTION

RADIOTHERAPY has proven to be an effective treatment

method for all stages of localized prostate cancer. The

main challenge this therapeutic option currently presents is

delivering the prescribed dose to the clinical target for local

control, while limiting the irradiation of the organs at risk

(OAR), to thus avoid subsequent toxicity-related events. In
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prostate cancer irradiation cases, treatment is planned using a

unique CT scan, then is typically fractionated into 30 to 40

daily treatment sessions using the same irradiation plan. The

OARs, namely the rectum and bladder, are, however, subject

to large deformations due to their differing contents, leading

to displacements of the prostate gland and discrepancies be-

tween the planned dose distribution and that which is actually

received. This may expose the patient to an OAR overdose or

tumor underdose. One of the major innovations to come out

of recent years has been the evolution of imaging devices inte-

grated into the treatment device for image-guided radiotherapy

(IGRT). Among these new devices, the most widely-employed

is cone beam computed tomography (CBCT) which enables

soft tissues under the treatment device to be observed, and,

if required, repositionning of the patient according to tumor

location [1], [2]. IGRT is therefore of particular interest in

terms of correcting inter-fraction prostate motion. Yet, rigid

registration of the prostate does not allow to compensate

for anatomical deformations. Recently-developped concepts of

adaptive and dose-guided radiotherapy (DGRT) [3], [4] could

lead to improved matching between planning and treatment

by considering a possible treatment replanning prior to a new

fraction delivery. To determine if replanning is required, the

dose actually received by the tissues must be monitored during

the treatment course. When no means are available for di-

rectly measuring 3D dose distribution, embedded imaging (i.e.

CBCT) could be used for dose monitoring. Taking anatomical

variations into account, it primarily involves estimating the

daily cumulative and total cumulated dose distributions. This is

a critical issue, relying on the capability of tracking the tissues

appearing on the planning CT on each CBCT scan, in order to

estimate the actual dose distribution in the frame of reference

of the planning CT. This tissue tracking can be performed by

nonrigid image registration [5], [6]. The aim of the CBCT

to CT nonrigid registration is to provide a dense deformation

field that maps any tissue appearing on the planning CT to

the CBCT. This deformation field can be used to warp the

daily dose on the planning CT which constitutes the spatial

reference for the clinician.

Few solutions have so far been advanced for the process of

registering CBCT to CT for prostate cancer DGRT. Registering

pelvic CT and CBCT is, in fact, very challenging, due to a

number of different problems, including: (i) the significant

deformations encountered in this anatomical area, especially

for the bladder and the rectum; (ii) the poor soft tissue contrast

in CBCT; (iii) the scatter effect observed in CBCT images;

and (iv) the appearance and disappearance of bowel gases
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from one fraction to another. Fig. 1 provides an example of

planning CT slices and corresponding daily CBCT slices. In

this context, previous studies have suggested guiding the reg-

istration process by means of anatomical constraints. Greene

et al [7] proposed a nonrigid registration solution with B-

spline free-form deformations (FFD) maximizing a normalized

cross correlation metric. By adding constraints to the control

points of the deformations lying in soft organs and bones, the

authors demonstrated improved alignment of these structures,

but the method required prior segmentation. In a different

study [8], Lu et al proposed an approach integrating the

segmentation step. In the above mentioned studies, registration

has been addressed as an isolated issue, with evaluation criteria

based only on organ overlapping ratios (such as Dice score),

whereas it should be addressed in the aim of dose tracking.

Tissue overlaps and image similarity measures do not, in

reality, ensure effective anatomical point matching [9], on

which dose accumulation accuracy depends almost entirely.

Some works have been reported about physical deformable

phantoms [10], [11] simulating very simplified shapes. Thanks

to a cylinder shaped gel dosimeter, [11] recently pointed out

the need for comprehensive validation of deformable image

registration in the aim of dose accumulation. A simplified

finite-element model (FEM) based numerical phantom could

be used for an assessment of registration, and particularly

of the underlying nonrigid transformation. While these types

of numerical phantoms have been considered for registration

assessment [12], [13], this approach has, as far as we are

aware, not been reported for dose accumulation assessment.

For prostate IGRT, considering patient repositioning pro-

tocol and clinical use of margins to account for geometric

uncertainties on target location, the prostate is assumed to

be in a homogeneous dose region at each treatment fraction.

Moreover, the prostate is subject to only small deformations

in the course of IGRT. The main issue is here to estimate the

dose variations during treatment inside the walls of the bladder

and rectum which are hollow organs.

In this study, we have proposed a full workflow for dose

accumulation in the context of prostate IGRT. The proposed

registration method enables different levels of geometrical con-

straints to be taken into consideration, ensuring more effective

point-to-point correspondence at the surface of organs, espe-

cially with the presence of large deformations or in high-dose

gradient areas. In order to assess dose accumulation accuracy,

we designed a numerical phantom of pelvic deformation based

on biomechanical modeling and image simulation. This model

provided known deformations and a reference cumulated dose.

This paper takes the following structure: Section II provides

a step by step description of the overall dose accumulation

process for prostate IGRT, along with the NRR algorithms

with different levels of constraints; Section III describes the

numerical phantom we developed for accuracy assessment;

Section IV outlines the methods assessment on the numerical

phantom and real patient data, as well as the quantification of

uncertainties on accumulated dose; and finally, we present our

conclusions in Section V.

Fig. 1. Top: Axial and sagittal slices of a planning CT example. Bottom:
Identical corresponding slices of a rigidly registered daily CBCT

II. DOSE ACCUMULATION PROCESS

Fig. 2 provides an overview of the dose accumulation

concept. At each treatment fraction n the CBCT is nonrigidly

registered to the planning CT resulting in a transform Tn
which provides a displacement for each voxel of the planning

CT. By considering the daily dose distribution Dn, it is then

possible to estimate the dose received at fraction n by any

voxel of the reference CT. This estimated dose distribution,

called “cumulative”, can be added to the cumulative dose

distributions of the previous fractions in order to provide an

estimation of the dose accumulated since treatment initiation.

The proposed dose tracking workflow is illustrated in details

in Fig. 3. First of all, the patient repositioning protocol had to

be taken into account to compute the daily dose distribution. A

CBCT to CT rigid registration was then required to initialize

the NRR part of the process. In this study, we proposed and

assessed the three following NRR approaches: (i) a fully iconic

NRR between CBCT and CT (NRR); (ii) an iconic NRR

constrained by interactively-defined landmarks (LCNRR); (iii)

an NRR constrained by organ delineations (DBNRR). Finally,

the deformation field computed by any of the NRR approaches

was used to estimate the daily cumulative dose distribution. A

step-by-step description of this workflow can be found in the

following sections.

A. Patient repositioning - Daily dose Approximation

Prior to daily irradiation, the treatment couch was shifted

in the three directions according to the prostate position as

observed on the CBCT scan. In our radiotherapy department,

this shift was the result of a semi-automatic registration

performed by the XVI Synergy R© System (Elekta).

In principle, the dose distribution on the newly acquired

image should be calculated using the treatment plan and taking

into account the treatment couch shift. Following CBCT pre-

processing and a density calibration between planning CT and

CBCT [14] [15], this calculation can be performed either by

the algorithms integrated into the treatment planning systems,

or more accurately by means of Monte Carlo simulations [16].
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Fig. 2. Concept of tissue tracking for dose accumulation during prostate
cancer IGRT. For each voxel v representing a tissue on the planning CT, a
displacement Tn is estimated for each treatment fraction n. At fraction n,
knowing the daily dose distribution Dn, it is then possible to estimate the
cumulative dose received at voxel v and thus to accumulate the dose along
the fractions.

Fig. 3. Overall process of dose accumulation. This process is applied for
each daily CBCT.

Given the homogeneity of the tissues in the pelvic area, how-

ever, and their low depth variation relative to the outer contour

of the patient, ”dose invariance to patient translation and organ

deformation” can be assumed [17] [18] [19]. In [17] the

authors compared shifted dose distributions with recalculated

dose distributions. The resulting error on dose-volume metrics

was inferior to 2%. In this work, we therefore approximated

the dose distribution Dn at Day n by shifting the planned

dose distribution D0 according to the three-dimensional couch

treatment translation TS :

Dn(x) = D0(x+ TS). (1)

B. Rigid registration

The transform TS , corresponding to the couch shift, aligned

the prostate on the CBCT with its equivalent on the CT. Since

we considered the deformation of the surrounding organs, we

introduced an additional rigid transform R, globally aligning

the two images, to provide a better initialization for nonrigid

registration. The translation and rotation parameters of R were

determined by optimizing the mutual information between

the two images with a gradient descent algorithm. The rigid

transform was then applied in order to obtain the aligned

CBCT. The daily dose distribution was also transformed using

R to obtain the aligned daily dose distribution Da
n = R(Dn).

C. Nonrigid registration algorithm

The Demons registration algorithm has been applied in

several radiotherapy studies involving CT to CT registra-

tion [20], [21], [22]. This algorithm nevertheless requires exact

correspondence between the voxel intensities of the images

to register, and therefore cannot be used for CBCT to CT

registration. [23], [24] in a context of head-and-neck IGRT

proposed to correct images intensities in order to apply the

demons algorithm. However, these studies could be sensitive

to the shading effect in the CBCT images. Some studies

have suggested, not to correct image intensities, but to rely

on metrics more robust to intensity variations like cross-

correlation [25] and mutual information [26], [27]. These

approaches present the advantages of the Demons algorithm

while extending its field of application. In this study, we

adapted a NRR algorithm proposed by [28]. The implemented

method was based on a Demons-like framework, but aimed to

maximize a mutual information metric. This metric is a global

measure for the whole image that can be seen as the sum of

local contributions SL. We then defined a global measure SG

between the fixed CT image F and the moving CBCT image

M as follows:

SG =
∑

x

SL(iF (x), iM (x)), (2)

where iF (x) and iM (x) represent the voxel intensities at

the three-dimensional coordinate x in images F and M
respectively, and

SL(i1, i2) = log
p(i1, i2)

p(i1).p(i2)
, (3)

where p(i1, i2) denotes the joint probability function and p(i1)
and p(i2) the marginal probability functions computed from

the whole images.

The optimisation of the similarity measure was performed

iteratively by means of the following process:

1) M was deformed with the current global deformation

field U (first iteration: no deformation) to obtain M ′
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2) p(iM ′(x)) was computed and the joint intensity proba-

bility p(iF (x), iM ′(x)) was estimated by Parzen win-

dowing of the joint histogram with a 2D Gaussian

kernel.

3) For each voxel, a forward force
−→
Ff corresponding to the

point similarity gradient was computed as in the previous

study [28]:

Ff (x) =
∂

∂ǫ

∣

∣

∣

∣

ǫ=0

SL(iF (x+ ǫ), iM ′(x)), (4)

as well as a reverse force Fr:

Fr(x) =
∂

∂ǫ

∣

∣

∣

∣

ǫ=0

SL(iF (x), iM ′(x+ ǫ)). (5)

The deformation update at this voxel coordinate x was

then calculated as:

u = ∆s.(Ff − Fr), (6)

where ∆s represents an update length factor.

4) The deformation update u was added to the global

deformation field U :

U ← U + u. (7)

5) The global deformation field was regularized by convo-

lution with a Gaussian kernel Ge, simulating an elastic

behavior [29]: U ← U ⊗Ge.

6) Convergence criteria: the registration stopped when the

derivative of SL over the last ten iterations fell below a

specified threshold.

The process was repeated three times in a coarse-to-fine

multiresolution scheme. The images were downsampled by

four at the first level, by two at the second and kept at

their original resolution at the third. Variants of this algorithm

have been investigated. Firstly, it appeared that the use of the

symmetric force Fr in addition to the forward force Ff was

essential with the considered definition of SL. Secondly, if a

more natural way to combine the deformation fields by (7)

would be to use a compositive transformation [30], this did

not improve the results while it was computationally more

expensive.

D. NRR with landmark constraints

In order to improve the dose accumulation accuracy of

the NRR algorithm, we propose in this paper a constrained

approach that allows to guide the CBCT-to-CT registration

when the contrast is too poor on CBCT, and to establish better

local anatomical correspondences on which relies the dose

accumulation accuracy. In clinical practice, the structures of

interest are systematically delineated on the planning CT. We

propose to use this strong prior information along with some

additional landmark constraints specified by the clinician, in

order to increase NRR accuracy. The new proposed algorithm

was identical to that which was described previously, except

for the insertion of a new step between steps 5 and 6 designed

to geometrically constrain the deformation field U .

A landmark constraint Cl represents a vector defined by a

point cl2 belonging to a surface on the moving CBCT and by

its approximate correspondence c
l
1 on the fixed CT. The set

of N constraints is expressed as L = {C1...CN}.
Due to the frequency of errors inherent to the manual

placement of landmarks on the considered 3D images, this

method iteratively reevaluated each constraint Cl to allow for

the point cl1 to slide on the organ surface of the CT in a defined

radius of tolerance Dmax. At each iteration, every constraint

Cl was then replaced by Cl′ = (cl′1 , c
l
2). With P denoting the

set of points belonging to the organ surface on the CT:

c
l′
1 = argmin

p∈P+(cl
1
)

‖cl2,p+ U(p)‖, (8)

with

P+(cl1) = {p ∈ P/‖c
l
2 − p‖ < Dmax}. (9)

L′ = {C1′...CN ′} denotes the set of constraints for the

current iteration.

The deformation field U at point x became a linear combi-

nation between its current estimation and the closest constraint

Ck belonging to L′:

U(x)← (1−Ψk(x)) · U(x) + Ψk(x) · C
k, (10)

with

k = argmin
l∈[1..N ]

‖cl′1 ,x‖. (11)

The coefficient Ψk was the product of two radial basis

functions (RBF) ψ1 and ψ2 comprised between 0 and 1. The

first RBF ψ1 aimed to decrease the influence of the constraint

Ck as x is away from ck1 and from P :

ψ1(x) = exp

(

‖x− c
k
1‖

2

σ2
RBF1

)

× exp

(

‖x− ρ‖2

σ2
RBF2

)

, (12)

with

ρ = argmin
p∈P

‖cl2 − (p+ U(p))‖. (13)

The second RBF was the complementary of a normalized

Gaussian function centered on c
k
1 that aimed to decrease the

influence of Ck when c
k
1 +U(ck1) approaches c

k
2 . In this way

the estimation of c
k
1 could evolve over the iterations around

the original point in the specified radius of tolerance Dmax

ψ2(x) = 1− exp

(

−‖ck1 + U(x)− c
k
2‖

2

σ2
RBF3

)

. (14)

The constraints were similarly applied at all levels of the

multiresolution scheme, the values of the parameters Dmax

and σRBF1,2,3
expressed in millimeters being the same at all

levels.

An alternative method would be to constrain the deforma-

tion field between steps 4 and 5 to keep the same regularization

model as in the NRR method. With the current implemen-

tation, no regularization step followed the constraint step at

the last iteration, which enabled to preserve the specified

constraints.
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E. Delineation based NRR

To further improve the registration, we propose a hybrid

method combining a delineation of the organs with an intensity

based similarity measure. It consists in registering distance

maps derived from organ delineations in a similar approach as

reported in [31]. The following procedure was implemented:

• Given the surfaces of the prostate, the rectum and the

bladder delineated on the planning CT, a 3D distance

map γCT in the planning CT space was computed,

representing the signed squared Euclidean distance from

the closest surface point [32].

• The same shape representation was computed for the

delineated organs of the CBCT image: γCBCT

• The distance map γCBCT was nonrigidly registered to

γCT by applying the fast symmetric demons algorithm

implemented in the Insight Toolkit (ITK) [33] [30].

In short, this algorithm is similar to that which was

described in section II-C except in its computation of

u (step 3) which depends on the gradient of the squared

voxel intensity differences.

This kind of approach which employs signed distance maps

has been proven able to provide dense deformation fields that

closely match the surfaces, yet the probability of representing

erroneous anatomical deformations increases with the distance

from the organ surface. Nevertheless, since we were primarily

interested in the dose in the rectum and bladder walls, which

have a thickness of a few millimeters, a satisfactory cumulative

dose estimation could be expected with this method.

F. Dose warping

In order to obtain a daily cumulative dose distribution dan,

the aligned daily dose distribution Da
n was deformed following

the field U and resampled in the planning CT space with a

trilinear interpolation:

dan(x) = Da
n(x+ U(x)). (15)

III. NUMERICAL PHANTOM

This section provides a description of the generation of a

FEM-based numerical phantom, consisting of a set of synthetic

images with simulated simple, yet plausible deformations of

the main organs. The purpose of this phantom was to evaluate

and compare the performance of the three investigated NRR

approaches for dose accumulation.

A. Modeling

The phantom included the following anatomical structures:

prostate, seminal vesicles, bladder and rectum. The geom-

etry of the structures were based on delineations from a

typical patient with empty bladder and rectum. Mesh points

defined from the delineation were imported into the ANSYS

DesignModeler R© modeling software. The organ surfaces were

then created using B-spline curves connecting the points. The

prostate and seminal vesicles were represented by volume

structures, while the bladder, rectum and sigmoid colon were

modeled by surface structures. The geometry was then dis-

cretized into tetrahedrons for the prostate and seminal vesicles,

and triangles for the other organs.

The laws of the materials used for the bladder, rectum and

sigmoid colon were derived from the mechanical characteriza-

tion of pelvic tissues in [34]. For these organs, an Ogden model

was then defined with the parameters provided in Table I.

A linear law was used to describe the prostate and seminal

vesicles behavior, with a Young’s modulus of 60 kPa and a

Poisson’s ratio of 0.495.

TABLE I
OGDEN PARAMETERS OF SIMULATED ORGANS

Material parameters Rectum/Sigmoid colon Bladder

Ogden moduli µ 0.0424 0.0412
Exponent α 14.598 6.767

The different contact properties between each organ and

its neighbouring organs were defined as follows: bounded,

frictionless or no separation. The boundary conditions were

based on clinician’s observations and on [35], [36]. Stiffness

in the form of an elastic support was added at the apex of

the prostate that is actually maintained by the pelvic muscles.

The inferoanterior part of the bladder is near to or touching the

pelvis. An elastic support was added to this zone in order to

simulate the presence of the pelvis and the surrounding tissues.

This boundary condition limits the expansion of the bladder

in this direction but authorizes tangential displacement (i.e.

sliding) of the bladder surface. We assumed the lower part of

the rectum to have a very low mobility as it is surrounded by

muscle fibers. The extremal rectum edge was then fixed and

an elastic support was added to the first 2 cm of the rectal wall.

The posterior part of the rectum, located close to the spine,

was further stiffened in order to limit the expansion of the

rectum in the posterior direction. The parameter values of these

boundary conditions were adjusted to obtain typical behavior,

particularly allowing for a posteroanterior displacement of the

prostate. Based on [37], [38], the bladder’s internal pressure

was modified with values ranging from 0 to 5 kPa, that of the

rectum with values from 0 to 2 kPa.

B. Simulation

Different pressure values were applied to the initial bladder

and rectum to cause deformation and observe the resulting dis-

placements and deformations of neighbouring organs. A total

of 15 pressure sets were applied using Ansys Mechanical R©.

With the initial organ mesh configuration, a total of 16

organ mesh configurations were obtained. The set of node

correspondences between two mesh configurations defines a

mesh deformation field. Fig. 4 displays the meshes of the

initial anatomy configuration in (a), and two of the resulting

meshes following deformation in (b) and (c). It appears that

the simulation results in an anteroposterior displacement of

the prostate of around 9 mm because of rectum deformations.

In addition, the bladder mainly expands in the superoanterior

direction, thanks to the defined boundary conditions and the

contact with the sigmoid colon.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. (a) Initial FEM mesh of the bladder, rectum, prostate and seminal vesicles; (b) and (c): two examples of deformation induced by pressure variation
in the rectum and the bladder, with surface point displacements represented by the colormap; (d) sagittal slice of the simulated CT scan corresponding to the
organ configuration in (a); (e) Sagittal slice of the simulated CBCT scan corresponding to the organ configuration in (c); (f) complementary color overlay of
two simulated CT images highlighting the deformation magnitude between two extreme cases.

C. Image construction

A total of 16 synthetic images were created from the

16 simulated organ mesh sets. In order to obtain realistic

CT/CBCT images, the following procedure was developed:

• The delineation of the template patient’s body contour,

bones, prostate, bladder, rectum and seminal vesicles was

used to compute a distance map γT by means of the

method described in section II-E.

• The 16 organ mesh sets were then rasterized into binary

volumes and for each set a distance map γn was com-

puted as for the template patient.

• γT was registered to each γn by applying the fast

symmetric demons algorithm, and deformed accordingly

each time, producing a synthetic CT image with organ

shapes identical to the simulated ones.

The main advantage of this procedure was to generate

realistic images with low contrast and additional neighbouring

soft tissues existing in real images. The choice of such a

registration approach to determine gray levels in the simulated

images may slightly influence the results of the methods to

evaluate thereafter. However, the performance of the evaluated

methods will not be overestimated because the reference

deformations were not directly used to compute the gray levels

of the phantom images.

In order to simulate a clinical case where the patient

received a critically increased dose to the rectum and bladder

than planned, the planning CT was chosen as presenting the

most distended rectum and bladder. Yet, many clinical test

cases could be simulated by sorting the images in different

orders. The 15 remaining CTs were converted to CBCT

images by computing 2D x-ray projections, adding noise and

blurring as in [39], and reconstructing a 3D image using

the FDK algorithm implemented in the reconstruction toolkit

(RTK) [40]. Fig. 4 displays a sagittal slice of the simulated

planning CT in (d) and the equivalent slice of a simulated

CBCT in (e). In (f), by superimposing two CT images, the

deformation magnitude that must be addressed by NRR is

highlighted.

D. Associated dose distributions

The simulated planning CT scan was imported in the

Philips Pinnacle R© treatment planning system (TPS) in order

to generate a planning dose distribution D0, delivering 80Gy

to the prostate using intensity modulated radiotherapy (IMRT).

The dose at each fraction Da
n was obtained by shifting D0 for

prostate motion correction as described in Section II-A. The

cumulative dose da at treatment fraction n was then known

for each initial mesh node k of coordinates xk:
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dan[k] = Da
n(xk + S[k]), (16)

where S represents the mesh deformation field given by the

numerical simulation. The reference accumulated dose DA for

each node k was then obtained by summing up dan from the

15 simulated treatment fractions.
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Fig. 5. Boxplots of bladder Dice scores obtained for each registration strategy.
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Fig. 6. Boxplots of rectum Dice scores obtained for each registration strategy.

The most relevant assessment tool for the clinician is the

dose-volume histogram (DVH). In short, for each given dose

within a structure, it represents the volume that receives at

least this dose. The bladder and rectum are, however, defined

by surface meshes, and in order to compute DVHs for these

two organs, we transformed S into a dense deformation field

U defined at each voxel of the planning CT. U was obtained

by multivariate interpolation, as shown below:

U(x) =
1

∑K

k=1 αk(x)

K
∑

k=1

αk(x) · S[k] (17)

where K represents the number of mesh points and αk(x)
the inverse of the Euclidean distance between x and the node

k. Each vector of the dense deformation field is computed

as a weighted average of the vectors given by the mesh

deformation. The weight corresponds to the inverse of the

Euclidean distance. With this interpolation, the generated field

presents local deformations limited to the neighborhood of the

organs.

Lastly, each daily aligned dose distribution Da
n was warped

with the corresponding deformation field U as described

in Section II-F in order to obtain a reference of the daily

cumulative dose distribution dan. The 15 daily cumulative

dose distributions were totaled to provide a reference for the

accumulated dose DA.

IV. EXPERIMENTS AND RESULTS

In addition to the phantom data, the proposed workflow

was also evaluated for three patients undergoing treatment for

prostate cancer with daily CBCT acquisition.

The prostate, bladder and rectum were delineated by means

of the ARTiView R© software on 36 CBCTs for the first patient,

22 CBCTs for the second, and 32 CBCTs for the third. For the

landmark constrained NRR (LCNRR), we set out guidelines

for a reproducible landmark positioning method. Following

these guidelines, an expert placed on each image a total of six

landmark correspondences at the bladder vertices and eight on

the rectum surface approximately at the apex and base of the

prostate.

The process of dose accumulation as described in Section II

was then applied to the phantom and the three patients for all

three proposed NRR approaches.

A. Algorithm parameters

The parameters used in the registration methods were de-

fined as follows. Firstly, we selected the parameters of the

NRR method which maximized the Dice scores for five images

of one patient: ∆s = 0.3 and σe = 2.5 voxels.

The same parameters were kept ensuring that specifying

landmark constraints locally did not modify the results in

the other parts of the image when compared to the NRR

method. The parameters were chosen in order to minimize

the registration error with two phantom images: σRBF1 was

set to 15mm, σRBF2 to 5mm and σRBF3 to 1mm. The

landmarks placement tolerance Dmax was set to 10mm.

For the Delineation based NRR (DBNRR), the regularization

parameter used in the Demons algorithm was set to σe = 0.8
voxels.

B. Dice scores

Fig. 5 and Fig. 6 display the Dice scores obtained following

each registration method for the bladder and rectum. For the

NRR and LCNRR, the registration performance is higher for

the phantom images than for the patient images. The main

reason is that the CBCT simulation ignores scatter effect which

reduces contrast during real image acquisition. Nevertheless,

according to the Dice scores, the performance ranking was the

same for both the phantom and the patients: NRR, LCNRR and

DBNRR. In case of NRR or LCNRR, interpretation of these
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(a) (b) (c)

Fig. 7. (a) Reference deformation field between two organ configurations ; (b) deformation field estimated with DBNRR; (c) difference between the two
deformation fields in (a) and (b).

TABLE II
PHANTOM MEAN REGISTRATION ERRORS (mm)

Registration
Bladder Rectum Prostate Overall (3 organs)

Mean Max Mean Max Mean Max Mean Max

Rigid 22.93± 10.20 39.98 4.18± 3.36 11.86 8.81± 0.28 9.43 13.60± 10.40 39.98
NRR 11.23± 7.22 28.84 3.84± 1.91 9.88 6.68± 1.05 8.70 7.93± 5.57 28.84

LCNRR 9.60± 4.63 22.91 2.91± 1.79 7.00 5.34± 2.26 12.23 6.56± 4.31 22.91
DBNRR 7.56± 3.49 14.30 2.29± 1.22 6.32 4.96± 2.86 10.84 5.45± 3.52 14.30

results must take into account delineation variability. In [41],

the authors quantified the inter-observer delineation variability

on CBCT images. The Dice score equivalent to their overlap

measure was equal to 0.85 for the bladder and the rectum. This

value can therefore be considered as a reasonable Dice score

objective for registration based on original image intensities.

C. Registration Errors

For each point of the initial phantom mesh, registration error

was computed as the norm of the difference between the ref-

erence deformation field vectors and those of the deformation

field estimated by registration. Fig. 7 (a) shows the reference

deformation field between the initial organ configuration and

that of one of the 15 phases; (b) represents the deformation

field estimated with DBNRR; (c) the registration error defined

by the difference between the two fields.

Table II provides the mean local registration errors recorded

following registration of an extreme case (Fig. 4 (e)) on the

planning CT (Fig. 4 (d)). As expected, the ranking was: NRR,

LCNRR and DBNRR. However, even in case of DBNRR,

large registration errors can occur. For example, in this case,

the registration error reached 14.3 mm for the bladder despite

a Dice score of 0.97. It appears in the Fig. 7 that, where

there is sliding of the tissues, the displacements are the most

challenging to estimate.

The impact of these registration errors on cumulative dose

estimation is not yet clear. Large errors in an homogeneous

dose area can, in actual fact, have less of an impact than

small errors in a high-dose gradient area. For this reason, we

must also assess the methods in terms of dose accumulation

accuracy.

D. Cumulative dose estimation errors

The performance of each dose accumulation method was

evaluated by means of the numerical phantom. Firstly, the

local dose estimation error was evaluated in each node of

the organ meshes. Fig. 8 (a) displays the absolute differences

between the planned and the reference accumulated doses,

computed as explained in Section III-D. We verified that the

prostate received the prescribed dose, primarily due to the

patient repositioning (see Section II-A). Nevertheless, large

differences were observed on the bladder and rectum surfaces

due to organ deformations, which thus justified the need

for nonrigid registration in order to estimate the deviation

from the planned dose. Fig. 8 (b), (c) and (d) display the

differences between the reference accumulated dose and that

which was estimated using NRR, LCNRR and DBNRR,

respectively. Even in case of DBNRR, large dose estimation

errors were made locally (more than 15Gy). Table III outlines

the mean dose estimation error for each registration method.

Both DBNRR and LCNRR outperformed NRR in terms of

dose estimation accuracy. The LCNRR method could achieve

almost the same error as DBNRR, in comparison with the

initial error.
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(a) (b) (c) (d)

Fig. 8. Absolute difference on organ surfaces between the reference accumulated dose and: (a) planned dose, (b) accumulated dose with NRR, (c) accumulated
dose with LCNRR, and (d) accumulated dose with DBNRR.

TABLE III
PHANTOM MEAN DOSE ERRORS (Gy)

Registration
Bladder Rectum Prostate Overall (3 organs)

Mean Max Mean Max Mean Max Mean Max

Rigid 9.14± 6.73 28.59 3.56± 3.21 18.06 0.08± 0.07 0.52 4.53± 6.09 28.59
NRR 5.66± 5.63 26.82 1.87± 1.86 10.32 0.31± 0.27 1.45 2.83± 4.43 26.82

LCNRR 4.76± 4.71 19.38 1.46± 1.73 13.67 0.29± 0.23 1.52 2.36± 3.73 19.38
DBNRR 3.78± 4.03 17.49 1.09± 1.54 10.24 0.22± 0.20 1.40 1.86± 3.13 17.49
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Fig. 9. Numerical phantom results: representation of the planned DVH, reference accumulated DVH and accumulated DVHs, as estimated with the three
NRR approaches for:(a) the bladder wall; and (b) the rectum wall.

E. Sensitivity to landmarks placement uncertainties

In order to quantify the sensitivity of dose accumulation to

landmark selection in the LCNRR method, we simulated 30

different sets of constraints. The 14 landmarks on the planning

CT were fixed. For each simulated set of constraints, the 14

corresponding points on the CBCT were selected randomly

following a uniform distribution in a radius ranging from 0mm

to 8mm around the ground truth provided by the model. For

the sake of comparison, our expert selected the landmarks at

a mean distance of 4.93±2.72 mm for the bladder and 1.88±
0.98 mm for the rectum. The variability of the mean dose error

on the bladder and rectum surfaces, depending on the radius

value is provided in table IV.

The LCNRR appears to be robust to the uncertainties in

landmark selection. If we refer to table III, the dose estima-

tion accuracy is improved compared to NRR even when the

uncertainty radius reaches 8 mm for the bladder or when it is

less than 4 mm for the rectum.

F. Global measures of dose estimation accuracy

The dose volume histograms (DVH) were computed as

described in Section III-D and are presented in Fig. 9 for

the rectum and bladder. To quantify the performance of each

method, we defined the distance L between two histograms

h1 and h2 as:
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TABLE IV
DOSE ESTIMATION ERRORS WITH RESPECT TO LANDMARK PLACEMENT UNCERTAINTIES (Gy)

Error radius
Bladder Rectum

Mean Max Mean Max

0 mm 3.24 14.25 1.32 10.54
2 mm 3.33± 0.14 14.91± 0.73 1.51± 0.21 10.08± 2.69
4 mm 3.66± 0.29 15.28± 1.31 1.91± 0.45 10.39± 4.79
6 mm 3.98± 0.46 16.51± 1.43 2.42± 0.70 12.48± 5.72
8 mm 4.38± 0.77 18.28± 1.80 3.00± 0.92 14.93± 6.56

L =

∫

|h1(x)− h2(x)| dx. (18)

This distance is then comprised between 0 (when h1(x)
and h2(x) are identical) and 100 (when, for all doses, one is

equal to 100% and the other to 0%). The distances between

the histogram of the accumulated and the reference DVHs are

provided in Table V. According to these evaluation criteria, the

ranking remained the same except for the bladder for which we

obtained a better DVH with LCNRR than with DBNRR. This

result depends on the relationship between the localisation of

the landmark constraints and the dose distribution. According

to the DVHs, it seems that, when using the LCNRR, more

dose estimation errors were made for the low dose (between

3 and 5 Gy) than when using the DBNRR. On the contrary,

the LCNRR improved the dose estimation in areas of higher

dose (between 8 and 70 Gy) compared to the DBNRR, thanks

to a locally better anatomical point matching accuracy. The

low dose regions on the bladder surface being larger than the

high dose regions, the mean dose errors provided in table III

were in favor of the DBNRR. The higher dose area being

potentially a more clinically relevant area, our proposal to

place the landmark constraints at the six vertices of the bladder

appears well suited to improve the dose accumulation for this

organ.

TABLE V
DOSE-VOLUME HISTOGRAMS - DISTANCES FROM REFERENCE

Dose type Bladder wall Rectum wall Prostate

Planned 12.0 4.1 0.03
Cumulated with NRR 5.8 1.6 0.09

Cumulated with LCNRR 2.1 1.0 0.08
Cumulated with DBNRR 3.4 0.2 0.12

V. DISCUSSION

We have proposed and evaluated an approach for dose

accumulation in case of prostate IGRT.

Before any consideration for clinical application, the pro-

posed registration methods with different levels of interactions

have to be deeply evaluated regarding the ultimate objective,

dose monitoring in this case. The different approaches were

evaluated and compared, not only with images similarity or

organ overlap metrics as in previous works, but in terms of

capability to match anatomical points on organ surfaces and in

terms of resulting dose estimation accuracy. To achieve this,

typical organs deformations were simulated with a biomechan-

ical model of the organs of interest. The registration error

and resulting cumulative dose estimation error were locally

quantified on the organ surfaces.

Our contribution does not address the general issue of

dose tracking within a volume. Nevertheless, we proposed a

solution for dose accumulation constrained at the surface of

organs at risks (rectum and bladder) that are subject to the

most important deformations in the context of prostate IGRT.

We think that surface constrained dose accumulation makes

sense in the case of rectum and bladder since these are hollow

organs with a relatively thin wall.

A limitation of the dose accumulation approaches based

on CBCT is that the intrafraction motion is ignored, since

images are acquired prior to treatment delivery. Even if the

intrafraction motion is significantly smaller than the interfrac-

tion motion, the issue of its impact on the cumulated dose has

still to be addressed.

Another limitation of this study concerns dose warping

which could be prone to error because voxel volume variations

were not taken into account. Previous studies have proposed

more accurate methods [42], such as warping the mass or

energy deposits in the images instead of directly warping the

dose. However, this approach would require a simulation of

the energy deposit distribution, conducted using Monte Carlo

methods, and its feasibility on CBCT images has not yet been

demonstrated.

There is today a need to evaluate the capability of registra-

tion algorithm to estimate right anatomical point correspon-

dences on which depends the dose accumulation accuracy.

In this paper, we focused on the evaluation of the dose

accumulation on organ surfaces by means of a numerical

phantom. The proposed numerical phantom simulates sim-

plified deformations compared to the complex nature of real

anatomical changes and deformations. Nevertheless, its ability

to present a variety of plausible deformations, including sliding

tissues, is challenging for nonrigid registration algorithms. As

a consequence, we have demonstrated that a delineation-based

algorithm could result in high Dice scores, but locally to

large cumulative dose estimation errors. This issue has rarely

been addressed in the reported work. The evaluation with the

numerical phantom shows that the largest registration errors

appear where tissues are sliding. The proposed registration

methods are not specifically designed to estimate these kinds

of displacements. Only the LCNRR partially allows to take

them into account, compared to a conventional registration

algorithm, provided that the expert is able to specify the
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actual anatomical correspondences. A further improvement of

the registration method that may help to estimate the sliding

would be to integrate a biomechanical model through a FEM-

based approach. However, it appears challenging due to the

multiple interactions between the structures and their different

configurations over treatment fractions (e.g. content of the

bladder and rectum). In this case, the issue of the mechanical

parameters identification should be addressed.

VI. CONCLUSION

In this study, we have formalized a full workflow for

dose accumulation in case of prostate IGRT. Three nonrigid

registration approaches, requiring different user interaction

levels were proposed. Our study demonstrated that the inten-

sity based nonrigid registration method (NRR), that requires

no interactive definition of constraining features (landmarks,

delineations), could provide a cumulative dose estimation that

came much closer to the actual delivered dose than the planned

dose did. The LCNRR method relies on the NRR method and

integrates local anatomical constraints on organ surfaces to

guide the registration. This approach proved the feasibility

of improving local cumulative dose estimation with minimal

interactivity. The DBNRR method does not directly register

the original images, but rather a distance field derived from

prior delineation of the organs of interest. We were therefore

able to considerably reduce the local difference between the

reference and estimated doses. However, the delineation of one

CBCT is very time consuming, and can be only considered

for studies including a very limited number of patients. For

clinical routine the proposed LCNRR method appears to offer

a good compromise between the estimation of deviation from

the planned dose and the level of user interaction. Especially

given that, when used to derive global measures such as DVHs,

the LCNRR yielded to results close to the ones obtained with

the DBNRR.
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