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Abstract

Background: The rapid evolution in high-throughput sequencing (HTS) technologies has opened up new

perspectives in several research fields and led to the production of large volumes of sequence data. A fundamental

step in HTS data analysis is the mapping of reads onto reference sequences. Choosing a suitable mapper for a given

technology and a given application is a subtle task because of the difficulty of evaluating mapping algorithms.

Results: In this paper, we present a benchmark procedure to compare mapping algorithms used in HTS using both

real and simulated datasets and considering four evaluation criteria: computational resource and time requirements,

robustness of mapping, ability to report positions for reads in repetitive regions, and ability to retrieve true genetic

variation positions. To measure robustness, we introduced a new definition for a correctly mapped read taking into

account not only the expected start position of the read but also the end position and the number of indels and

substitutions. We developed CuReSim, a new read simulator, that is able to generate customized benchmark data for

any kind of HTS technology by adjusting parameters to the error types. CuReSim and CuReSimEval, a tool to evaluate

the mapping quality of the CuReSim simulated reads, are freely available. We applied our benchmark procedure to

evaluate 14 mappers in the context of whole genome sequencing of small genomes with Ion Torrent data for which

such a comparison has not yet been established.

Conclusions: A benchmark procedure to compare HTS data mappers is introduced with a new definition for the

mapping correctness as well as tools to generate simulated reads and evaluate mapping quality. The application of

this procedure to Ion Torrent data from the whole genome sequencing of small genomes has allowed us to validate

our benchmark procedure and demonstrate that it is helpful for selecting a mapper based on the intended

application, questions to be addressed, and the technology used. This benchmark procedure can be used to evaluate

existing or in-development mappers as well as to optimize parameters of a chosen mapper for any application and

any sequencing platform.
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Background
High-throughput sequencing (HTS) technology has

recently shown a rapid and impressive development and

this has led to the production of gigabases of sequence in

a few hours for only a fraction of the former cost [1]. HTS

has produced an explosion of knowledge in genetics and
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genomics thanks to the development of specific appli-

cations such as genome re-sequencing (whole genome

sequencing and targeted sequencing). This technological

evolution was paralleled by the development of new algo-

rithms to deal with the quantity and the quality of reads

produced. A fundamental analysis steps in re-sequencing

approaches is the mapping of the reads onto a reference

genome. This step, which involves the accurate position-

ing of reads onto a reference genome sequence, is highly

important because it determines the global quality of

downstream analyses. The algorithms used for this step
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are called mappers. Mappers have to be sensitive and

accurate and, if possible, fast and not too computationally

demanding. They should be able to find the true position

of each read on a reference genome and ideally distin-

guish between technical sequencing errors and natural

genetic variations.

In recent years many mappers have been developed and

distributed (more than 60 mappers are listed in [2]). Two

studies [2,3] have classified mappers using a wide variety

of features that include: the type of data, their applica-

tion, the sequencing platform, the read length, the allowed

error rate, parallel implementation, the ability to deal

with multi-mapped reads (i.e. reads aligned to multiple

locations), the input and output formats, and the avail-

able parameters. Mappers have multiplied and so has the

range of possible settings. Hence, the growing difficulty in

selecting a mapper has been raised in recent studies aimed

at evaluating mapper performances through a multiplicity

of comparison criteria. Some of these studies have focused

on mapper sensitivity (ability to correctly map reads)

[4-6]. Schbath et al. studied the ability of mappers to

identify unique versus multi-mapped reads using a well-

controlled benchmark containing reads with exactly three

mismatches [7]. Hatem et al. introduced a benchmarking

suite to analyze mapping tools [8], which consists of tests

that cover input properties and algorithmic features.

In addition to the difficulty in determining evalua-

tion criteria, choosing an appropriate evaluation method,

i.e. how to compare mappers according to the evalua-

tion criteria, and using the appropriate metrics, are also

problematical. Using real datasets to evaluate mapper per-

formances allows only a rough assessment and classifica-

tion of mappers by comparing the percentage of mapped

reads, but does not reveal the actual accuracy of mappers.

Attempts have been made to avoid this pitfall using sim-

ulated datasets in which the original read positions are

known. Another difficulty lies in the accurate definition of

what a correctly mapped read is. The basic definition is to

consider a read as correctlymapped if the original location

is retrieved [4]. Ruffalo et al. broadened this definition by

adding a condition on the quality score, which had to be

superior to a given threshold [5]. In a more recent paper

[8], a new definition was introduced in which a read was

considered to be correctly mapped if the mapping crite-

ria were not violated, i.e. contained less errors than the

threshold parameter set by the user.

Using simulated data allows numerical values to be

obtained and compared between a set of mappers. How-

ever, simulated data do not have the same characteristics

as real data, even when an error model based on real data

is used. Real HTS data present biases [9] that can be very

difficult to simulate. Additionally, the current definition

of the mapping correctness based only on the original

start location presents some weaknesses: a read can have

several correct positions on the reference sequence and

sequencing errors or true genetic variations can lead to a

better alignment in a genome position different from the

original one. Holtgrewe et al. introduced the interval defi-

nition, rather than the genome position, to describe a read

mapping [6] and used a full-sensitivity algorithm to iden-

tify all possible matching intervals within a given error

rate range for each read. This method has been imple-

mented in RABEMA (Read Alignment BEnchMArk), a

tool that evaluates the result of arbitrary read mappers

that support the SAM output format with real and simu-

lated datasets. Our analysis of the published literature on

mapper evaluation led us to conclude that for a complete

and robust comparison of mappers, real and simulated

datasets should be used. Using real datasets avoids simu-

lation biases and gives a real picture of mapper behavior,

whereas simulated datasets are benchmarks from which

all parameters can be controlled. Additionally, a sound,

more complete definition of what constitutes a correctly

mapped read needs to be considered (see below).

In all the previous studies, mapper performance was

evaluated using large eukaryotic genomes (mainly the

human genome) and, for the most part, short Illumina

or Illumina-like reads data were used, except in [4,6]

where 454 datasets were evaluated with a reduced num-

ber of mappers and metrics. The type of sequencing

errors and their rate is inherent to the sequencing tech-

nology and more precisely to the nucleotide elongation

detection methods used. For example, Life Technolo-

gies sequencing by oligonucleotide ligation and detection

(SOLiD) technology showed a strong bias in its cov-

erage of repetitive elements [10], whereas the Illumina

reversible dye-terminator sequencing technology (HiSeq)

mainly caused substitutions [11]. Pyrosequencing on solid

support (454/Roche) and ion semiconductor sequenc-

ing technology (Ion Torrent, Life Technologies) produced

indel errors associatedwith homopolymer-regions [12]. In

the published evaluations, the criteria that were tested and

the default parameters of the mappers were usually cho-

sen to address or deal with substitution-type errors and

are, therefore, less informative formapping the reads from

new technologies like the Ion Torrent platform.

Furthermore, the analysis of small microbial genomes

compared with the analysis of large eukaryotic genomes

poses other challenges because microbial genomes con-

tain a wide range of GC content, which is sometimes

extreme. Very high or very low GC content means that

there is a high probability of encountering homopoly-

mers in a genome sequence and this is known to be a

specific problem for pyrosequencing and ion semicon-

ductor sequencers. A recent development in the HTS

technologies has made available benchtop sequencers tar-

geted at the quick and inexpensive sequencing of small to

moderate-sized genomes, mainly bacteria, viruses, fungi,



Caboche et al. BMCGenomics 2014, 15:264 Page 3 of 16

http://www.biomedcentral.com/1471-2164/15/264

and parasites. Small microbial genome sequences could

be considered to present a simpler, less demanding map-

ping process compared with the mapping process for

larger eukaryotic genomes. However, this is only par-

tially true because the characteristics of small microbial

genomes are not the same as those of eukaryotic genomes.

The questions of interest are also usually different and,

consequently, the expected mapping quality criteria are

not exactly the same. Whole genome sequencing or re-

sequencing is an important application in the new field of

microorganism characterization using HTS. For instance,

clinical diagnosis and the epidemiological study of micro-

bial strain circulation will be profoundly remodeled in the

near future by the use of HTS, which should, very soon,

be used as a characterization approach for pathogens

and which will probably slowly replace the present PCR

and biochemical based characterization methods [13,14].

In this particular context the re-sequencing applications

and derived analyses are in the front-line of research and

development. The focus includes the sequencing of the

entire length of a microbial genome and the analysis of

obtained reads by mapping them onto one or several ref-

erence strains to identify potential relevant changes in

the studied genome. The aim is to accurately identify the

gain or loss in genetic elements (genes or parts of genes,

prophages, and plasmids) as well as small changes (muta-

tions and indels) to predict a potential new phenotype

or a derived new pathogenicity profile. This requirement

poses several challenges, the most important of which is

the necessity to distinguish true genetic variations from

sequencing errors.

In this paper, we focus on the evaluation of mappers in

the context of whole genome sequencing or re-sequencing

for small microbial, mainly bacterial genomes. We tested

14mappers, mostly using their default settings to be in the

general context of non-expert users. We selected four cri-

teria tomatch this context: (i) computational resource and

time requirements, (ii) robustness of mapping through the

evaluation of precision, recall and F-measure, (iii) abil-

ity to report positions for reads in repetitive regions, and

(iv) ability to retrieve true genetic variation positions. To

evaluate a mapper’s robustness on simulated datasets, we

introduced a new definition of a correctly mapped read.

In addition to the original start position (i.e. the position

fromwhich a read is simulated) that was used inmost pre-

vious studies, the end position as well as the numbers of

insertions, deletions, and substitutions in the alignment

were also used to classify the mapping of a read as correct.

This definition is more stringent than the previous ones

because it implies that it is a full-length read alignment

and that the error count is correct. Indeed, sequencing

errors can mean that the original location of a read is

not necessarily the best alignment location. Using map-

pers tuned to report all possible hits (‘all’ mode) and to

accept a higher error rate than the error rate introduced in

simulated reads, it should be possible to retrieve the orig-

inal location in addition to potential equivalent or better

hits. With the new definition of a correctly mapped read

used in this study, we ensured that the mapper was able to

retrieve the expected original alignment despite inevitable

sequencing errors in the reads, thereby allowing a true

evaluation of the mapper’s robustness.

The analysis was applied to data generated by the

Ion Torrent Personal Genome Machine (PGM), a newly

arrived technology dedicated mainly to small genome

sequencing, for which mapper performances have not yet

been evaluated. Reads from real datasets and artificially

simulated reads were used. Simulated reads were gener-

ated using a new customizable read simulator, CuReSim,

which can generate reads of user-determined lengths

with insertions, deletions, and substitutions introduced

at a controlled rate and with an adjustable error dis-

tribution along the read. CuReSim and CuReSimEval,

a script that can be used to evaluate mapping quality,

were developed in Java to run on all operating sys-

tems (see Section 2 of Additional file 1 for more details)

and are freely available at http://www.pegase-biosciences.

com/tools/curesim/. We have shown that in microbial

genome sequencing, some mappers, such as segemehl,

present higher robustness than others, especially when

the number of sequencing errors was high. Other map-

pers are more robust for other applications that demand

other quality criteria. For example, BWASW, SHRiMP2,

SMALT, SSAHA2 and TMAP, might perform particu-

larly well for sequencing focused on rare variant dis-

covery because they show a robust discrimination of

variations. SMALT can localize most of the positions of

reads located in repeated regions. Some mappers, such

as Novoalign, SMALT and SRmapper, needed very small

memory resources (about 20 MB), while SNAP was very

fast and required only about two minutes to process the

bigger datasets used in this study. These results emphasize

the observation that mapper choice is application depen-

dent and users should carefully consider the targeted aim

before choosing a mapper. The evaluation approach pre-

sented here, together with the developed tools (CuReSim

to generate simulated reads and CuReSimEval to evaluate

mapping quality) can be considered as a general method

to evaluate existing or in-development mappers and could

prove interesting in the evaluation of the performances

of mappers for the coming third generation of sequencers

that may have yet another type and rate of errors.

Results
Computational resource requirement and time

measurement

All mapping processes involve the alignment of millions

of reads onto a reference sequence. This is true even

http://www.pegase-biosciences.com/tools/curesim/
http://www.pegase-biosciences.com/tools/curesim/
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Table 1 Main features of the Ion Torrent Personal Genome

Machine datasets used in this study

Ion Torrent PGM data

Name Chip Number Mean Organism

of reads length

RD_100 316 1,713,033 111 bp E. coli K-12 DH10B

RD_200 316 2,176,492 226 bp E. coli K-12 DH10B

RD_400 318 6,668,556 312 bp E. coli K-12 MG1655

The datasets all contain only single-reads with different mean sizes.

for small genome sequencing projects where the small

size of the reference sequence is generally compensated

by the multiplicity of samples to be analyzed. In clinical

microbiology, the time and the computational resources

required for the analysis are critical; therefore, 0 these

factors also need to be evaluated for the different map-

pers. All the mappers tested were run with 24 threads

(except for Novoalign, SRmapper, and SSAHA2, which

can be run with only 1 thread) and the memory con-

sumption and runtime were recorded for three differ-

ent Ion Torrent datasets RD_100, RD_200, and RD_400.

These three datasets contain real single-reads with dif-

ferent mean sizes and are described in Table 1. The

reference genome used was Escherichia coli str. K-12 sub-

str. DH10B [GenBank:NC_010473] for the RD_100 and

RD_200 datasets and Escherichia coli str. K-12 substr.

MG16655 [GenBank:NC_000913] for the RD_400 dataset.

Figure 1 shows the memory consumption for each map-

per for the real datasets when the indexing and mapping

steps were considered together. Novoalign, SMALT, and

SRmapper needed very low memory resources (about

20 MB). It should be noted that SRmapper was developed

to run on a computer with 4 GB of RAM for genomes

the size of the human genome, but, in such a case, it can

be run only in ‘all-best’ mode and does not allow indels

in the mapping. The Novoalign version used in this study

was the free academic version that has not been imple-

mented in parallel. A second group comprising Bowtie2,

MOSAIK, and segemehl, needed less than 1 GB of RAM,

while a third group, BWA, BWASW, and TMAP, needed

less than 2 GB of memory. BWA had peak memory usage

of 2 GB for RD_100 and of more than 3 GB for the RD_400

dataset. BWA was developed to map short reads of up

to 100 bases, which may explain the high peak usage for

400-base reads. SHRiMP2, SNAP, and SSAHA2 required

more RAM (about 3 GB) and SSAHA2 needed about

6 GB for the RD_400 dataset. Finally, the GSNAP and

PASS mappers were highly memory-consuming; for the

RD_400 dataset, GSNAP needed 6 GB of RAM, with a

peak usage of 7 GB while PASS needed about 12 GB of

RAM with a peak usage of 14 GB. The RAM require-

ment increased proportionally with the dataset size for

half of the mappers tested, while for Bowtie2, BWASW,

MOSAIK, Novoalign, SMALT, segemehl, SHRiMP2, and

TMAP memory consumption was about the same for all

dataset sizes. These experiments revealed that the compu-

tational resource requirements varied considerably among

the mappers, from a few megabytes to 14 GB.

The time required for the sequencing process relies

mainly on the biotechnological part of the protocol

Figure 1 Computational resource requirements for each mapper dealing with real datasets. Random Access Memory (RAM, in gigabytes)

consumption observed for each mapper, for the three real datasets (RD_100, RD_200 and RD_400) is shown. The values are the requirements for

when the indexing and mapping steps were considered together. Vertical bars show the mean memory usage and vertical lines represent the peak

memory usage. (1) indicates the mappers that report only one read (‘any-best’ mode) and (2) indicates the mappers that can run only in ‘all-best’

mode.
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(from sample preparation to the sequencing run) but

the runtime of the mapping step could also constitute

a bottleneck for some mappers. Figure 2 shows run-

time measurements for each mapper running with the

three real datasets. The mappers had very different run-

times that were not all proportional to the dataset size.

SNAP was very quick and needed only about 2 minutes

to map the RD_400 dataset. However, this runtime was

for the program run in ‘any-best’ mode, which is always

quicker than the other modes. SRmapper, SSAHA2,

PASS, Bowtie2, TMAP, SMALT, BWASW, SHRiMP2, and

MOSAIK needed less than 40minutes to map the RD_400

dataset and between 1 minute (for Bowtie2 and SMALT)

and 6 minutes (for SSAHA2) to map the RD_100 dataset.

BWA had quick runtimes of 2 and 7 minutes for the

RD_100 and RD_200 datasets, respectively, but was slower

with the biggest dataset RD_400 (around 80 minutes),

probably because BWA is optimized for short reads. The

slowest mappers were Novoalign, GSNAP, and segemehl.

The Novoalign version used in this study could only be

run with one thread which explains the long runtimes

observed in this study (43, 102, and 297 minutes). GSNAP

runtimes were 7, 20 and 90minutes, and segemehl needed

13, 33 and 144 minutes for the RD_100, RD_200, and

RD_400 datasets, respectively. For all the mappers, the

runtimes for the RD_400 dataset (which contains more

reads than the other datasets) were longer. Generally

speaking, themore bases in the dataset, the longer was the

runtime, although the runtimes ranged from one minute

to up to five hours.

Mapper robustness

The accuracy of the sequencing technology is usually the

criterion of first importance in the choice of a sequencer.

Nevertheless, the mappers used to analyze the sequenc-

ing data must be able to efficiently take into account the

inherent and inevitable raw data errors. A robust map-

per will permit compensation for sequencing defects and

will contribute to maximizing coverage while limiting

noise. To evaluate mapper robustness, one method is to

compute metrics (here precision, recall, and F-measure)

through a benchmark formed by simulated reads for

which their original location in the genome and the num-

ber and type of introduced errors are known. We used

simulated datasets with varying error rates to compare

mapper robustness. To avoid simulation biases, we also

studied mapper robustness with RABEMA [6] using real

sub-datasets.

Figure 3 shows the F-measure for each mapper with a

simulated dataset containing 50,000 reads with a mean

length of 200 bases and an error rate that varied from

0 to 4%. F-measure is the harmonic mean of precision

and recall (see the Methods section for details). Preci-

sion is the fraction of mapped reads that are correctly

mapped and recall is the fraction of correctly mapped

reads that are retrieved. Additional figures that show

the precision and recall values used to compute the

F-measure are in Section 3.1 of Additional file 1. Figure 3

shows that the 14mappers displayed very different robust-

ness when the error rate increased, even when, overall,

the F-measure decreased when the error rate increased.

Figure 2 Runtimemeasurements for each mapper dealing with real datasets. Runtime measurements are in minutes. The time measurements

are the runtimes for when the indexing and mapping steps are considered together. Vertical bars show the user runtime (time elapsed during the

experiments) and vertical lines indicate the CPU time. The time axis is in log scale. Each mapper was run with 24 threads (except Novoalign,

SRmapper, SSAHA2, which were run with 1 thread). (1) indicates the mappers that report only one read (‘any-best’ mode) and (2) indicates the

mappers that can run only in ‘all-best’ mode.
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Figure 3 F-measures with varying error rate for eachmapper dealing with simulated datasets. F-measures are shown for error rates from 0 to

4%. The simulated read datasets consisted of 50,000 reads with a mean length of 200 bases. (1) indicates the mappers that report only one read

(‘any-best’ mode) and (2) indicates the mappers that can run only in ‘all-best’ mode.

All mappers had F-measures close to 1 when the reads

contained no sequencing errors or had low error rates,

which meant that they were able to correctly map the

whole set of reads. SRmapper, PASS, BWA, SNAP, and

GSNAP showed significant decreases in the F-measure

when 1.5% and 3% of indels were present in the reads.

SRmapper and SNAP used with their default settings

do not allow indels in the alignments, which explained

the very low F-measure values observed for these two

mappers. The low F-measure values for SRmapper and

SNAP were attributable to low precision values, whereas

for BWA, the low F-measures resulted from low recall

values (see Section 3.1 in Additional file 1). Thus, with

high error rates, BWA did not map a large number of

reads but the mapped reads were correct; whereas, a large

number of reads were incorrectly mapped by SRmap-

per and SNAP (see the figure showing the percentage of

mapped reads in Section 3.1 in Additional file 1). The

nine other mappers tested showed high F-measure values.

Segemehl had a very high F-measure even with high error

rates, meaning that it correctly map the major part of the

read dataset. MOSAIK, SMALT, SSAHA2, and Novoalign

showed peaks in the F-measure values when the dataset

contained only indel errors and seemed to better handle

one kind of error rather than a combination of substitu-

tion and indel errors. SHRiMP2 and Bowtie2, and more

significantly TMAP and BWASW, showed a decrease of

F-measure values for 1.5 and 3% indel error rates. Most of

the tested mappers have been tuned mainly to deal with

substitutions, which can explain their changing behaviors.

The F-measure variations observed for these nine map-

pers are mainly the result of precision variations, except

for Novoalign for which the recall values decreased at high

error rates.

These experiments were repeated for simulated datasets

containing reads with a mean length of 100 and 400

bases (corresponding figures can be found in Section 3.1

in Additional file 1). Overall, the F-measure values were

marginally higher for the shortest reads but the map-

per behaviors were similar to the behaviors observed

with the dataset containing the reads with a mean length

of 200 bases. However, differences were observed for

BWA and GSNAP for which the F-measures were sig-

nificantly better for the dataset with the shorter reads.

BWA was designed to map reads up to 100 bp long,

which explained the better results with short reads. The

F-measures for the dataset of reads of 400 bases were

lower for all the mappers and a significant decrease

was observed for Novoalign, BWA (designed for short

reads), and GSNAP. For the reads of 400 bases, Novoalign

showed an F-measure close to 0 even when the reads

contained no errors. This finding can be explained by

the fact that Novoalign truncates reads before alignment

(option −n). The maximum allowed read length is 300,

so all reads longer than this are truncated to 300 before

mapping.

These experiments showed that most of the mappers

were less robust when the indel rate increased, probably

because most mappers are tuned mainly to deal with sub-

stitutions. In the alignment step, the scoring parameters
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used by the mappers are often those currently used in

bioinformatics, i.e. from the evolutionary point of view,

a substitution is less penalized than an insertion or a

deletion. However, in sequencing, mutations do not fol-

low evolutionary rules; rather, they are dependent on the

error model of the sequencing technology. The Ion Tor-

rent PGM, for example, is known to introduce more indels

than substitutions into homopolymer stretches. There-

fore, mapper robustness could probably be improved by

modifying the scoring parameters in the alignment step by

decreasing the indel penalty. To test this idea, we changed

the gap penalty for two mappers, SHRiMP2 and PASS.

For SHRiMP2, the gap open and extension penalties were

set to match the penalty for substitutions (see the Section

4.1 in Additional file 1 for more details). For PASS, a

maximum gap of 8 bases was allowed with a gap open

and extension penalty of 1. The F-measures that were

obtained with the adapted scoring parameters behaved

in the same way as previously observed for these two

methods, but they were globally better for all error rates

than the F-measures obtained with the default parameters

(the corresponding figure can be found in Section 4.1 in

Additional file 1).

All the simulated datasets described above contained

2,500 random reads (i.e. reads that were generated by

choosing randomly a nucleotide for each position), which

could not be mapped onto the reference genome. All the

mappers, except SMALT and TMAP, returned all the ran-

dom reads as unmapped. For SMALT and TMAP, the

longer the read length the higher the number of mapped

random reads. SMALT mapped only a small number of

the random reads (less than 10 reads with around 30

matches), whereas TMAP mapped around 10%, 12%, and

16% of the random reads in the 100, 200, and 400 bases

datasets, respectively, with around 15matches. These per-

centages are not negligible and indicated that the TMAP

strategy (used as the default mapper in Ion Torrent anal-

ysis suite) was to map a maximum number of reads even

if the mapping was not always relevant. The reported

alignments for the random reads were short and could be

filtered out easily, but for non-expert users these reported

hits will add to the complexity of the read mapping task.

In conclusion, most of the tested mappers were robust

with low error rates. Segemehl showed the best F-

measures even for datasets with high error rates and for all

read lengths considered in this study. MOSAIK, SMALT,

SSAHA2, Bowtie2, and SHRiMP2 correctly mapped a

major part of the read datasets. The results also showed

that to handle Ion Torrent reads, mappers need to allow

indels in the alignments, as was clear for all tested map-

pers except for SRmapper and PASS with their default

settings. We also demonstrated that decreasing the gap

penalties could improve the mapping results for Ion

Torrent data.

To avoid simulation biases, RABEMA was used to eval-

uate mapper performances with real datasets.

In RABEMA, a full-sensitivity algorithm was used to

identify all possible matching intervals within a given

error rate range for each read and the mapper evaluation

was based on a metric called normalized found inter-

vals (NFI), in which each interval for a read contributed

1/x points, where x is the number of alignments for the

read. The number of points was divided by the number of

reads andmultiplied by 100 to get the percentage. Figure 4

shows the percentage of NFI for mappers run in the ‘all’

mode with varying error rates. Only 11mappers were con-

sidered because BWASW, SNAP, and SRmapper cannot

be run in ‘all’ mode. All the mappers identified between

100% and 95% of the NFI for datasets with no errors. How-

ever, for datasets with errors, the NFI fell rapidly to below

10% of NFI for some mappers (PASS, BWA, and GSNAP),

while others (TMAP, SSAHA2, SMALT, MOSAIK, and

Novoalign) maintained a high NFI percentage for datasets

with up to a 4% error rate and finished at between 50

and 20% NFI for an 8% error rate (Novoalign fell rapidly

and finished below 10%). Only segemehl, SHRiMP2, and

Bowtie2 maintained NFI above 80%, even at an 8% error

rate.

The experiments were repeated with datasets that con-

tained reads 100 and 400 bases long (figures can be found

in Section 3.1 in Additional file 1). The ranking and behav-

ior of the 11 mappers were similar to those obtained with

datasets containing read lengths of 100, except Novoalign

which was significantly better with the shorter reads. For

datasets with reads 400 bases long, the behavior of most

of the mappers was similar to the behavior observed with

200-base long reads but the NFI percentages were lower.

The Novoalign plot with several increases and decreases

was atypical and only around 16% of the 400-base reads

were mapped, probably because Novoalign trims reads to

a maximum length of 300 bases. BWA identified around

100% NFI in the 400-base reads dataset with no errors,

while with an error rate of 8% theNFI only fell to 40%. This

behavior for BWA was surprising when compared with

its behavior in the previous experiments; however, it can

be explained by the definition of NFI used by RABEMA.

In RABEMA, reads do not have to be aligned over their

entire length to be considered as correctly mapped; so,

many of the short alignments returned by BWAwere clas-

sified as correct by RABEMA, whichwas not the case with

our new definition. The analysis of mapper performances

on real datasets with RABEMA indicated that Bowtie2,

segemehl, and SHRiMP2 were better than the other map-

pers, even for datasets with high error rates and regardless

of the read lengths.

Similar observations and similar rankings were obtained

with the real and simulated datasets. This double strategy

built our confidence in the conclusions drawn from these
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Figure 4 Normalized found intervals with varying error rate for the mappers that can run in ‘all-mode’. The percentage of normalized

found intervals was obtained using RABEMA, with error rates varying from 0 to 8% for the 11 mappers run in ‘all-mode’. Mappers were run with real

sub-datasets containing 50, 000 reads randomly extracted from the RD_200 dataset. Each point is the mean value of four sub-datasets.

experiments and confirmed that our simulator generated

reads that were similar to sequencer generated reads (at

least for Ion Torrent generated reads).

Study of repeats

The study and analysis of repeated sequences is as impor-

tant for small microbial genomes, especially for bacterial

genomes, as it is for eukaryotic genomes. Repeats in

bacterial genomes represent a smaller proportion of the

total genomic DNA that they do in eukaryotic genomes,

but the repeated elements are usually longer(for exam-

ple, copies of homologous genes, inserted sequences, and

transposons). Mapper behavior when dealing with repeti-

tive regions in a reference genome is, therefore, an impor-

tant parameter when the DNA repeat regions may also

be informative regions. To study the ability of a mapper

to report all possible positions for a read in a repeated

sequence, we used an artificial genome containing five

repeats. In theory, a mapper, in ‘all’ mode, must report 5

hits for each repeat-located read. Figure 5 shows the per-

centage of repeat-located reads correctly reported by the

mappers with reads of 200 bases, subdivided in classes

depending on the number of hits found. For each of the

repeat-located reads, the number of locations in a repeat

were counted. Note that BWASW and SNAP can report

only one hit (‘any-best’ mode) and SRmapper is limited to

all-best hits.Most of themappers were able tomap repeat-

located reads in at least one repeat (percentages were close

to 100%), except for BWA and PASS. Only two mappers

(SMALT and GSNAP) retrieved a large proportion (more

than 80%) of the 5 hits and four few others (SHRiMP2,

MOSAIK, TMAP, and Bowtie2) retrieved an average

proportion of the 5 hits (between 70 and 35%). The other

mappers performed quite poorly in this task, retrieving

only a small percentage or none of the 5 hits. With 100-

base and 400-base reads, the mappers gave better and

worse global results, respectively, than they did with the

200-base reads (except for TMAP which was less efficient

with the 100-base reads than it was with the 200-base

reads; see Section 3.2 in Additional file 1). In conclu-

sion, SMALT was very good at retrieving multi-mapped

reads whatever the read length, while GSNAP, MOSAIK,

and SHRiMP2 also gave correct results. TMAP was better

with longer reads and Novoalign was better with shorter

reads.Mappers that cannot be run in ‘all-mode’ or that are

not able to deal with indels (BWASW, SNAP, PASS, and

SRmapper) are not suitable for identifying multi-mapped

reads.

Mutation discovery

Distinguishing between sequencing or mapping errors

and true genetic variations is a challenge in variant analy-

sis. Exome sequencing and genome re-sequencing require

robust mapping results with as little noise as possible to

identify a mutation of interest and to limit false posi-

tive mutations. Real reads from E. coli DH10B sequencing

were mapped onto a genome sequence in which muta-

tions with known positions and types (substitution or

indel) had been introduced artificially. FreeBayes soft-

ware [15] was used to call variants, and precision and

recall values were computed for mutation discovery in a

reference genome with varying mutation rates. Figure 6

shows the precision and recall values obtained for muta-

tion discovery with real datasets containing reads of 200
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Figure 5 Percentage of repeat-located reads correctly reported by the mappers. The percentage of reads correctly reported in a repeat is

shown for the mappers dealing with simulated reads of 200 bases, subdivided in classes depending on the number of identified hits. (1) indicates

mappers that that report only one read (‘any-best’ mode) and (2) indicates the mappers that can run only in ‘all-best’ mode.

bases and a theoretical depth of 40X. Generally, preci-

sion and especially recall decreased when the mutation

rate was increased in the reference genome. In all the

experiments, the precision values were high, indicating

that the mutations predicted by the variant caller from

the mapping files were mainly correct for all mappers.

Most of the tested mappers presented good precision and

recall values for all mutation rates; the exceptions were

BWA, Novoalign, PASS and SRmapper. SRmapper and

PASS presented lower precision and recall values than

all the other mappers mostly because these two map-

pers do not allow for indels in the alignments, which

decreased the precision of the mapping (see the subsec-

tion Mapper robustness) and made the variant calling

less accurate. The mutation discovery performances of

BWA and Novoalign diminished when the mutation rate

reached 5%. It should be noted that for these twomappers,

the percentage of mapped reads, and therefore the mean

depth, was low compared with the percentage of mapped

reads for the other mappers (15% for BWA and 50% for

Novalign - see the corresponding figure in Section 3.3 in

Additional file 1). This reduced number of mapped reads

did not permit the accurate detection of mutations in the

reference genome. ROC curves were constructed (see the

corresponding figures in Section 3.3 in Additional file 1),

which confirmed the mutation discovery results that we

obtained.

The experiments were repeated with simulated datasets

(the corresponding figure can be found in Section 3.3 in

Additional file 1). The conclusions that were drawn were

similar to those obtained with the real datasets; however,

the precision and recall values were lower for all map-

pers. We also performed similar experiments with real

and simulated datasets for read lengths of 100 and 400

bases (see Section 3.3 in Additional file 1 for correspond-

ing figures).Mapper behavior was similar regardless of the

read length, except for BWA and Novoalign. These two

mappers showed better values with reads of 100 bases,

and showed near zero recall values with reads of 400

bases. These results were not surprising because BWA

was designed for short reads and Novoalign truncates

reads to a maximum length of 300 bases.

The behavior of the mappers in variant discovery was

coherent with the results obtained in the robustness study

and could be deduced from them. For example, SRmap-

per and BWA show a significant decrease in F-measure

values when the error rate increased and similar behavior

has been observed when the mutation rate was increased

in the reference genomes. Variant discovery is impacted

directly by the quality of the mapper alignments, i.e. posi-

tion and type of edit operations (mismatches, insertions

and deletions). The definition of a correctly mapped read

introduced in this study is more stringent than for previ-

ous studies, because it takes into account the correctness

of the alignment (length, number, and type of edit oper-

ations). These results demonstrated that the method we

used to evaluate mapper robustness was efficient.

For the simulated data, similar behavior was observed

for all the mappers and for all datasets but with lower

precision and recall values than was observed for the

real data. This decrease could be explained by a lower

error rate in the real data than in the simulated data. We

performed complementary analyses to observe the pre-

cision and recall values obtained with lower sequencing

error rates (data not shown). When reads were gener-

ated without errors, the precision and recall values were
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Figure 6 Precision and recall values for mutation discovery with varying mutation rates in the reference genome. The real datasets that

were used contained reads of 200 bases and had a theoretical depth of 40X . The precision (in black) and recall (in gray) values obtained for mutation

discovery for each mapper are shown. Top panel: 0.05%mutations in the reference genome; middle panel: 1% mutations in the reference genome;

and bottom panel: 5% mutations in the reference genome. (1) indicates the mappers that report only one read (‘any-best’ mode) and (2) indicates

the mappers that can run only in ‘all-best’ mode.

close to 1. Precision and recall values were closer to the

values obtained for the real dataset values when reads

were generated with 0.5% deletions, 0.25% insertions, and

0.25% substitutions, suggesting that the real dataset used

here contained less than 2% sequencing errors. These

experiments again showed that the data simulated with

CuReSim have characteristics that are similar to the real

data produced by the Ion Torrent PGM .

Finally, because we used simulated data, the impact of

sequencing depth in mutation discovery could be tested.

We used SHRiMP2 because this mapper behaved well in

the variant discovery experiments. The same procedure

was applied with four different read datasets of 200 bases

with mean depths of 20X, 80X, 160X, and 320X (results

are shown in Table S1 of Section 4.2 in Additional file 1).

The precision and recall values were lower with a mean

sequencing depth of 20X and were equivalent for the other

tested sequencing depths. These results showed that a

mean sequencing depth of 40X was enough to call varia-

tions correctly. Increasing the depth of sequencing did not

seem to improve the quality of variant calling.

These experiments showed that most of the testedmap-

pers gave correct results in mutation discovery even when

used with their default settings. The only exceptions were

the BWA, Novoalign, PASS, and SRmapper mappers.

SRmapper and PASS do not allow indels in alignments.

These kinds of mappers should be avoided for variant

calling analysis.

Discussion
Here, a benchmark procedure to compare mappers for

HTS that can be applied to any sequencing platforms and
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any applications is described. The different steps involved

in this procedure are shown in Figure 7. In step 1, a

list of mappers is defined. Depending on the sequenc-

ing technology and the application, the most appropriate

mapper can be selected for use. In step 2, real datasets

are collected and simulated datasets are generated before

being mapped onto the reference genome. Step 3 is a

comparison step based on four criteria: mapper compu-

tational resource and time requirements; mapper robust-

ness; mapper behavior with repetitive regions; and map-

per mutation discovery ability. The benchmark procedure

uses simulated and real datasets to provide the user with

a robust method for mapper comparison. The results

obtained can be used to answer questions such as: How

much RAM is required? How long will it take to map a set

of reads? How does the robustness vary in relation to the

error rate? How does a mapper deal with multi-mapped

reads? Could a mapper be used with a distant reference

genome? What is the quality of the reported alignment?

Answers to these questions can help users chose a map-

per that best fits a particular application and sequencing

platform. This procedure could also be used to evaluate

performances of a newly developedmapper or to optimize

parameters of already existing mappers.

We also presented a new read simulator, CuReSim (Cus-

tomized Read Simulator), which generates synthetic HTS

reads for the major letter-base sequencing platforms.

Users can fix the mutation rates, the read lengths, and

can generate random reads. Several error distribution

modes are available and particular attention was paid to

special cases in which several introduced errors in the

same read can lower the number of errors because of

compensatory changes. CuReSimEval is a complementary

tool that evaluates the mapping quality from SAM files

produced by aligning CuReSim simulated reads with any

mapper. CuReSim and CuReSimEval are freely available at

http://www.pegase-biosciences.com/tools/curesim/. The

CuReSim suite has been developed in Java and is dis-

tributed as JAR files to be operating system independent

and easy to use by non-expert users.

We used the CuReSim suite in a mapper compari-

son with Ion Torrent data applied to small genomes.

To obtain a robust evaluation procedure, we introduced

a new definition for mapping correctness. This newly

introduced definition is more stringent than the previous

ones because the end of the alignment and the num-

ber of mutations were considered in addition to the start

position. The mapper robustness results obtained with

the CuReSim suite simulated data matched the results

obtained with real datasets and RABEMA, demonstrating

that the CuReSim suite simulated reads with characteris-

tics similar to real reads. We performed completely inde-

pendent experiments to evaluate the mutation discovery

ability of the mappers and found that the results obtained

for mapper robustness can also be used to predict the

mutation discovery ability of the mappers. Variant calling

efficiency is directly dependent on the alignment quality

obtained by the mapping algorithms. Checking whether a

Figure 7 Benchmark procedure used to comparemappers. The different steps used to compare mappers are shown. The criteria in the solid

ellipses were used with simulated and real data, whereas the criteria in the dotted ellipses were used only with simulated data.

http://www.pegase-biosciences.com/tools/curesim/
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mapped read is in its expected position is not sufficient

because the position and number of edit operations in

the produced alignment must also be as close as possi-

ble to the expected alignment. The sequencing errors in

Ion Torrent reads are mainly indels. For mappers that are

unable to deal correctly with indels, the resulting align-

ments, even those at the expected positions, can result

in biased mapping that could impact the variant calling

results. All our results demonstrated the reliability of our

evaluation method.

Our benchmark procedure was applied to Ion Torrent

data from small genome sequencing. Mapping algorithms

and previous mapper comparison studies focused mainly

on short reads with substitutions (Illumina technology)

and on large reference genomes (mainly the human

genome). These evaluation studies therefore are poorly

informative for mapping new technology sequencer data

with different error models. Additionally, some features

of bacterial and small genomes, such as possible extreme

GC content, make the extrapolation from the previous

studies difficult. For example, very high or low GC con-

tent percentages create a higher probability of encounter-

ing homopolymers in the genome sequence, which can

significantly increase the number of indels in homopoly-

mers. Our benchmark procedure for Ion Torrent data

with bacterial genomes did not reveal a single best map-

per but rather indicated several options depending on

the particular application and technology. When only

a desktop computer with 4 GB of RAM is available,

users can select a mapper that is not highly memory-

consuming; for example, Novoalign, SMALT, SRmapper,

Bowtie2, MOSAIK, or segemehl. Novoalign, segemehl,

and GSNAP require very long runtimes, while SNAP is

very fast (around 2 minutes to deal with big datasets).

Other mappers had runtimes shorter than 40 minutes

for the bigger datasets. Concerning mapper robustness

with varying error rates, all mappers manage to cor-

rectly map reads when the sequencing error rate was low;

however, some mappers were clearly not suitable for use

with datasets containing high error rates (PASS, BWA,

GSNAP, SNAP, and SRmapper). Segemehl presented good

F-measure values with all the tested datasets even at high

error rates. MOSAIK, SHRiMP2, and Bowtie2 also gave

correct results. SMALT was well fitted to retrieve all

hits for repeat-located reads and GSNAP, MOSAIK, and

SHRiMP2 also give correct results in this task. One of

these mappers is therefore suitable for the identification

of unique and non-unique reads, whereas PASS, BWA,

BWASW, SNAP, and SRmapper are not. Mapper behavior

for mutation discovery with datasets with varying muta-

tion rates using a close but not identical reference genome

is of special interest because often only the genome of a

closely-related species is available as a reference.Mutation

discovery ability is also important when the genomes of

two closely-related strains are compared to detect variants

or mutated strains, for example. In such cases, mappers

need to produce accurate alignments so that true muta-

tions can be detected. All the mappers tested here showed

good precision and recall with all tested mutation rates

and for all datasets, except BWA, Novoalign, PASS, and

SRmapper.

Our results show that some mappers dealt correctly

with the Ion Torrent data although they were not ini-

tially designed for this technology. For example, SHRiMP2

which was designed for Illumina, SOLiD, and 454 reads,

showed robust results with Ion Torrent data.

The mapper default parameters were used deliberately

in this study to mimic the general case of a non-expert

user; therefore, different results could have been obtained

with other parameter settings. Even with the default set-

tings, several mappers that can be used with Ion Tor-

rent data were identified. Additionally, we showed that

the mapping results could be improved by adapting the

parameter settings to the error model, for example, by

decreasing the indel penalty with SHRiMP2. For Ion Tor-

rent data, our study demonstrated that to be efficient a

mapper had to allow indels in the alignments and that

the results were more reliable when the mapping algo-

rithm allowed multi-mapped reads. The mutation discov-

ery experiments showed that a sequencing depth of 40X

was enough to correctly call variants.

Conclusions
All the different applications that arise from HTS tech-

nologies need not have the same mapping characteristics.

Some applications may require robust mapping that deals

with high error rates while others may require the abil-

ity to deal with repeats, for example, when re-sequencing

is performed for bacterial variant identification aimed at

efficiently detecting mutations and indels. Mappers such

as SSAHA2, TMAP, SHRiMP2, or Bowtie2 will support

the detection of mutations even at high rates and without

the necessity for deep sequencing. In other applications,

such as amplicon sequencing to study of repeated motifs

(such as CRISPR or IS), the ability to map correctly on

repeat regions will be essential and a mapper like SMALT,

which performs such tasks very well even though its

robustness is not among the highest could be used.

However, for some specific applications, such as the dis-

covery of mutations in viral genomes, mappers such as

Bowtie2, segemehl, and SHRiMP2 with strong robustness

could be used because accurate mapping of the maxi-

mum number of reads, especially the few that bear the

mutation, is essential [28].

For some applications, it could be better to use a com-

bination of mappers; for example, in pathogen identifi-

cation, the strain might be unknown. In this case, SNAP

can be used to quickly identify a close reference genome
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among a set of available genomes, then a more robust

mapper can be used to identify mutations or unique

reads.

The correct choice of mapper is crucial in HTS data

analysis. In this paper, we have presented a benchmark

procedure to compare mapping algorithms that are used

currently in HTS. Therefore, we introduced a stringent

definition of mapping correctness together with a new

read simulator, CuReSim, to generate simulated reads with

controlled type, rate, and/or distribution of errors along

the reads. The read simulator is freely distributed along

with a tool to evaluate the mapping quality, CuReSimEval;

both are available at http://www.pegase-biosciences.com/

tools/curesim/. This procedure was applied to small

genomes with Ion Torrent data. Our results do not lead

to the selection of a unique, omnipotent mapper but

rather show that the choice of mapper has to be appli-

cation and sequencing technology driven. Our study also

demonstrates that a combination of several complemen-

tary mappers could significantly improve the mapping

step in pipelines. Possible combinations should be tested

and evaluated using the same approach. The benchmark

procedure presented here greatly helps in the choice of a

goodmapper for a given application and dataset. This pro-

cedure could also be used to evaluate a newly developed

mapper or to optimize parameters of an already existing

one. An optimized solution for read mapping, adapted

to sequencing technology and biological applications, will

help compensate for HTS defects.

Methods
Mappers

The mappers used in this study were selected from the list

given in [2]. The mappers that were explicitly indicated

as compatible with Ion Torrent data were selected first;

namely, Bowtie2, GSNAP, MOSAIK, Novoalign, sege-

mehl, SMALT, SNAP, and TMAP. Reads generated using

the Roche 454 technology have features in common with

Ion Torrent reads, so the mapper list was extended to

include mappers that were compatible with 454 tech-

nology; namely, BWA, BWASW, PASS, SHRiMP2, and

SSAHA2. Finally, SRmapper, which is not a sequencing-

platform specific mapper, was added. Table 2 lists the

14 selected mappers used in this study and their main

features. The main differences between them are the

algorithmic approaches and the available options. All

the selected mappers index the reference genome, and

MOSAIK indexes the reference genome and the reads.

The Bowtie2, BWA, BWASW, and TMAP algorithms are

all based on the Burrows–Wheeler transform, while the

algorithms of the othermappers use hash-tables. TMAP is

themapper that is commonly distributedwith the IonTor-

rent technology. TMAP uses a series of algorithms (BWA,

BWASW, SSAHA2, the super-maximal exact matching

Table 2 Description of mappers used in this study

Features of mappers used in this study

Name Version Algorithm Mis. Indels Gaps Report Align. Parallel Qual. Ref.

Bowtie2 2.0.4 BWT Y Y Y A G,L Y Y [16]

BWA 0.6.2 BWT Y Y Y A G Y Y [17]

BWASW 0.6.2 BWT Y Y Y AnyB L Y Y [18]

GSNAP 2012-12-20 HT Y Y Y A G,L Y N [19]

MOSAIK 2.1.73 HTR Y Y Y A G Y Y [20]

Novoalign 2.08.03 HT Y Y Y A G N Y

PASS 2.02 HT Y Y Y A G Y Y [21]

segemehl 0.1.4-380 ESA Y Y Y A G Y N [22]

SHRiMP2 2.2.3 HT Y Y N A G Y Y [23]

SMALT 0.7.0.1 HT Y Y N A L Y Y

SNAP 0.15 HT Y Y Y AnyB G,L Y Y [24]

SRmapper 0.1.1 HT Y N N AB G N N [25]

SSAHA2 2.5.5 HT Y Y N A L N N [26]

TMAP 3.2.2 BWT Y Y Y A G,L Y Y [27]

The column headed ‘version’ indicates the version of the mapper used in this study; the column headed ‘algorithm’ gives the algorithmicmethod used in the mapper.

BWT, the reference genome was indexed with the Burrows–Wheeler transform; HT, the reference genome was indexed with Hash-Table; HTR, the reference genome

and reads were indexed with Hash-Table; and ESA, the reference genome was indexed by enhanced suffix arrays. In the columns headed ‘mis.’ (mismatches), ‘indels’,

and ‘gaps’, ‘Y’ indicates the algorithm allows mismatches, indels, and long insertions or deletions, and ‘N’ indicates otherwise. The column headed ‘report’ indicates

the available report mode: ‘A’ for ‘all’; ‘AnyB’ for ‘any-best’; and ‘AB’ for ‘all-best’ mode. The column headed ‘align.’ ‘G’ (globally) indicates the reads were aligned

end-to-end and ‘L’ locally indicates they were not. In the column headed ‘parallel’, ‘Y’ indicates the algorithm is multi-threaded, and ‘N’ indicates it is not. The column

headed ‘qual.’ indicates if sequencing quality is taken into account by the mapper (‘Y’ for yes; ‘N’ for no). Bibliographical references are given in the last column.

http://www.pegase-biosciences.com/tools/curesim/
http://www.pegase-biosciences.com/tools/curesim/
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algorithm, and the Smith–Waterman algorithm) to map

data to an indexed reference sequence. Parallel implemen-

tation can greatly decrease execution times for almost all

mappers. Most mappers can report all the hits with scores

higher than a given threshold; this option is often called

the ‘all’ mode report. SRmapper can be run only in the

‘all-best’ mode, which means it reports all hits with the

best score. BWASW and SNAP can only be run in ‘any-

best’ mode, which means they report only one random

hit from among the best hits. The selected mappers were

run with their default parameters, except those for which

the reporting mode was set to ‘all’ mode. The number of

threads was fixed to 24 for all the parallel implemented

mappers. The command lines that were used for each of

the mappers are available in Section 1 in Additional file 1.

Computational resource requirement and time

measurement

Memory consumption was measured by parsing the out-

put of the Unix command ‘top’ every second. The time

measurement was obtained using the Unix command

‘time’. The real time corresponds to the elapsed wall-clock

time. CPU time, obtained by adding the user and system

times, is the amount of time the CPU was actually execut-

ing instructions. All the mappers were run on a PC with a

6-core processor (2.40 GHz) with 24 GB of RAM.

Datasets

Real and simulated datasets were used in this study. Three

real datasets obtained from the Ion Torrent Commu-

nity website (http://ioncommunity.lifetechnologies.com/)

were used. Themain features of the real datasets, RD_100,

RD_200, and RD_400, are shown in Table 1. For some

experiments, smaller datasets were required; therefore,

50,000 reads were extracted randomly from the real

data to generate the smaller datasets. Four files were

generated from each dataset and the mean value was

computed.

Simulated data were generated from the complete

genome of Escherichia coli str. K-12 substr. DH10B [Gen-

Bank:NC_010473] using CuReSim. The command lines

used for read generation are available in Section 1 in

Additional file 1. Three datasets were generated with read

lengths specific to Ion Torrent technology: mean lengths

of 100 bases, 200 bases, and 400 bases with a standard

deviation in length of 10% for each dataset. Ion Tor-

rent technology produces reads with about 1% deletions,

0.5% insertions, and 0.5% substitutions [12,29,30]. Each

simulated dataset contained 9 files of 50,000 reads with

varying indel and substitution rates: the indel rate varied

from 0 to 3% and the substitution rate varied from 0 to

1%. Table 3 shows the 9 files that formed the simulated

dataset. Each dataset contained, among the 50,000 reads,

2,500 randomly generated reads.

Table 3 Simulated datasets used in this study

Simulated data

Insertion rate Deletion rate Substitution rate Total error rate

0 0 0 0

0 0 0.5 0.5

0 0 1 1

0.5 1 0 1.5

0.5 1 0.5 2

0.5 1 1 2.5

1 2 0 3

1 2 0.5 3.5

1 2 1 4

The datasets each contained 50,000 reads with varying indel, substitution and

error rates. The indel rate varied from 0 to 3%, the substitution rate varied from 0

to 1%, and the total error rate varied from 0 to 4%.

All the datasets and genomes used in this study can be

obtained from the authors upon request.

Mapper robustness

To compare themappers’ robustness, several metrics were

computed for the simulated datasets. A read was consid-

ered as correctly mapped if among the reported hits at

least one hit fitted the following criteria: i) the original

start position (i.e. the position from which the read is gen-

erated) was retrieved, ii) the end position was retrieved,

and iii) the alignment produced by the mapper showed

exactly the same number of insertions, deletions, and

substitutions. Indels in homopolymers at the end of the

alignment led to failure to find some correct alignments

(the observed start and end positions are not the expected

ones). To deal with this special case, a shift for the start

and end positions was allowed. The shift gives the number

of possible insertions and deletions not considered at the

alignment ends. In this case an alignment was considered

as correct when the number of insertions (or deletions) in

themapper alignment added to the possiblemissing inser-

tions (or deletions) was equal to the original number of

insertions (or deletions), and the number of substitutions

was the same. Figure 8 shows examples of alignments

produced by a mapper in the case of indels in this spe-

cial case. In the read 1 example, the expected alignment

starts in 4031012 and ends in 4031103, with two deletions,

no insertions; and one substitution; however, the align-

ment returned by the mapper starts in 4031014, ends in

4031103, and showed only one substitution. Not consider-

ing the special case of indels at the alignment ends would

have classified this read as incorrectly mapped. However,

with our rules, the shift in start positions allowed one dele-

tion at the start of the alignment, meaning that the read

was classified as correctly mapped, which reflects reality.

http://ioncommunity.lifetechnologies.com/
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Figure 8 Reads identified as correctly and incorrectly mapped.

Two representative alignments of simulated reads (read 1 and read 2).

produced by a mapper in the special case of indels in homopolymers

at the end of an alignment. In each case, the first alignment is the

expected alignment for the simulated read with the correct number

of insertions, deletions, and substitutions; the second alignment is the

alignment returned by a mapper.

In the read 2 example, a shift permitted the addition of

one deletion at the beginning of the alignment. How-

ever, the number of substitutions was different between

the expected and observed alignments; therefore, the read

was classified as incorrectly mapped. A read was con-

sidered as incorrectly mapped if no hits fitted the three

criteria listed above. A read was considered as unmapped

if the read was not identified on the reference genome.

Precision and recall values were computed as: precision =
TP

TP+FP and recall =
TP

TP+FN with TP: true positives

being correctly mapped reads, FP: false positives being

incorrectly mapped reads, and FN: false negatives being

unmapped reads. The F-measure combines the precision

and recall values and was computed as: F − measure =

2 ∗
precision∗recall
precision+recall The script to compute these metrics

with simulated datasets produced by CuReSim is freely

available.

To evaluate the mapper performances on real datasets,

the reduced datasets containing 50,000 reads were

mapped with each mapper using RABEMA [6] to obtain

the percentage of NFI depending on the error rates.

RABEMAwas run for all themappers in ‘all-mode’, except

for BWASW, SNAP, and SRmapper for which the ‘all-

mode’ is not available.

Study of repeats

A 250,000 bp long artificial genome was generated with

five repeats of 500 bp and an error rate of 3%. Using

CuReSim, we generated from this genome three sets of

50,000 reads with 0.5% insertions, 1% deletions, 0.5%

substitutions, and a mean size of 100, 200, and 400 bases

with a standard deviation in length of 10%. This artificial

genome was used to evaluate the ability of a mapper to

retrieve all locations for a read located in a repeat. A total

of 479, 465, and 482 reads for the 100, 200, and 400-base

datasets, respectively, were located in one of the 5 repeti-

tions. The number of locations corresponding to a repeat

was counted for each of the repeat-located reads.

Mutation discovery

To evaluate the ability of each mapper to retrieve muta-

tions (i.e. true genetic variations within the sample), real

and simulated datasets were used with reference genomes

in which mutations were introduced artificially at dif-

ferent rates. An in-house script that can take an entire

genome as input and return a mutated genome with

a given error rate and a file containing the introduced

mutations with their type (substitution or indel) and

their genome position was used. For the real datasets,

three mutated genomes were generated from the com-

plete genome of Escherichia coli str. K-12 substr. DH10B

with 0.05, 1, and 5% mutations (comprising 90% substi-

tutions and 10% indels). These genomes were used as

reference genomes with the real datasets RD_100 and

a subset containing 830,000 reads from RD_200. In the

same way, three mutated genomes from Escherichia coli

str. K-12 substr. MG16655 [GenBank:NC_000913] were

generated to use as reference genomes with a sub-dataset

extracted from the RD_400 dataset (595,000 reads). We

used sub-datasets for read lengths of 200 and 400 bases

to obtain a similar depth of 40X for each real dataset.

For the simulated dataset, a sub-sequence of 250,000 bp

from the Escherichia coli str. K-12 substr. DH10B com-

plete genome(from 2,000,001 to 2,250,000) was extracted.

From this sub-sequence, we generated three simulated

read datasets with CuReSim, with mean lengths of 100,

200, and 400 bp with 10% standard deviation in length and

0.5% insertions, 1% deletions and 0.5% substitutions, and

three mutated small genomes with 0.05, 1, and 5% muta-

tions. To obtain amean depth of about 40X for each length

set, these 100, 200, and 400 datasets contained 100,000;

50,000, and 25,000 reads respectively. Mutation detection

was performedwith FreeBayes [15] version 9.9.2-27 (com-

mit id:5d5b8ac). FreeBayes produces a file in Variant Call

Format (VCF) that contains all variations. The VCF file

was filtered to keep only the variations with a depth of at

least 10 reads and a frequency of at least 80%. The abil-

ity of the mappers to detect true genetic variations was

evaluated by computing precision and recall as follows:

precision =
CM

CM+IM and recall =
CM

CM+IM+NM , where CM

is correctly identified mutations, i.e. same type and same

or equivalent position as the introduced mutation, IM

is incorrectly identified mutation, and NM is not-found

mutation.
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Additional file

Additional file 1: Supplementary material. This PDF file contains

supplementary data for this paper. Section 1 - Command lines used for

each of the tested mappers and for read generation. Section 2 -

Description of CuReSim, the customizable read simulator, and

CuReSimEval, the program to evaluate the mapping quality. Section 3 -

additional figures. Section 4 - presents additional experiments.
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