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Abstract

Background: Identifying the genotypes underlying human disease phenotypes is a fundamental step in human

genetics and medicine. High-throughput genomic technologies provide thousands of genetic variants per individual.

The causal genes of a specific phenotype are usually expected to be functionally close to each other. According to this

hypothesis, candidate genes are picked from high-throughput data on the basis of their biological proximity to core

genes — genes already known to be responsible for the phenotype. There is currently no effective gene-centric online

interface for this purpose.

Results: We describe here the human gene connectome server (HGCS), a powerful, easy-to-use interactive online tool

enabling researchers to prioritize any list of genes according to their biological proximity to core genes associated with the

phenotype of interest. We also make available an updated and extended version for all human gene-specific connectomes.

The HGCS is freely available to noncommercial users from: http://hgc.rockefeller.edu/.

Conclusions: The HGCS should help investigators from diverse fields to identify new disease-causing candidate genes

more effectively, via a user-friendly online interface.

Background
The identification of causal links between human genotypes

and disease phenotypes is a key challenge in human gen-

omics, genetics and medicine. The high-throughput data

generated by next-generation sequencing (NGS), micro-

array studies, genome-wide association studies (GWAS)

and copy number variation (CNV) provide thousands of

variants per individual [1-6]. Most bioinformatic methods

for identifying genes potentially associated with specific

phenotypes [7-9] are not optimized for Mendelian traits

with complete or incomplete clinical penetrance, because

they lack the metrics for estimating the relatedness of genes

not belonging to the same biological function pathway, or

because they generate complex networks that are difficult

to interpret, resulting in low discovery rates for disease-

causing alleles in high-throughput studies [10].

The causal genes of a specific phenotype are generally

expected to be functionally close to each other [11-13].

Candidate genes are therefore picked from high-throughput

data on the basis of their biological proximity to core

genes — genes already known to be responsible for the

phenotype. We recently developed a novel approach,

the “human gene connectome” (HGC). The HGC con-

sists of a method and database describing the set of in

silico-predicted biologically plausible routes and dis-

tances between all pairs of human genes. We used this

method to generate a “gene-specific connectome” for

each human gene, making it possible to rank all human

genes in terms of their biological proximity to a core

gene of interest. We have demonstrated that the HGC

is an effective approach for identifying Mendelian

disease-causing genes in high-throughput genetic data,

by the ranking of genes according to their biological

proximity to core genes known to be associated with

the phenotype of interest, as demonstrated by a case

study of herpes simplex encephalitis (HSE) and TLR3

pathway genes [10].

We present here the human gene connectome server

(HGCS): a novel, effective and easy-to-use interactive

online interface through which users can submit any
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gene list generated by high-throughput techniques (or

specific candidate genes of interest) for automatic

ranking in terms of biological distance and connectiv-

ity p-value to the known core genes of the phenotype

of interest, and the predicted route between the genes

of interest. The HGCS is based on the HGC-derived

concept of biological distance between gene pairs (that

are either directly or indirectly connected), and pro-

vides, for the first time, an opportunity for investiga-

tors of all backgrounds to prioritize independently lists

of genes of any size, according to their biological dis-

tance to core genes. We also provide a new database of

14,129 human gene-specific connectomes. We demon-

strate the power of the HGCS for prioritizing candi-

date genes, with whole-exome sequencing (WES) data

from 16 patients with HSE [14], Mendelian susceptibil-

ity to mycobacterial disease (MSMD) [15], or invasive

pneumococcal disease (IPD) [16]. We compare HGCS

with state-of-the-art methods.

Implementation
Generation of the HGC and of all human gene-specific

connectomes

We extracted data for all direct human protein-protein

physical interactions from the updated String version

9.05 (328,391 direct protein-protein binding interactions

in the current version, versus 146,566 in the previous

version, and a higher level of accuracy) [9] and inverted

the interaction confidence scores to obtain direct bio-

logical distances, which we used to create a weighted

graph of all available human genes. We applied a short-

est distance algorithm to find the biological distance and

route between all pairs of human genes, to generate the full

HGC, with the Python NetworkX package for complex

network analysis [17]. We then generated a gene-specific

connectome, by ranking all human genes according to

their HGC-predicted biological distance to a core gene.

We repeated the process for all human genes (See Itan,

et al., 2013 for a comprehensive description of the method-

ology). The human gene-specific connectomes are available

for use and can be downloaded from: http://lab.rockefeller.

edu/casanova/HGC.

Database and online server implementation

The full HGC and gene annotation data are stored on a

server, as indexed tables in a MySQL database. All hu-

man gene-specific connectomes were converted into a

MySQL table. The gene aliases and annotations were

compiled from Ensembl BioMart [18,19]. The main code

for ranking and annotations was written in PHP, so that

it could be run directly from the server. The program

uses mysqli_query() commands to access the database

and generate queries. The program is designed to maximize

gene discovery, by automatically detecting gene aliases if the

input is not the conventional gene name, and adding the full

gene name (e.g. Toll-like receptor 3 for TLR3) and alterna-

tive aliases.

Computing resources and programming languages

We generated the new HGC and all derived human

gene-specific connectomes with a Mac Pro computer

with a 12-core Intel CPU and 96 GB RAM. The initial

data filtering and text mining of the String database were

performed with the Perl programming language. The

HGC, gene-specific connectomes and simulations were

generated with the Python programming language. The

HGCS is hosted on The Rockefeller University LAMP

shared server, with a VMware instance of 4 GB.

Results
The human gene connectome server (HGCS)

The HGCS is a gene prioritization and connectivity on-

line interface based on biological distance, which allows

users to generate queries about any set of core and tar-

get genes. This system can be used for the rapid predic-

tion of the biological distance and connection route

between any two given genes of interest, and for the ef-

fective prioritization of any number of genes generated

by high-throughput methods, on the basis of their bio-

logical distance to core genes associated with the human

trait of interest or, alternatively, on the basis of p-value

or best reciprocal p-value (BRP, the smallest of the mu-

tual p-values between the core and target genes ac-

counting for central and isolated genes). A schematic

representation of the HGCS generation workflow is

shown in Figure 1. The output can be sorted by proximity

to any of the core genes provided, or internally separated

by core gene. Figure 2 shows screenshots of the HGCS on-

line platform, demonstrating the ranking of 284 genes from

WES data for an HSE patient, using TLR3 as the core gene.

The true HSE-causing gene for this patient, TICAM1

(TRIF), was ranked #1 among the 284 genes. The human

gene connectome server is available from: http://lab.rocke-

feller.edu/casanova/HGC.

Assessment of the performance of the HGCS

We assessed the power of the HGCS to detect Mendel-

ian disease-causing mutations from the WES data of 16

patients with severe Mendelian diseases: 7 patients with

HSE, 7 patients with MSMD and 2 patients with IPD.

The genes with disease-causing mutations in the HSE

patients were shown experimentally to be TICAM1

(TRIF, in two patients), TRAF3, TBK1 (in two patients),

and UNC93B1 (in two patients) [20-23]. The genes with

disease-causing mutations in the MSMD patients were

shown experimentally to be IFNGR2 (in two patients),

ISG15, STAT1, IL12RB1 (in two patients each), and

IL12B [24-28]. RBCK1 was identified as the gene with
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Figure 1 Schematic representation of the generation, data structure and workflow of the HGCS. (1) Extraction of all human direct protein-protein

binding interactions and the corresponding confidence scores from String. (2) Inversion of confidence scores to give direct biological distance metrics and

generation of a genome-wide human weighted network. (3) Generation, for each human gene, of a gene-specific connectome — the set of all other

human genes ranked according to their biological proximity to the specific gene. (4) Generation of a MySQL table from all human gene-specific connectomes.

(5) Extraction, from Ensembl BioMart, of all human protein IDs, gene IDs, and their corresponding conventional and full names. (6,7) Generation of a MySQL

table of all alternative gene names for each human gene. (8,9) Establishment of the full set of query gene names by identifying missing genes

with alternative gene name aliases, extracting the target genes from the connectomes of the core genes. (10) Sorting of the target genes

according to user-defined metrics, by relatedness to any of the core genes, or separated by core gene. The screen output can then be

downloaded as a tab-separated text file.

A B

Figure 2 The HGCS interface. (A) The two boxes contain the list of genes to prioritize/analyze (which can be acquired from any high-throughput

experiment after the application of filters; alternatively, any user-defined list of candidate genes can be used), and the core genes (known to be

associated with the phenotype) for ranking purposes. A scroll box allows a choice of metrics for ranking (distance, p-value, or best reciprocal p-value),

and the user may choose whether to rank the results globally, or separately by core gene. (B) The output consists of a table of genes ranked with respect to

the core genes, which can be downloaded as a tab-separated text file. The information about the nature of connectivity between the core and target genes

provided includes HGC-predicted biological distance, ranking of the target gene in the connectome of the core gene, the ratio between biological distance

and the genome-wide median and mean biological distances to the core gene, the sphere of the target gene around the core gene, degrees of separation

between the genes, and the full gene name.
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disease-causing mutations in the IPD patients [16]. We

performed standard filtering for the variants: (i) exclud-

ing synonymous variations, (ii) keeping rare variations,

with a frequency <1% in the 1000 Genomes [29] and

NHLBI Exome Variant Server (http://evs.gs.washington.

edu/EVS/) databases, and (iii) accounting for sequencing

batch effects and highly mutated genes (which are less

likely to be morbid) by in-house filtering of variants

appearing in more than 0.6% of the patients in all dis-

ease cohorts other than for the specific disease tested

(0.6% being the most stringent criterion that does not

filter out the true disease-causing gene in all patients,

for which filtering allows the removal of false-positive

genes abundant in WES data because they are naturally

highly mutated or due to sequencing errors causing the

same false mutations to appear in various WES samples).

Filtering decreased the median number of variant

genes per patient to 301. We chose TLR3 as the core

gene for HSE, IFNG as the core gene for MSMD, and

IKBKG as the core gene for IPD, because these genes

have been experimentally validated as central genes in

the gene pathways associated with the pathogenesis of

these diseases [14-16]. We used the HGCS to rank all

gene variants for each patient according to biological

proximity to the core gene associated with the patient’s

disease. We then compared the performance, interface

and functions of the HGCS with those of two other

state-of-the-art methods: (i) FunCoup, using the MaxLink

interface, which ranks top interactors, and (ii) HumanNet,

which ranks by top subnetworks [7,8]. In both FunCoup

and HumanNet, we added the relevant core genes to the

analyses, and chose the first cluster/subnetwork contain-

ing the true disease gene.

The human gene-specific connectome database

We generated and made available 14,129 human gene-

specific connectomes, each containing the set of all hu-

man genes ranked by their biological proximity to the

specific core gene of interest. Each gene-specific connec-

tome contains the following data categories regarding

the nature of the connection between the core gene and

the target genes: HGC-predicted biological distance,

rank among all human genes according to distance to

the core gene, p-value for connectivity, BRP, the ratio be-

tween the core gene—target gene distance and the me-

dian distance between the core gene and all human

genes, the ratio between the core gene—target gene

distance and mean distance between the core gene

and all human genes, the sphere around the core

gene (simplified percentile metrics), the predicted

route (i.e. the genes between the core and target

genes), degrees of separation (the number of direct

connections between the core and target genes), and the

full name of the target gene. All human gene-specific

connectomes are available from: http://lab.rockefeller.edu/

casanova/HGC.

Comparison of the HGCS with state-of-the-art methods

We assessed the ability of the HGCS to prioritize candi-

date genes in high-throughput data, using WES data for

16 patients who suffered from herpes simplex encephal-

itis (HSE, core gene TLR3, Additional files 1, 2, 3, 4, 5, 6

and 7: Table S1-S7) [14], Mendelian susceptibility to

mycobacterial disease (MSMD, core gene IFNG, Additional

files 8, 9, 10, 11, 12, 13 and 14: Table S8-S14) [15], or inva-

sive pneumococcal disease (IPD, core gene IKBKG,

Additional files 15 and 16: Tables S15 and S16) [16]

due to single-gene inborn errors of immunity. There

was a median of 301 WES-filtered genes per patient.

Additional files 1, 2, 3, 4, 5, 6 and 7: Tables S1-S7 show

the prioritized WES genes for each HSE patient, to-

gether with the connectivity between these genes and

TLR3 predicted by the HGCS. Additional files 8, 9, 10,

11, 12, 13 and 14: Tables S8-S14 show the prioritized

WES genes for each MSMD patient, and Additional

files 15 and 16: Tables S15 and S16 show the priori-

tized WES genes for each IPD patient. The true HSE-

causing genes (TICAM1 in two patients, TBK1 in two

patients, UNC93B1 in two patients and TRAF3 in a

single patient) were ranked #1 in all seven patients, in

terms of biological proximity to TLR3 among the

WES-filtered genes, P = 4.148E-17. The true MSMD-

causing genes (IFNGR2 in two patients, IL12RB1 in

two patients, ISG15, STAT1, and IL12B in single pa-

tients) were ranked #1 in five patients and #2 in two

patients, in terms of biological proximity to IFNG

among the WES-filtered genes, P = 1.243E-16. The true

IPD-causing gene (RBCK1 in two patients) was ranked

#15 in one patient and #18 in the second patient, in

terms of biological proximity to IKBKG among the

WES-filtered genes, P = 0.00185.

We compared the results obtained with those for

two other state-of-the-art methods (summarized in

Additional files 17: Table S17): (i) FunCoup: the true

disease gene was ranked 3 of 29, 7 of 29 and 1 of 29, in

3 of the 16 patients (for the detection of TICAM1 in

HSE and ISG15 and STAT1 in MSMD, respectively;

the true disease-causing gene was not ranked in the

remaining nine patients); (ii) HumanNet (allowing the

analysis of a maximum of 250 genes at a time, rather

than being core gene-centered): the true disease-

causing gene was ranked between #5 and #38 of 43 to

137 clusters in 12 patients, and was not ranked in the

remaining four patients. FunCoup and HumanNet cannot

rank genes relative to a core gene, and the prediction

therefore relates to a significant subnetwork containing

the true disease-causing gene. Predictions also involve

manual browsing of the output, making these methods
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less feasible for situations in which ranking on the basis of

several core genes is desired.

The HGCS differs from the FunCoup and HumanNet

interfaces in several major ways. FunCoup is based on

direct interactors or highly connected networks, and is

therefore particularly powerful for predicting closely re-

lated genes. By contrast, HumanNet was designed for

the discovery of new genes in a pathway, and is therefore

more suitable for more distantly related genes. Human-

Net provided results for 12 of the 16 patients (versus

only 3 patients for FunCoup and all 16 patients for the

HGCS). Neither FunCoup nor HumanNet is gene-

centric. These methods are therefore unable to rank a

list of genes according to their biological proximity to a

set of genes of interest, and they provide no information

about the route connecting human genes of interest.

Additional files 17: Table S17 shows comparisons of the

performances of the HGCS, FunCoup and HumanNet

interfaces for the detection of disease-causing genes

from WES data. In summary, for the 16 Mendelian

disease-causing genes for the patients whose WES data

were studied here, the HGCS outperformed FunCoup in

15 of the 16 tests, and outperformed HumanNet in 14 of

the 16 tests.

One of the major aims in studies of Mendelian dis-

eases is to identify, at the single-patient level, a single

gene associated with the disease. In this respect, the

HGCS is more effective than FunCoup and HumanNet,

because it is the only interface that ranks all candidate

genes on the basis of their relationship to the given core

gene. The other interfaces involve a binary yes/no indi-

cation of relatedness to core genes, making it difficult to

differentiate between the genes related to the core gene

and to identify the specific disease-causing gene. Fun-

Coup and HumanNet are conceptually easier to apply in

polygenic/complex genetic studies, as the input for these

two interfaces is the full set of candidate genes and there

is no need to supply a core gene, and they provide sub-

networks that can be inferred to be related to the

disease.

Discussion and conclusions
We present here the HGCS — the first online platform

for prioritizing any number of genes on the basis of their

biological distance to any number of core genes and the

relationships between them. We are making available an

updated database of all human gene-specific connec-

tomes. We demonstrate the high performance of the

HGCS for high-throughput Mendelian and monogenic

studies. We propose an effective method for the use of

the HGCS to detect new disease-related genes, based on

the collation of central core genes known to be associ-

ated with the disease and their use to rank the candidate

genes by distance, P-value, or BRP (a less stringent

scoring, better reflecting the mutual connection when

the target gene is less central, but probably associated

with a higher false-positive rate). We suggest that P-

values or BRP could be used to rank lists of gene candi-

dates, rather than for drawing statistical/translational

conclusions that a gene is relevant to the phenotype on

the basis of statistical significance.

The HGCS performance is dependent upon a reliable

selection of core gene(s) associated with the phenotype.

This task is straightforward when certain causal genes

have already been identified in previous studies. How-

ever, in the absence of experimentally validated core

genes, the identification of candidate core genes is not

trivial. In such cases, we suggest using core genes of the

phenotypes most similar to the phenotype of interest, or

alternatively using other state-of-the-art approaches de-

scribed in this work, such as FunCoup and HumanNet.

The centrality/connectivity of the selected core genes

also influences the HGCS performance, which, in the

case of IPD, was decreased with IKBKG as a core gene

(although still highly significant). We suggest that since

IKBKG is a highly central/connected gene with a high

number of strongly associated genes, it is less effective

for differentiating the highly ranked gene candidates. In

such cases we propose ranking by additional core genes,

if available.

The HGCS has several unique features not found in

other state-of-the-art methodologies, including the pre-

diction of meaningful indirect interactions, the provision

of a biological distance and route between any two given

human genes of interest, and its gene-centric nature,

making it particularly useful in diseases or pathways for

which associated genes have already been detected and for

which the task is detecting and describing new disease- or

pathway-associated genes. We anticipate that the rigorous

use of the HGCS and the novel concept of biological dis-

tance will significantly increase the rate of discovery of

new genotype-phenotype causal relationships.

Availability and requirements
Project name: the human gene connectome server (HGCS)

Project home page: http://hgc.rockefeller.edu/

Operating system(s): platform independent.

Programming languages: Python, MySQL, PHP.

License: free to noncommercial users.

Additional files

Additional file 1: Table S1. HGCS-prioritized genes for the first HSE

patient for whom TICAM1 (TRIF) was the experimentally validated

disease-causing gene. This table shows all filtered gene variants identified

by WES for the patient, ranked according to their HGC-predicted biological

proximity to TLR3. The true HSE-causing gene, TICAM1 (TRIF), in this patient

was ranked 1st.
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Additional file 2: Table S2. HGCS-prioritized genes for the second HSE

patient for whom TICAM1 (TRIF) was the experimentally validated

disease-causing gene. This table shows all filtered gene variants identified

by WES for the patient, ranked according to their HGC-predicted biological

proximity to TLR3. The true HSE-causing gene, TICAM1 (TRIF), in this patient

was ranked 1st.

Additional file 3: Table S3. HGCS-prioritized genes for the first HSE

patient for whom TBK1 was the experimentally validated disease-causing

gene. This table shows all filtered gene variants identified by WES for the

patient, ranked according to HGC-predicted biological proximity to TLR3.

The true HSE-causing gene, TBK1, was ranked 1st.

Additional file 4: Table S4. HGCS-prioritized genes for the second HSE

patient for whom TBK1 was the experimentally validated disease-causing

gene. This table shows all filtered gene variants identified by WES for the

patient, ranked according to their HGC-predicted biological proximity to

TLR3. The true HSE-causing gene, TBK1, was ranked 1st.

Additional file 5: Table S5. HGCS-prioritized genes from an HSE

patient for whom TRAF3 was the experimentally validated disease-causing

gene. This table shows all filtered gene variants identified by WES for the

patient, ranked according to their HGC-predicted biological proximity

to TLR3. The true HSE-causing gene, TRAF3, was ranked 1st.

Additional file 6: Table S6. HGCS-prioritized genes for the first HSE

patient for whom UNC93B1 was the experimentally validated disease-causing

gene. This table shows all filtered gene variants identified by WES for the

patient, ranked according to HGC-predicted biological proximity to

TLR3. The true HSE-causing gene, UNC93B1, was ranked 1st.

Additional file 7: Table S7. HGCS-prioritized genes for the second HSE

patient for whom UNC93B1 was the experimentally validated disease-causing

gene. This table shows all filtered gene variants identified by WES for the

patient, ranked according to HGC-predicted biological proximity to

TLR3. The true HSE-causing gene, UNC93B1, was ranked 1st.

Additional file 8: Table S8. HGCS-prioritized genes from the first

MSMD patient for whom IFNGR2 was the experimentally validated

disease-causing gene. This table shows all filtered gene variants identified

by WES for the patient, ranked according to their HGC-predicted biological

proximity to IFNG. The true MSMD-causing gene, IFNGR2, was ranked 1st.

Additional file 9: Table S9. HGCS-prioritized genes from the second

MSMD patient for whom IFNGR2 was the experimentally validated

disease-causing gene. This table shows all filtered gene variants identified

by WES for the patient, ranked according to their HGC-predicted biological

proximity to IFNG. The true MSMD-causing gene, IFNGR2, was ranked 1st.

Additional file 10: Table S10. HGCS-prioritized genes from an MSMD

patient for whom ISG15 was the experimentally validated disease-causing

gene. This table shows all filtered gene variants identified by WES for the

patient, ranked according to their HGC-predicted biological proximity to

IFNG. The true MSMD-causing gene, ISG15, was ranked 2nd.

Additional file 11: Table S11. HGCS-prioritized genes from an MSMD

patient for whom STAT1 was the experimentally validated disease-causing

gene. This table shows all filtered gene variants identified by WES for the

patient, ranked according to their HGC-predicted biological proximity to

IFNG. The true MSMD-causing gene, STAT1, was ranked 1st.

Additional file 12: Table S12. HGCS-prioritized genes from the first

MSMD patient for whom IL12RB1 was the experimentally validated

disease-causing gene. This table shows all filtered gene variants identified

by WES for the patient, ranked according to their HGC-predicted biological

proximity to IFNG. The true MSMD-causing gene, IL12RB1, was ranked 1st.

Additional file 13: Table S13. HGCS-prioritized genes from the second

MSMD patient for whom IL12RB1 was the experimentally validated

disease-causing gene. This table shows all filtered gene variants identified

by WES for the patient, ranked according to their HGC-predicted biological

proximity to IFNG. The true MSMD-causing gene, IL12RB1, was ranked 2nd.

Additional file 14: Table S14. HGCS-prioritized genes from an MSMD

patient for whom IL12B was the experimentally validated disease-causing

gene. This table shows all filtered gene variants identified by WES for the

patient, ranked according to their HGC-predicted biological proximity to

IFNG. The true MSMD-causing gene, IL12B, was ranked 1st.

Additional file 15: Table S15. HGCS-prioritized genes from the first IPD

patient for whom RBCK1 was the experimentally validated disease-causing

gene. This table shows all filtered gene variants identified by WES for the

patient, ranked according to their HGC-predicted biological proximity

to IKBKG. The true IPD-causing gene, RBCK1, was ranked 15th.

Additional file 16: Table S16. HGCS-prioritized genes from the second

IPD patient for whom RBCK1 was the experimentally validated disease-causing

gene. This table shows all filtered gene variants identified by WES for the

patient, ranked according to their HGC-predicted biological proximity

to IKBKG. The true IPD-causing gene, RBCK1, was ranked 18th.

Additional file 17: Table S17. Comparison of the performances of the

HGCS and other state-of-the-art methods for the detection of disease

genes in WES data. This table shows rankings obtained with the HGCS,

HumanNet and FunCoup (for a median of 301 genes per patient) for the

true HSE, MSMD and IPD disease-causing genes in the exomes of 16

patients.
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