N

HAL

open science

Real-time recognition of surgical tasks in eye surgery
videos.

Gwénolé Quellec, Katia Charriere, Mathieu Lamard, Zakarya Droueche,

Christian Roux, Béatrice Cochener, Guy Cazuguel

» To cite this version:

Gwénolé Quellec, Katia Charriere, Mathieu Lamard, Zakarya Droueche, Christian Roux, et al.. Real-
time recognition of surgical tasks in eye surgery videos..

pp.579-590. 10.1016/j.media.2014.02.007 . inserm-00967107

HAL Id: inserm-00967107
https://inserm.hal.science/inserm-00967107
Submitted on 27 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Medical Image Analysis, 2014, 18 (3),


https://inserm.hal.science/inserm-00967107
https://hal.archives-ouvertes.fr

Real-Time Recognition of Surgical Tasks in Eye Surgery
Videos

Gwénolé Quellec®*, Katia Charriere®®, Mathieu Lamard®?,
Zakarya Droueche®?, Christian Roux™?, Béatrice Cochener®®4,
Guy Cazuguel®?

¢Inserm, UMR 1101, Brest, F-29200 France
YINSTITUT Mines-Télécom; TELECOM Bretagne; UEB; Dpt ITI, Brest, F-29200
France
¢Univ Bretagne Occidentale, Brest, F-29200 France
YCHRU Brest, Service d’Ophtalmologie, Brest, F-29200 France

Abstract

Nowadays, many surgeries, including eye surgeries, are video-monitored. We
present in this paper an automatic video analysis system able to recognize
surgical tasks in real-time. The proposed system relies on the Content-Based
Video Retrieval (CBVR) paradigm. It characterizes short subsequences in
the video stream and searches for video subsequences with similar structures
in a video archive. Fixed-length feature vectors are built for each subse-
quence: the feature vectors are unchanged by variations in duration and
temporal structure among the target surgical tasks. Therefore, it is possible
to perform fast nearest neighbor searches in the video archive. The retrieved
video subsequences are used to recognize the current surgical task by analogy
reasoning. The system can be trained to recognize any surgical task using
weak annotations only. It was applied to a dataset of 23 epiretinal mem-
brane surgeries and a dataset of 100 cataract surgeries. Three surgical tasks
were annotated in the first dataset. Nine surgical tasks were annotated in
the second dataset. To assess its generality, the system was also applied to
a dataset of 1,707 movie clips in which 12 human actions were annotated.
High task recognition scores were measured in all three datasets. Real-time
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task recognition will be used in future works to communicate with surgeons
(trainees in particular) or with surgical devices.

Keywords: CBVR, real-time, surgical task recognition, eye surgery

1. Introduction

Nowadays, many surgeries are video-monitored. We believe real-time
video monitoring may be useful to automatically communicate information
to the surgeon in due time. Typically, whenever the surgeon begins a new sur-
gical task, relevant information about the patient, the surgical tools, etc., in
connection to this task, may be communicated to him or her (either visually
or phonically). The advantage is obvious for the less experienced surgeons.
Recommendations on how to best perform the current or the next task, given
the patient’s specificities, may be communicated to them: these recommen-
dations would derive from the experience of their peers in similar surgeries.
A first step towards that goal is presented in this paper: we describe an
algorithm to detect surgical tasks in real-time during the surgery.

In recent years, a few systems have been presented for the automatic
recognition of surgical tasks or gestures. A first group of systems assumes
that the surgical tasks or gestures follow a predefined order: the goal is to
find when each task or gesture ends and when the next one begins. Blum
et al. (2010) proposed a system to segment such surgical tasks in laparoscopic
videos. During the training phase, tool usage is analyzed to perform dimen-
sion reduction on visual features, using canonical correlation analysis. At the
end of the surgery, the video is registered to a manually segmented average
surgery, using Dynamic Time Warping (DTW). Note that a similar system
was presented by Padoy et al. (2012): the main difference is that it processes
tool usage directly as observations, rather than visual features. Lalys et al.
(2011) also proposed a similar system for microscope videos. Many visual
features are extracted from images, including color histograms, Haar-based
features and SIF'T descriptors. Then, the surgery is temporally segmented in
surgical tasks using the DTW. In a second group of systems, the DTW is re-
placed by a Hidden Markov Model (HMM) in order to relax the ‘predefined
order’ hypothesis, although transitions between surgical tasks or gestures
that are not seen in training will have a null probability. Blum et al. (2010),
Padoy et al. (2012) and Lalys et al. (2011) proposed a variation on their tech-
nique described above, where the DTW is replaced by a HMM. Tao et al.



(2012) proposed a system for segmenting a surgical task into a sequence of
gestures, in laparoscopic videos. The system relies on sparse HMMs, whose
observations are sparse linear combinations of elements from a dictionary of
basic surgical motions; a dictionary is learnt for each gesture. A third group
of systems assumes that the tasks or gestures have already been segmented
and the goal is to classify each segmented task or gesture without contex-
tual information. In that case, the predefined order hypothesis is completely
relaxed. Haro et al. (2012) evaluated two approaches to surgical gesture clas-
sification in video clips. The first one is based on a linear dynamical system;
the other is based on the Bag-of-Words (BoW) model (Harris, 1954; Huang
et al., 2012; Tamaki et al., 2013; Lalys et al., 2011). These two approaches
combined perform equally well as gesture classification based on kinematic
data (Haro et al., 2012). Finally, note that several systems have been de-
signed for related tasks: surgical tool detection and tracking (Cano et al.,
2008), surgical task detection without categorization (Cao et al., 2007; Gi-
annarou and Yang, 2010), surgical skill evaluation (Reiley and Hager, 2009),
etc. Like the third group of recognition methods, the proposed system does
not assume that the surgical tasks follow a predefined order and it requires
segmented surgical tasks for training. After training, the proposed system
can detect, in real-time, key video subsequences that typically occur during
a given task, but not during other tasks. This detection does not require any
segmentation. The proposed system can also categorize a task as a whole in
real-time. But in that case, like the third group of methods, it assumes that
the task is segmented.

Similar systems, without the real-time constraint, have been proposed
outside the scope of surgery videos. They all rely on a collection of videos
containing instances of the target actions for supervision. Piriou et al. (2006)
proposed an action recognition framework for sport video indexing. A global
probabilistic motion model is trained for each target action. To process a
new video, the camera motion is first estimated and removed. Then, the
residual motion is analyzed to classify the current action by maximum a
posteriori estimation. Duchenne et al. (2009) presented a weakly supervised
action recognition framework for movie clip indexing. First, spatiotemporal
interest points are detected in videos. Then, video subsequences are char-
acterized using a BoW model. Finally, subsequences containing the target
action are detected using a weakly supervised SVM classifier. Xu and Chang
(2008) proposed an event recognition framework for news video indexing.
A BoW representation was also adopted to characterize varying-sized video



subsequences. To compare two sequences, a variation on the EMD distance
between subsequence characterizations was used. These frameworks were
primarily designed for offline indexing of broadcast video, so they do not
need to be run in real-time.

In order to detect key subsequences of surgical tasks, the proposed sys-
tem relies on the Content-Based Video Retrieval (CBVR) paradigm. Given
a video query, CBVR systems search for similar video contents in a video
archive. Initially popularized in broadcasting (Naturel and Gros, 2008) and
video surveillance (Smeaton et al., 2006; Hu et al., 2007), the use of CBVR is
now emerging in medical applications (André et al., 2010; Syeda-Mahmood
et al., 2005). We present a novel CBVR system able to perform real-time
searches. In this paper, it is used to recognize the current surgical task by
analogy reasoning. Section 2 presents the state of the art of CBVR and
discusses the specific challenge of real-time CBVR.

The proposed system is applied to eye surgery. In those surgeries, the
surgeon wears a binocular microscope and the output of the ophthalmoscope
is recorded. Two of the most common eye surgeries are considered in this
paper: epiretinal membrane surgery (Dev et al., 1999) and cataract surgery
(Castells et al., 1998). Recently, Lalys et al. (2012) adapted their general
system (Lalys et al., 2011) for segmenting cataract surgery videos. In the
improved system, visual features are only extracted within the pupil only;
an automatic pupil segmentation procedure is presented. Good temporal
segmentation performances were measured (Lalys et al., 2012). However,
that system does not allow real-time recognition of the surgical tasks. It
needs to process the entire surgical video before segmenting it, which implies
that the segmentation is only available after the end of the surgery. To our
knowledge, this paper is the first attempt to recognize eye surgical tasks in
real-time.

2. State of the Art of Content-Based Video Retrieval

Many CBVR systems have been presented in the literature. These sys-
tems differ by the nature of the objects placed as queries. First, queries can
be images (Patel et al., 2010). In that case, the goal is to select videos con-
taining the query image in a reference dataset; these systems are very similar
to image retrieval systems. Second, queries can be video shots (Naturel and
Gros, 2008; Dyana et al., 2009). In that case, the goal is to find other occur-
rences of the query shot (Naturel and Gros, 2008), or similar shots (Dyana
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et al., 2009), in the reference dataset. Third, queries can be entire videos
(André et al., 2010; Syeda-Mahmood et al., 2005). In that case, the goal is
to select the most similar videos, overall, in the reference dataset.

CBVR systems also differ by the way videos or video subsequences are
characterized. Several systems rely mainly on the detection and character-
ization of key frames (Juan and Cuiying, 2010; Patel et al., 2010). Others
characterize videos or video subsequences directly (Dyana et al., 2009; Gao
and Yang, 2010). In the system by Dyana et al. (2009), video shots are char-
acterized by shape parameters and by the evolution of motion vectors over
time. In the system by Gao and Yang (2010), spatiotemporal salient objects
(i.e. moving objects) are detected in videos and characterized individually;
videos are then compared using the Farth-Mover’s Distance (EMD), which
may be time consuming. The combination of multimodal (visual, audio and
textual) information in a retrieval engine has also been proposed (Hoi and
Lyu, 2007; Bruno et al., 2008).

Finally, CBVR systems differ by how flexible the distance metrics should
be. First, several systems have been proposed to find objects that are almost
identical to the query. For instance, Douze et al. (2010) proposed a copy
detection system to protect copyrighted videos. In this system, images are
compared individually and their temporal ordering is checked after hand.
Another system has been proposed by Naturel and Gros (2008) to detect
repeating shots in a video stream, in order to automatically structure tele-
vision video content. However, in most CBVR systems, we are interested in
finding videos or video subsequences that are semantically similar but whose
visual content can significantly vary from one sequence to another (Juan and
Cuiying, 2010; Xu and Chang, 2008; André et al., 2010). In other words, we
need distance metrics able to bridge the so-called semantic gap (Smeulders
et al., 2000).

In this paper, we present a CBVR system able to detect key subsequences
in a video stream and also to categorize surgical tasks. Short video subse-
quences extracted from the video stream play the role of the query objects.
A flexible distance metric is needed. As mentioned above, similar methods
have been presented in the literature to solve this problem (Piriou et al.,
2006; Duchenne et al., 2009; Xu and Chang, 2008). When searching for sim-
ilar video subsequences, and not simply video files as a whole, the number
of items that should be compared to the query item explodes. And, as op-
posed to above methods, the proposed system needs to run in real-time. In
order to meet the real-time constraint, a very fast similarity metric must



therefore be used to compare video subsequences. In particular, the use of
temporally flexible distance metrics such as DTW (Sakoe and Chiba, 1978;
Xu and Chang, 2008) is prohibited for time reasons. An alternative solution
is proposed: temporal flexibility is directly introduced in the way video sub-
sequences are characterized. The idea is that video subsequences only need
to be characterized once, whereas distances need to be computed every time
the system processes a new subsequence, for as long as the video archive is
used. So it is worth spending time computing a smart characterization for
each subsequence.

3. System Overview

Let A; be a type of surgical tasks that we would like to recognize in videos,
J =1,....,n4. The proposed system tries to detect short subsequences that
typically occur during tasks of type A;, but not during other tasks. These
“key subsequences” are detected, in real-time, in subsequences of n; images.
Let V= {V}, V4, ..., V., } be a video sequence of ny images. To detect key
subsequences in V', the following steps are performed at each time instant ¢;,
1= 2, Ny

1. Texture and color features are extracted from V;, the current image.

2. Motion features are extracted from the optical flow between V;_q, the
previous image, and V.

3. All features extracted in 1. and 2. are concatenated to form an instant
feature vector, noted f(V;).

4. In order to detect if a key subsequence has occurred in the time interval
Jti—n,;ti], i > n;, this instant feature vector is combined with previously
computed instant feature vectors f(Vy), k =i —mn; +1,...,¢ — 1. The
resulting feature vector is noted h(V]i,n].;i]), where V};_, . denotes the
{V;_njﬂ, e Vi} video subsequence.

5. Feature vector h(V}i_nﬁi]) is compared to a pool of feature vectors that
were extracted from a dataset of manually annotated videos and the
nearest neighbors are retrieved.

6. Based on the number of neighbors that were extracted during surgical
tasks of type A;, the probability p;; that a key subsequence occurred
in Vj;_p,; is computed.

7. A specific action can be taken if p;; is above a given threshold.



The probability that surgical tasks of type A; occurred in video sequence
V' is defined as the average p;; instant probability, i = n; + 1,...,ny. The
maximum average probability defines the most likely surgical task in V.

The main novelty in this paper lies in the way instant feature vectors
f are combined into subsequence feature vectors h. The combined feature
vector is built in such a way that it is unchanged by variations in duration
and temporal structure among key subsequences of surgical tasks. Therefore,
it is possible to perform simple nearest neighbor searches to compute instant
probabilities. Without this computational trick, we would have to use com-
plex distance metrics that are unchanged by such variations, but that are
also very slow. In other words, the proposed f — h mapping allows real-
time searches. A novel algorithm is proposed to learn the f +— h mapping
offline, from a dataset of weakly annotated videos, for each target task. The
use of weakly annotated videos, which requires less annotation work from the
experts, makes system adaptation more challenging. In particular, a novel
feature weighting technique had to be designed.

4. Real-Time Detection of Key Subsequences

This section details how the proposed system processes video V' at each
time instant t;, ¢ > 2. Then, system adaptation is presented in section 5.

4.1. Extracting Instant Features Vectors

The first step is to extract an instant feature vector f(V;) for the current
image, V;. Any visual feature may be used in this purpose, with one limita-
tion. If we want the system to process videos in real-time, then feature vector
extraction must be faster than the image aquisition rate. So, simple features
should be used. The feature vector we propose in this paper combines sim-
ple texture and color features extracted from V; and simple motion features
extracted from the optical flow between V;_; and V;. All these features are
global features, so they can be computed fast.

In order to characterize both the textural content and the color content
of V;, the wavelet transform of each color channel of V; is characterized as
described hereafter. To allow real-time image characterization, a fast wavelet-
based image characterization from our group was used (Quellec et al., 2012).
The wavelet transform of each color channel consists of several subbands,
each containing information extracted at a given scale and along a given
direction. For each combination of color channel (3 channels), scale (3 scales)



and direction (3 directions), the distribution of the wavelet coefficients in the
associated subband is characterized by a two-parameter model (Quellec et al.,
2012). A total of 54 parameters are extracted from V;.

Motion features are extracted from the optical flow between V;_; and
V;. To this end, strong corners are first detected in V;_;. These corners are
selected, among all image pixels p, with respect to the smallest eigen value

of matrix M, below:
( A, B,
=5 o)

< Ap =2 ,y)eNp (al (z, y>>2 (1)
= wwen, 5 (T,y) - F (ﬂ;y)
Cp = Z z,9)EN, <6Il (z, y))

where N, is a neighborhood of pixel p. Then, the optical flow between V;_;
and V; is computed at each strong corner by the Lucas-Kanade iterative
method (Lucas and Kanade, 1981). The OpenCV! library was used to select
strong corners and compute the optical flow. Finally, motion is characterized
by one 8-bin amplitude histogram, two 8-bin amplitude-weighted spatial his-
tograms (one for the x-coordinates and one for the y-coordinates) and one
8-bin amplitude-weighted directional histogram. A total of 32 features are
extracted from the optical flow between V;_; and V;. Overall, the size of
f(V;) is 86 (54+32).

\

4.2. Extracting Subsequence Feature Vectors

Before describing precisely how subsequence feature vectors are extracted,
let us first illustrate the underlying idea with an example taken from cataract
surgery, namely “implant insertion”. Depending on how weak the expert
annotations are, implant insertion can either be a task in itself or a key sub-
sequence in the more general “implant setting-up” task, which would also
include implant positioning after the insertion. In Fig. 1, implant insertions
are decomposed into four basic actions that are always visible in implant
insertion subsequences: tool insertion, implant injection, tool removal, ter-
mination. Their duration can vary. The duration of the time interval be-
tween basic actions can vary. The same action can occur several times (as

http://opencv.willowgarage.com/wiki/
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illustrated in V). Other actions may occur within the subsequence (as also
illustrated in V3). In fact, the only constraint is that each basic action occurs
at least once into a predefined time interval, relative to the current image,
called “basic image interval”. These basic image intervals are illustrated re-
spectively in violet, in green, in blue and in red in Fig. 1. Whenever all four
basic actions have been detected in their respective basic image intervals, an
implant injection is detected.

Without any time constraints, this problem could be solved using DTW
on the instant feature vectors, for instance. However, to achieve real-time
detection, we need to perform fast comparisons. And search algorithms al-
lowing fast comparisons only work with simple distance metrics, such as the
Euclidean distance. So we need to create a fixed-size feature vector that is
unchanged by all the allowed variations mentioned above.

4.2.1. Temporal Setup of the Subsequence Feature Vector

Let m; denote the number of basic image intervals for the target surgical
task A;. Each basic image interval is defined by a relative starting point
tj» and a length At;;, b = 1,...,m;. The size of the video subsequences is
defined as follows:

n; = max {t;j,+ At;,} (2)

b=1,...,m;

Let T = {(tjp, At;p),b = 1,...,m;} denote the temporal setup. This tem-
poral setup should be adapted to each target task. Its length in particular:
short tasks without early warning signs do not need long video subsequences,
but long tasks or tasks with early warning signs do. Typical examples of tem-
poral structures are given in Fig. 2. Note that some images in a subsequence
may not appear in any basic image interval. It happens if early basic image
intervals are defined to detect early warning signs and late basic image in-
tervals are defined to detect the task itself, but what happens in between is
not relevant.

In order to detect that each basic action occurred at least once into the
associated basic image interval, through a nearest neighbor search, two video
subsequences should have similar feature vectors if their first basic image
intervals are similar and their second basic image intervals are similar and
etc. This behavior can be achieved if one feature vector is extracted from
each basic image interval and if those feature vectors are further concate-
nated. Let g(l/}i,tw,mj’b;i,tj,b]) denote the feature vector extracted from the
V5iet; -t i—t;,) basic image interval.
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Figure 1: Temporal setup of implant insertion. This figures shows three
video subsequences, V1, V2 and V3, in which an implant is inserted into the
patient’s eye. This task is performed at different paces from one subsequence
to another. These subsequences are registered at the end of the task. Note
that a small complication occurred in the third subsequence: the surgeon had
to remove his tool and insert it again later. The violet interval indicates a
range of dates for tool insertion, relatively to the end of the task. The green
interval indicates a range of dates for implant injection. The blue interval
indicates a range of dates for tool removal. The red interval indicates a
range of dates for task termination (when the tool becomes invisible and the
implant starts to unfold).
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basic image intervals
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Figure 2: Examples of temporal setups. In those examples, each image is
represented by one column. In examples (a) and (c), each video subsequence
consists of n; = 32 images; in example (b), each video subsequence consists
of n; = 36 images. Each basic image interval is represented by one row. In
examples (a) and (b), each video subsequence consists of m; = 8 basic image
intervals; in example (c), each video subsequence consists of m; = 6 basic
image intervals. If one image appears in several rows, like in example (c), it
means that two or more basic image intervals overlap. Note that there are
no overlaps in examples (a) and (b).
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Figure 3: Extracting subsequence feature vectors

In order to characterize the presence of the b basic action into the

Vit p—At, psi—t,,) interval, given the allowed variations, g(Vii—¢, ,—a¢, i—t,,))

should be unchanged if its temporal structure changes. In particular, whether
some discriminative event occurs in image V}, or in image V; should not affect
the characterization of V};_, . so long as, for all b,

® i—tj7b—Atj7bZ/{3,l,
° OI‘i—th,—Atj’b < ]{?J Si—tjﬁ,
° ork,l>i—tj7b.

Subsequence feature vector extraction is summarized in Fig. 3 and de-
tailed in the following paragraphs.
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4.2.2. Characterizing one Basic Image Interval
Each basic image interval Wi—tj,b— At ity ) 18 characterized by the follow-
ing average feature vector:

i=tjp

1
IVitspitn) = 5~ 2. F(W) (3)

tA
IO kit At 41

Clearly, whether some discriminative event occurs in image Vj or in image
Vi, with i — 25, — Aty < k1 < i —tj3, will not affect g(Viie, ,—at; 5i—t,,))-

4.2.3. Characterizing the Video Subsequence

As mentioned above, subsequence V};_, . may first be characterized by
the concatenation of all IMi—t, -t 4i-t,,)) vectors, b = 1,...,m;. Let
h(Vii—n,s7) be that compound feature vector. Note, however, that basic
image intervals in a subsequence are likely correlated. It follows that fea-
ture vectors g(Vji—t,, At yii—t,,]), b = 1,...,my, also are. In order to obtain
more compact feature vectors, with less correlated components, h(Vji_n;;)
is projected onto the principal components I'; ., ¢ = 1,...,C}, obtained by
a principal component analysis (Pearson, 1901). Finally, the projection on
each principal component is weighted by A;. > 0, ¢ = 1,...,C;. The ;.
weights are chosen to fill the semantic gap between low-level feature vec-
tors and the high-level concept of surgical task, as described in section 5.
Let h(Vii—n,q)) = {)‘j,c (ﬁ(V]i_nj;ﬂ) . I‘j,c) e=1,.., Cj} denote the resulting
feature vector.

4.3. Key Subsequence Detection Probability

Working with fixed-length feature vectors, such as h(V]Z-,njn-]), has one ma-
jor advantage: similar feature vectors can be searched with fast algorithms,
such as k-d trees (Arya and Mount, 1993) or Locality-Sensitive Hashing (Gio-
nis et al., 1999). ANN? a fast variation on k-d trees, was used in this paper
to perform nearest neighbor searches in a reference dataset R;, 7 =1,...,na.
In this reference dataset, every feature vector is associated with one binary
label, indicating whether or not this feature vector was extracted during a
surgical task of type A;. The probability p;; that a key subsequence of type
A; occurred in V]i—n;zi) 1s defined as the proportion of feature vectors with

Zhttp://www.cs.umd.edu/~mount/ANN/
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a positive label among the K nearest neighbors of h(V]Z-,nj;ﬂ) in R;. In all
experiments, the number of nearest neighbors was set to K = 5.

4.4. Real-time Processing Pipeline

This section describes, in practical terms, how the system can be used to
recognize several surgical tasks A;, j = 1, ..., n 4, simultaneously, in real-time.
Let N = max;—y__,, (n;) denote the maximal subsequence length. At each
time instant t;, 1 > 2:

1. The instant feature vector f(V;) is characterized.

2. f(V;) is stored in a FIFO queue of size N.

3. For each surgical task A;, the last n; instant feature vectors in the
FIFO queue are combined: the subsequence feature vector h(V]i_nj;Z-])
is obtained.

It should be noted that the first step, which is typically the most compu-
tationally intensive, is independent of the target surgical task; therefore, it
is only performed once. The FIFO queue is only useful if two consecutive
subsequences overlap, that is if NV > 1. In that case, instant feature vectors
are stored and are used up to Z?ﬁl n; times to compute subsequence feature
vectors.

5. System Adaptation

Let D be a dataset of video sequences, divided into a training subset D;,win
and a test subset Dy s. For training and testing purposes, it is assumed that
experts indicated whether or not each target surgical task occurred in each
video sequence V' € D. Note that experts are not expected to indicate
precisely when target tasks occurred in each video sequence. They are only
expected to assign my4 binary labels 0(A;, V), j = 1,...,n4, to each video
V e D: §(A;,V) = true if at least one A; task occurred in V, 6(A;, V) =
false otherwise.

The proposed system has three undetermined sets of parameters: a tem-
poral setup, principal components, and a weight vector (see section 4.2).
These parameters need to be tuned specifically for each target task A;,
j =1,...,n4. System adaptation can be summarized as follows. After the
summary, a more detailed explanation of each point is given.

1. Temporal setups are generated at random using a stochastic algorithm.

14



2. For each temporal setup,

(a) the principal components are computed,

(b) a weight vector is optimized,

(c) a performance score is computed. Because experts are only ex-
pected to interpret video sequences as a whole (through binary
labels d(A;, V), semantic relevance is assessed at video sequence
level.

3. The temporal setup maximizing the performance score in the training
set is retained.

5.1. Adapting the Temporal Setup

The main novelty in this paper comes from the way instant feature vec-
tors are combined into subsequence feature vectors, using a task specific
temporal setup. The main question we need to answer for system adapta-
tion is the following: what temporal setup best captures A; tasks? This
question is actually twofold. First, we need to know how many basic image
intervals are needed (i.e. what is the value of m;?). Second, we need to
choose the relative starting point and the length of each basic image inter-
val (¢, At;p), b=1,...,m;. Given the high dimensionality of this problem,
a machine learning solution is desirable. Optimization techniques able to
work with variable-length vectors 7 = {(t;, At;p),b = 1,...,m;} are suit-
able candidates. A stochastic solution based on Grammatical Evolution (GE)
is proposed hereafter (O’Neill and Ryan, 2001). A boosting strategy is also
possible (Schapire, 1990).

In GE, a genetic algorithm is used to generate variable-length strings
or genotypes. These strings are then mapped to programs through a user-
defined grammar. The objective is to find the program that maximizes a
user-defined objective function (O’Neill and Ryan, 2001).

In order to fit into the GE paradigm, the temporal setup T = {(¢;5, At;p),
b=1,...,m;} is regarded as a program. The objective function that should
be maximized is the performance score described in section 5.4. Let S; and
Sa: denote a set of relative starting points and a set of lengths, respectively.
The grammar used to generate temporal setups is given in algorithm 1. In
a grammar, symbols are delimited by angled brackets (< . >). To generate
programs, GE recursively replaces each symbol, starting with symbol < 7 >,
by one expression. The list of valid expressions for each symbol starts with
;= and uses | as delimiter.
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Algorithm 1 Temporal Setup Grammar
< T >u={< bbi >}
< bbi >u=< bbi >, <bbi > | (<t><A;>)
<t >n= St,l | St,2 |
< At >n= SAt,l | SAt72 |

In all experiments, the following set of relative starting points was used:
S, ={0,1,2,5,10,20,50,100}. The following set of lengths was used: Sa; =
{1,2,5,10,20,50,100}. This grammar generates a variable-length list of
(<t >,< A; >) tuples. In the first line of the grammar, the list is ini-
tialized by a symbol with undefined value: < bbi >. In the second line of the
grammar, the list is expanded by recursively duplicating the < bbi > symbol
whenever the first valid expression in that line (< bbi >, < bbi >) is randomly
chosen by the GE engine. The expansion stops when all < bbr > symbols
have been replaced by a (< ¢t >, < A; >) tuple: this happens when the
second valid expression of line 2 is chosen. Then, the GE engine randomly
chooses a value for each relative starting point < ¢ > and each length < A; >
using the third and the fourth line of the grammar, respectively. Populations
of 30 programs were evolved by grammatical evolution. Grammatical evolu-
tion was stopped when the optimal solution did not evolve for more than 5
generations. The proposed learning algorithm does not ensure that the first
basic image interval starts at ¢ = 0. Therefore, as a post processing step, all
relative starting points are translated such that the first one equals 0.

5.2. Principal Component Analysis

The principal components I'; ., ¢ = 1, ..., C}, are obtained by a Principal
Component Analysis (PCA) (Pearson, 1901). The dataset analyzed by the
PCA algorithm is formed by l_l(V]i_nj;i]) subsequence feature vectors extracted
from the training subset Dy,.qn, using the current temporal setup. As com-
monly done in the literature, C; was chosen such that 90% of the energy is
preserved (Ricci et al., 2011). Note that the projections ﬁ(Vﬁ,nj;i])ijc on the
principal components do not depend on the order of the features in the input
training samples. It implies that the order in which the g(Vi;—s,,~ar; 5i—t;,])
vectors are concatenated to form the h(\/}i_nj;i]) vectors does not matter.
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5.8. Adapting the Weight Vector

A weight vector A; has been introduced in section 4.2 to bridge the se-
mantic gap between low-level subsequence feature vectors and the high-level
concept of ‘similar surgical tasks’. Because experts are only expected to in-
terpret video sequences as a whole, weight adaptation cannot be supervised
at video subsequence level: it is supervised at video sequence level. A novel
feature weighting technique is proposed for this specific setup.

First, a semantic and a low-level distance between video sequences are
defined. D3*™(U, V), the semantic distance between two video sequences
U and V, is defined as follows: D$*™(U,V)=0 if §(A;,U) = §(A;,V) and
Ds™(U,V)=1 otherwise. D*(U, V), the low-level distance between U and
V/, derives from the weight vector A; and all feature vectors h(Uj;_n,,)) and
h(Vii—n;1) (see section 5.3.1). In order to maximize the semantic relevance
of retrieved video subsequences, A; is tuned so that D;*" and Dé-o"“” become
as close as possible in the training subset Dy.q;, (see section 5.3.2). In other
words, A; is chosen to bridge the semantic gap in the least-squares sense.

5.3.1. Low-Level Distance

For each feature vector component ¢ = 1,...,C}, a partial low-level dis-
tance between video sequences U and V' is defined: Déo(f” (U, V). Assuming
that U and V both contain the target task, they are considered similar no
matter when the target tasks occurred in these videos. Therefore we sim-
ply need to compare the dlstr1but10ns He( {h limnysi))s 8 = N,y sy nU}
and H.( = {h WVii—n;; 1) nj,...,nv}, regardless of tlme sequencing.
Dé"cw(U V) is defined as the rnax1mal deviation between the Cumulative Dis-
tribution Function (CDF) of H.(U) and the CDF of H.(V). In other words,
Dlow(U, V) is the Kolmogorov-Smirnov statistic of the test “H.(U) = H(V)”
(von Mises, 1964).

5.3.2. Bridging the Semantic Gap

Let T' = |Dyrain| be the number of video sequences in the training set.
Let 7" = LT(T — 1) be the number of pairs of video sequences. For each
video sequence pair (U, V'), one semantic distance D" (U, V') and C} partial
low-level distances Dé-?g”(U, V') have been computed. Semantic distances are
grouped together in a vector d;*™ of size T". Low-level distances are grouped
together in a matrix Déf’w of size (T" x C;). The weight vector A; minimizing
the sum of the squared errors between d>”" and Dé-ow - A is found by multi-
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parameter linear fitting with positivity constraints: the nonnegative least
squares algorithm is used (Lawson and Hanson, 1974).

5.4. Performance Assessment at Video Sequence Level

The performance of the system is assessed using a reference dataset R
(from which the nearest neighbors are extracted) and a validation dataset V.
During system adaptation, R is a portion of the training subset Dy.q;, and
V is the complement of R in Dy,.q;,. After system adaptation, R is the entire
training subset and V is the test subset D;eq.

Performances are assessed in terms of A,, the area under the Receiver
Operating Characteristic (ROC) curve (Hanley and McNeil, 1982). The fol-
lowing procedure is applied to build the ROC curve for a given task A;. First,
for each video sequence V' € V in the validation set, p(6(.A;,V')), the proba-
bility that V' contains at least one A; task, is defined as the average instant
probability p;;, © = n; + 1,...,ny. Instant probabilities are computed using
nearest neighbors extracted from R. Then, the ROC curve of p(d(A;,V)),
against the ground truth 6(.A;,V), is built using every p(d(A;,V)) value,
V €V, as a threshold.

6. Video Datasets

The proposed framework was evaluated in two eye surgery datasets: a
dataset of retinal surgeries (see section 6.2) and a dataset of cataract surgeries
(see section 6.3). To assess its generality, the method was also evaluated in a
dataset of human actions in general (walking, sitting down, etc. - see section
6.4).

6.1. Weak Supervision for Surgery Videos

In order to evaluate the performance of surgical task detectors, surgi-
cal tasks need to be manually delimited in full surgery videos. Note that a
surgery is generally not a predefined linear sequence of surgical tasks. For
instance, surgeons may have to widen an incision afterwards because they
realized the initial incision was not large enough. The “current task” may
be combined with recurring tasks such as moisturizing the patient, sucking
out blood, etc. Also, surgeons generally have two hands, so two “consec-
utive tasks” may actually overlap. Therefore, partitioning a surgery into
task-specific video sequences is not always possible. For each surgical task,
a specialist was asked to indicate the date of the first appearance of one tool
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related to this task into the field of view. Similarly, he was asked to indicate
the date of the last disappearance of one of these tools from the field of view.
These two dates define the beginning and the end of each manually delim-
ited video. As a consequence, these manually delimited videos are weakly
annotated: other tasks may appear into the video. It means that, given
a manually delimited video V', 6(A;,V) may be true for multiple A; tasks.
Also, these videos often contain time intervals when no task is visible into the
field of view: it happens, for instance, if the surgeon needs to change one of
his or her tools. Every manually delimited video V' was classified (the value
of §(A;, V) was determined for each task A;) and assigned to the dataset D.

6.2. Retinal Surgery Dataset (RSD)

The first dataset consists of 69 videos of Epiretinal Membrane Surgery
(EMS) collected at Brest University Hospital (France). EMS is the most
common vitreoretinal surgery (Dev et al., 1999). It involves a pars plana vit-
rectomy procedure with membrane peeling. Twenty-three consecutive surg-
eries of twenty-three patients have been video-recorded with a CCD-IRIS
device (Sony, Tokyo, Japan) and the videos were stored in MPEG2 format
with the highest quality settings. The frame frequency is 25 frames per sec-
onds. Images have a definition of 720x576 pixels. Three video sequences
were manually delimited in each surgery video as explained in section 6.1.
Each video sequence corresponds to one step of the EMS: Injection, Coat
and Vitrectomy (see Fig. 4). The duration of each surgical task is reported
in table 1. The dataset was randomly divided into two subsets of 12 and 11
surgeries, respectively. In order to deal with the small number of surgeries in
this dataset (23), a special training procedure was adopted. At first, surgical
tasks detectors were trained in the first subset and their performance was
tested in the second subset. Then, new surgical task detectors were trained
in the second subset and their performance was tested in the first subset.
Therefore, performance scores were computed for each video sequence.

6.3. Cataract Surgery Dataset (CSD)

The second dataset consists of 900 videos of phacoemulsification cataract
surgery collected at Brest University Hospital (France). Cataract surgery
is the most common ophthalmic surgery and most of the cataract surgeries
are phacoemulsification procedures (Castells et al., 1998). In this procedure,
an ultrasonic device is used to break up and then remove a cloudy lens, or
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(a) Injection (b) Coat (¢) Vitrectomy

Figure 4: Images from different high-level surgical tasks in the Retinal
Surgery Dataset (RSD)

Table 1: Duration of surgical tasks

Surgical task Duration (s) | Percentage of the video
Injection 39 + 33 5.2 %
RSD Coat 380 £ 300 50.6 %
Vitrectomy 203 + 151 27.0 %
Incision 55 £ 77 5.4 %
Rhexis 87 £ 85 8.5 %
Hydrodissection 36 + 52 3.5 %
Phacoemulsification 205 + 138 20.0 %
CSD | Epinucleus removal 131 + 115 12.8 %
Viscous agent injection 18 £ 36 1.8 %
Implant setting-up 53 + 61 5.2 %
Viscous agent removal 79 + 155 7.7 %
Stitching up 182 £ 191 17.7 %
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cataract, from the eye to improve vision. One hundred consecutive surg-
eries of one hundred patients have been video-recorded. Some surgeries were
recorded with a CCD-IRIS device (Sony, Tokyo, Japan), the others were
recorded with a MediCap USB200 video recorder (MediCapture, Philadel-
phia, USA). They were stored in MPEG2 format, with the highest quality
settings, or in DV format. The frame frequency is 25 frames per seconds.
Images have a definition of 720x576 pixels. Nine video sequences were man-
ually delimited in each surgery video as explained in section 6.1. FEach video
sequence corresponds to one step of the cataract surgery: Incision, Rhexis,
Hydrodissection, Phacoemulsification, Epinucleus removal, Viscous agent in-
jection, Implant setting-up, Viscous agent removal and Stitching up (see Fig.
5). The duration of each surgical task is reported in table 1. The dataset was
randomly divided into two subsets of 50 surgeries: one was used as training
set, the other was used as test set.

6.4. Movie Clip Dataset (MCD)

The third dataset consists of 1,707 video sequences extracted by the
IRISA lab from 69 Hollywood movies® (Marszatek et al., 2009). The au-
thors indicated which human actions were visible in each video sequence, out
of 12 possible actions. In most of the dataset, a semi-automatic procedure
was used: 1) clips were automatically annotated using text mining tech-
niques in the movie scripts and 2) the automatic annotations were controlled
by a human observer. In the Training subset (automatic), the annotations
were fully automatic: they were not controlled by a human observer. The
frame frequency is 25 frames per seconds. Typical image definitions include
640x352, 576x312 and 548x226. Videos have an average duration of 20 sec-
onds. The test subset consists of 884 video sequences. The training set
consists of 823 video sequences: we decided not to use the Training subset
(automatic) because the annotations have a lower quality.

7. Results

The optimal selections of basic image intervals, obtained in the training
subset of each dataset?, are reported in table 2. In practice, basic image

Shttp://www.irisa.fr/vista/actions/hollywood2/
4In RSD, a 2-fold cross-validation was performed: we only reported the basic image
intervals obtained in the first fold.
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(a) Incision (b) Rhexis

(g) Implant setting-up (h) Viscous agent removal (i) Stitching up

Figure 5: Images from different high-level surgical tasks in the Cataract
Surgery Dataset (CSD)

intervals overlap a lot and such an overlapping allows capturing the variability
in the temporal length of the key subsequences. The size of the subsequence
feature vectors h ranged from 8 to 32 elements.

The proposed method does not detect the appearance or disappearance
of tools in the field of view, unlike the manual segmentation provided by
experts. It detects clinically-significant actions, which can happen anytime
between the appearance and the disappearance of the associated tools. So
the system was assessed at the surgical task level. The performance of the
proposed framework in the test subset, in terms of A,, the area under the
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Table 2: Optimal selection of basic image intervals

Injection {0,2}
RSD Coat 10,57, 10,50}, {2,507
Vitrectomy {0,20}, {100, 50}
Incision {0,50}, {4,20},4{9, 2}, {49, 2}
Rhexis 10,57, {10, 20}
Hydrodissection {0,1},{0,100}, {1,100}, {19, 1},
{49,501, {99, 5}
CSD Phacoemulsification {0,2}, {10, 1}
Epinucleus removal {0,2},{1,20},{10,1}, {50, 1}, {50,5}
Viscous agent injection | {0,20}, {1, 10}, {1,100}, {9, 10}, {9,20}
Implant setting-up {0,100}, {1,2},{1, 10}, {100, 2}
Viscous agent removal {0,1}
Stitching up {0,100}
AnswerPhone {0,1}, {50, 5}
DriveCar {0,2},{2,1}
Fat 10,101, {1,101, {1,100}, {10,5},
{20,2},{20,5}, {50,1}, {100, 100}
FightPerson {0,20},{2,1}
GetOutCar {0,2}
MCD HandShake {0,2},{1,2}
HugPerson {0,1},{4,2}, {99,100}
Kiss 10,57, 10,10}, {2, 101, {10, 1}
Run {0,1}, {0, 10}, {19, 1}
SitDown 10,2}, {0,201, {20, 5}
SitUp (0,1}, (3,20}, {18, 5!
StandUp {0,2}, {18, 1}

ROC curve, is reported in table 3. The associated ROC curves are reported
in Fig. 6, 7 and 8. The proposed framework was compared to the framework
by Duchenne et al. (2009) for human action recognition, both in terms of A,
and in terms of computation times. Results are reported in tables 3 and 4,
respectively. Our method was implemented in C++ using OpenCV®. The
most computationally-intensive part of Duchenne’s method, namely Space-

Shttp://opencv.willowgarage.com/wiki/
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Time Interest Point extraction (Laptev, 2005), is OpenCV code provided by
the authors®. The rest of the method was implemented in C++, also using
OpenCV and LIBSVM?. All computations were performed using one core of
an Intel Xeon(R) E5649 processor running at 2.53GHz. In all three datasets,
most of the computation time was dedicated to subsequence characterization,
and to image characterization in particular (see section 4.1). Retrieval only
took about eight milliseconds per query on average. Because image sizes are
lower in MCD, computation times are lower in that dataset (see table 4).

true positive rate

Injection
Coat
Vitrectomy -

0 1 1
0 0.2 0.4 0.6 0.8 1

false positive rate

Figure 6: Receiver Operating Characteristic (ROC) curves for the RSD
dataset (see section 6.2)

To assess the overall accuracy of the system, we performed an additional
experiment where all target task detectors are run simultaneously, as de-
scribed in section 4.4. This defines the most likely surgical task in each video

Shttp://www.di.ens.fr/~laptev/download.html
"http://www.csie.ntu.edu.tw/~cjlin/libsvm/

24



Table 3: Performance evaluation (A,) in the test set

Dataset Method b
Action/ Proposed method Duchenne etyal.
Injection 0.923 0.500
RSD Coat 0.995 0.978
Vitrectomy 0.898 0.906
Incision 0.741 0.801
Rhexis 0.878 0.837
Hydrodissection 0.762 0.719
Phacoemulsification 0.923 0.912
CSD Epinucleus removal 0.969 0.946
Viscous agent injection 0.561 0.614
Implant setting-up 0.703 0.792
Viscous agent removal 0.729 0.695
Stitching up 0.883 0.982
AnswerPhone 0.801 0.602
DriveCar 0.914 0.910
Eat 0.848 0.799
FightPerson 0.905 0.932
GetOutCar 0.794 0.782
HandShake 0.830 0.751
MCD HugPerson 0.691 0.715
Kiss 0.852 0.696
Run 0.873 0.883
SitDown 0.777 0.832
SitUp 0.800 0.729
StandUp 0.786 0.778

Table 4: Computation times (frames per second)

’ Dataset \ Proposed method \ Method by Duchenne et al. ‘

RSD 26.0 FPS 0.78 FPS
CSD 24.3 FPS 0.72 FPS
MCD 28.9 FPS 1.39 FPS
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sequence. A success was recorded if the most likely task indeed happened
during the sequence. Otherwise, a failure was recorded. This defines an
overall accuracy for the system. Accuracies are reported in table 5 together
with p-values computed with two-sided exact binomial tests.

Table 5: Overall accuracies

’ Dataset ‘ Proposed method ‘ method by Duchenne et al. ‘ p-value ‘

RSD 87.0% 73.9% 0.00269
CSD 72.9% 69.3% 0.0514
MCD 75.0% 71.9% 0.0207

8. Discussion and Conclusion

A novel framework for real-time retrieval of similar video subsequences
was presented in this paper. Given a target surgical task, video subsequences
are decomposed into an optimal set of overlapping basic image intervals. The
proposed video description ignores the temporal structure within basic im-
age intervals by averaging instant feature vectors. The temporal structure
is only encoded, in a fuzzy fashion, by concatenating the feature vectors de-
scribing the basic image intervals composing the subsequence. The proposed
framework was applied to real-time recognition of high-level surgical tasks
in video-monitored eye surgeries. Two types of surgeries were considered:
epiretinal membrane surgery and cataract surgery. For most surgical tasks
(7 out of 12), the system compared favorably to a state-of-the-art human ac-
tion recognition system in terms of area under the ROC curve (see table 3).
The proposed method failed to recognize one surgical step, namely viscous
agent injections, but so did the baseline method. This was to be expected:
injections mostly involve subtle fluid motions within the eye. Note that the
largest dataset group together videos recorded with different devices, which
makes the recognition task more challenging. To assess its generality, the
proposed system was also applied to human action recognition. For most
human actions (8 out of 12), the proposed system turned out to be more ef-
ficient than the baseline method as well (see table 3). Overall, the proposed
method significantly outperforms the baseline method in RSD and MCD, but
not in CSD (p > 0.05, see table 5). The proposed system is very fast: while
the baseline method processes less than one image per second (see table 4),
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the proposed system runs nearly in real-time (= 25 frames per second). Note
that the cataract surgery phase segmentation system by Lalys et al. (2012)
also processes less than one image per second (one image every 3 seconds).
One limitation of the proposed method, in terms of computation times, is
that training is slow, due to the use of grammatical evolution: on average,
training lasts 16 hours per surgical task or action on an Intel Xeon(R) E5649
12-core processor. One strength of the method is that it does not assume that
consecutive surgical tasks follow a predefined order, unlike methods by Lalys
et al. (2012) and Blum et al. (2010) for instance. One such method (Blum
et al., 2010) was implemented and run on our cataract surgery dataset (CSD).
For several reasons, surgical videos could not be registered to a manually seg-
mented average surgery. First, several surgeons, with varying skill levels and
varying techniques, participated in the study. Second, surgical tasks usually
overlapped in those videos. Third, in some surgeries, additional tasks had to
be performed, such as removing an old implant for instance.

We believe this success comes from the high flexibility in the adaptation
process. It can be seen in table 2 that very different temporal setups were
obtained depending on the target task. However, it should be noted that
most temporal setups are quite simple (see table 2): they usually consist
of two or three basic image intervals. This prevents overfitting and ensures
good performances in the test set. This good property comes from the use
of grammatical evolution, which penalizes complex solutions in accordance
with Occam’s razor principle (O’Neill and Ryan, 2001).

Note that, although the proposed system is particularly well suited to
eye surgeries, it could be applied to other surgeries where video-recording is
available, for instance minimally invasive surgeries. Indeed, all the visual cues
are application-independent. This is an advantage, but also a drawback: it
means that the visual cues are probably not optimal for a specific application.
To push performance further, we should include eye-related and tool-related
visual cues into the image characterizations (Lalys et al., 2012). It may also
be possible to push performance further by taking into account the temporal
relationships between the composing tasks of a surgery, using an HMM for
instance. However, as discussed above, a strict task ordering should not
be assumed. Depth information should also be included whenever stereo-
recording of the microscope output will be widely available.

As discussed in the introduction section, the proposed video monitoring
system was primarily designed to communicate information to the surgeon
in due time. In particular, it was designed to send recommendations to the
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less experienced surgeons slightly before the beginning of each task. We have
shown that it can detect and categorize surgical tasks approximately when
they happen. So, when task n — 1 is detected, we can provide recommenda-
tions for task n based on observations from tasks 1,...,n—1. Note that giving
recommendations while the surgeon has already started performing task n
would not be optimal: the decision on how to perform that task has already
been made. Note that the proposed system is a case-based reasoning system:
it relies on a dataset of surgical videos in which experts have temporally seg-
mented the surgical tasks. If, in addition to segmenting the surgical tasks,
experts were also asked to temporally segment surgical complications, then
we may be able to go one step further: knowing what the surgeon is doing
and what problem he or she is facing, recommendations could be refined.
We believe that, one day, such an automatic video monitoring system may
also be used to communicate with surgical devices directly. The idea would
be, for instance, to preventively shut down a device in case of complication.
Finally, note that the system may also be used offline, for video structuring.
Video content structuring will allow efficient video browsing and therefore,
efficient video archive browsing. Browsing video archives may be useful for
retrospective clinical studies, skill assessment or training. It may be used to
generate surgery reports at the end of each surgery (Lalys et al., 2012).

In conclusion, we have presented a system that can retrieve similar video
subsequences in real-time. It was successfully applied to real-time recognition
of surgical tasks in eye surgeries. And we have discussed its potential clinical
applications.
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Figure 7: ROC curves for the CSD dataset (§6.3)
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