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Abstract

Background: Hantaviruses are single-stranded RNA viruses, which are transmitted to humans primarily via inhalation

of aerosolised virus in contaminated rodent urine and faeces. Whilst infected reservoir hosts are asymptomatic, human

infections can lead to two clinical manifestations, haemorrhagic fever with renal syndrome (HFRS) and hantavirus

cardiopulmonary syndrome (HCPS), with varying degrees of clinical severity. The incidence of rodent and human

cases of Seoul virus (SEOV) in Europe has been considered to be low, and speculated to be driven by the sporadic

introduction of infected brown rats (Rattus norvegicus) via ports.

Methods: Between October 2010 and March 2012, 128 brown rats were caught at sites across the Lyon region in

France.

Results: SEOV RNA was detected in the lungs of 14% (95% CI 8.01 – 20.11) of brown rats tested using a nested

pan-hantavirus RT-PCR (polymerase gene). Phylogenetic analysis supports the inclusion of the Lyon SEOV within

Lineage 7 with SEOV strains originating from SE Asia and the previously reported French & Belgian SEOV strains.

Sequence data obtained from the recent human SEOV case (Replonges) was most similar to that obtained from one

brown rat trapped in a public park in Lyon city centre. We obtained significantly improved recovery of virus genome

sequence directly from SEOV infected lung material using a simple viral enrichment approach and NGS technology.

Conclusions: The detection of SEOV in two wild caught brown rats in the UK and the multiple detection of

SEOV infected brown rats in the Lyon region of France, suggests that SEOV is circulating in European brown

rats. Under-reporting and difficulties in identifying the hantaviruses associated with HFRS may mask the public

health impact of SEOV in Europe.

Keywords: Hantavirus, SEOV, France, Brown rat, Rattus norvegicus, Next generation sequencing, Viral

enrichment

Introduction

Hantaviruses (family Bunyaviridae, genus Hantavirus)

are single-stranded RNA viruses. Unlike other members

of the Bunyaviridae, hantaviruses are not transmitted by

arthropods but primarily by rodents of the families

Cricetidae and Muridae, although insectivore and bat

hosts have also been reported [1,2]. Each hantavirus

appears to be adapted and largely restricted to an indi-

vidual reservoir host species, implying that they have co-

evolved, although phylogenetic analyses suggests that

this apparent co-evolution may be more attributed to re-

cent preferential host switching and local adaptation [3].

Transmission to humans is primarily via inhalation of

aerosolised virus in contaminated rodent urine and fae-

ces. Whilst infected reservoir hosts are asymptomatic,

human infections can lead to two clinical manifestations,
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haemorrhagic fever with renal syndrome (HFRS) and

hantavirus cardiopulmonary syndrome (HCPS), with

varying degrees of morbidity and mortality [4]. Surveil-

lance in Europe has detected six rodent-borne hantavi-

ruses; Dobrava-Belgrade virus (DOBV), Saaremaa virus

(SAAV), Seoul virus (SEOV), Puumala virus (PUUV),

Tatenale virus (TATV) and Tula virus (TULV) plus two

insectivore-borne hantaviruses; Seewis virus (SWSV)

and Nova virus (NVAV) [4-7]. The relative geographic

distribution of each hantavirus is defined by their reser-

voir host [7]. The most common and widespread hanta-

virus across northern, central and eastern Europe is

PUUV, which is associated with the mildest form of

HFRS [4].

Unlike other hantaviruses, SEOV has a global distribu-

tion due to the worldwide dispersal of its carrier host

(Rattus sp). Confirmed human SEOV infections have

been reported in Asia (Japan [8], South Korea [9], China

[10,11]) and the Americas (USA [12], Brazil [13]).

Norwegian/brown rats (Rattus norvegicus) are a cosmo-

politan species and represent an emerging and widely

distributed host of hantavirus in China, where, a total of

1,557,622 cases of HFRS were reported in humans be-

tween 1950–2007 with 46,427 deaths (3%) [11,14]. His-

torically, the presence of Seoul virus in Europe was

considered anecdotal and speculated to be driven by the

sporadic introduction of infected brown rats via ports

[4]. Previously, a single HFRS case near the port city of

Lyon, France, had only been confirmed serologically by

SEOV FRNT [15] and SEOV antibodies had been re-

ported in brown rats in France (10-78.9%) and Belgium

(27.1%) [15,16]. However, more recently the virus has

been isolated from wild brown rats in the UK [17] and

pet rats in the UK and Sweden [18-20]. In addition,

SEOV associated HFRS has been reported in four cases

in the UK and France, all of which were clinically severe

and involved renal impairment [17,21,22].

This study aimed to determine the presence of SEOV

in wild rats (R. norvegicus) trapped in and around Lyon,

France and analyse any resulting molecular epidemio-

logical data. The study also determined the optimal

approach to obtaining SEOV genomic sequence data dir-

ectly from infected lung tissue by comparing different

sample preparation techniques and next generation se-

quencing (NGS) platforms.

Results and discussion

Detection of SEOV virus

A total of 128 brown rats were caught from 23 sites in

and around Lyon. Seoul hantavirus RNA was detected in

14% (18/128) of the rat lung samples tested in triplicate

(95% CI 8.01 – 20.11). Positive rats were detected in 6

out of the 23 sites of capture (see Additional file 1).

There was a male bias of 2:1 in the infected individ-

uals: 11 adult males, one juvenile male, one pregnant

female and five adult females. The proportion of all

males infected was larger than females, 16.4% and 11.3%

respectively, but this was not significant (Pearson’s

Chi-squared test, χ2 = 0.6568, df = 1, P = 0.4177).

A male biased ratio amongst SEOV infected rats is not

uncommon, and has been reported on several occasions

[23-25]. Whilst neither male nor female rats are believed

to be more susceptible to Seoul virus infection, males do

shed the virus for a longer duration in their urine, faeces

and saliva [25] and so the viral RNA may be detectable for

longer in the host tissues. In addition, the primary route

of transmission between adult males is thought to be

through wounds [26], so it has been suggested that the

likelihood of males acquiring the Seoul virus is greater due

to them having more aggressive encounters [25].

All 18 RT-PCR positive rats were selected for genetic

analysis and partial sequences of the L segment (317 bp)

were recovered. Eight variable sites were located within

this partial sequence. Phylogenetic analysis resolved

the Lyon SEOV into three clusters (Lyon I, II and III;

Figure 1, Additional file 1) reflecting their disparate

trapping locations. The Lyon I, II and III variants were

Figure 1 Maximum likelihood tree using the model T92 +

Gamma [28] for SEOV partial L segment sequences n = 23 in

MEGA5 [35]. The trees are drawn to scale, with branch lengths

measured in the number of substitutions per site. The scale bar

indicates nucleotide substitutions per site. Only bootstrap support of

>70% are shown. Positions with less than 95% site coverage were

eliminated. There were a total of 317 positions in the final dataset.

The phylogenetic positions of groups Lyon I, II and III are shown in

relation to representative Seoul strains (identical sequences removed

for clarity). GIV726 partial L sequence was identical to GIV733, GIV737

and GIV757 (Lyon II). LYO852 partial L sequence was identical to

LYO799, 837, 838, 839, 843, 845, 848, 853, 884 and 871 (Lyon III).

Genbank accession numbers are shown next to taxa names.
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detected at 1 (n = 2 rats), 2 (n = 4 rats) and 3 (n = 12) lo-

cations respectively (See Additional file 2A). No co-

circulation of variants was observed. Lyon I and II were

geographically restricted, whereas Lyon III was the most

frequently detected and widespread of the variants

(Additional file 1). All Lyon SEOV partial L sequences,

including that derived from the recent human case

(Replonges) showed highest identity to the Belgium SEO/

Belgium/Rn895/2005 strain (JQ898108). Lyon I partial L

sequences (LYO903 and LYO906) were more divergent

from the other Lyon sequences (0.5-1.4%), but they were

the closest Lyon SEOV to the nearby severe HFRS case in

Replonges (~97.8%) [21]. All 18 RT-PCR L sequences

clustered with previously described Lineage 7 sequences

within Phylogroup A [14,27], with moderate bootstrap

support. Despite their disparate isolation, most SEOV vari-

ants published to date are genetically homogenous [11,14]

making it difficult to determine the source of introduction.

However, at a local level the higher degree of sequence

homology can result in geographical clustering as ob-

served in China [14], the UK [18] and for the Lyon SEOV

in this study. To further study the molecular epidemiology

of a Lyon SEOV strain in the context of global SEOV, we

obtained full genome sequence of a representative sample.

The strong and non-degraded SEOV positive lung tissue

sample LYO852 was chosen as it represented the most fre-

quent and widespread variant detected (Lyon III).

Due to the low abundance of viral sequences relative

to total host nucleic acids, we optimised the procedure

to obtain complete SEOV genome using two next gener-

ation sequencing platforms and differing sample prepar-

ation approaches.

Roche 454 output and assembly statistics

Viral specific reads from LYO852 were obtained directly

from lung tissue on the Roche 454 NGS platform with-

out the use of viral enrichment or ultra centrifugation.

De Novo assembly of the 454 reads yielded 59 contigs

(consisting of 73,105 reads, totalling 24,730,464 bp)

representing 82% total reads, with a mean length of

702 bp (ranging between 105-2920 bp). There were 15

contigs ≥500 bp. Based on BLAST identity searches,

all contigs were host or mycoplasma sequences. Map-

ping of the reads using GS Reference Mapper (Roche)

with published SEOV genome sequences identified 44

(0.03%) SEOV specific reads yielding 9 contigs in total

for LYO852. Two partial nucleocapsid (S) gene contigs

were retrieved of 715 and 786 bp. Three partial glyco-

protein (M) gene contigs were retrieved of 612, 987 and

1,735 bp. Four partial polymerase (L) gene contigs were

retrieved, of 459, 603, 740 and 1,564 bp. Following align-

ment, the total 454 coverage for each of the three

segments of LYO852 was 84.8% (S), 91.3% (M) and

51.5% (L).

Viral enrichment methodology

To improve upon the genome coverage obtained using

the Roche-454 platform, we compared several purifica-

tion procedures and employed the Illumina NGS plat-

form (Figure 2). We combined the homogenization step

with or without freeze-thaw cycles, with or without sam-

ple filtration (to remove cells and mitochondria), and

with or without either of 2 nuclease digestion protocols

(to degrade DNA and RNA host contaminants) (data

not shown). We observed that the nuclease digestion for

Figure 2 Workflow for the preparation of lungs tissue samples

for next generation sequencing. All samples were extracted using

RNeasy mini kit (Qiagen) and treated by ScriptSeq complete golg

kit (Epicentre) and submitted to Illumina sequencing. Comparison

of viral enrichment methods: no enrichment procedure was

performed for the S1 condition, a filtration step was included for

S2 condition and a filtration step with nuclease digestion were

combined for the condition S3.
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90 min was not sufficient to remove all rRNA and there-

fore we performed a ribosomal depletion. We compared

the various approaches using qPCR assays for GAPDH,

β-actin cDNA and viral RNA (data not shown) in com-

parison to the non-enriched sample (S1). The two opti-

mal enrichment protocols involved homogenisation of

the tissue with a micropestle in cold HBSS followed by

dry ice freeze thaw cycles and a centrifugation/filtration

step, without (S2) or with a subsequent 2 step-digestion

(S3) (Figure 2). The 3 resultant samples (S1, S2 and S3)

were then used to carry out next-generation sequencing

using the Illumina platform.

Illumina outputs and assembly statistics

Without viral enrichment (S1), 513 Illumina contigs

were generated for a total length of 189,884 bp. There

were 31 contigs ≥1000 bp. Of all the contigs, 13 corre-

sponded to SEOV genome (0.34%).

Illumina sequencing for each of the three samples gen-

erated between 62 and 91 million sequence reads but

17% to 29% of the reads were discarded after quality fil-

tering (Table 1). As shown in Table 1, the sample S1 pre-

sented a larger number of reads that aligned with the

reference rat genome sequence (88%) than for the virus

enriched samples S2 and S3 (approximately 71 and 47%

respectively). Notably, the viral reads were 6 times more

abundant in the S3 sample (2.20%) in comparison to the

S1 sample (0.34%). Furthermore, the S3 sample appeared

more enriched in SEOV reads than the two other sam-

ples (Table 1) and that obtained using the Roche 454

platform. Mapping sequence reads revealed complete or

near complete (>99%) coverage of the SEOV reference

genomes for the virally enriched samples (S3). Complete

SEOV genome sequences were recovered from the

LYO852 sample and the SEOV consensus sequences of

the three samples were identical. The SEOV sequences

have been deposited in GenBank under accession num-

bers KF387723 to KF387725. Hence, we report the sig-

nificantly improved chances of successfully obtaining

complete viral genome sequences by NGS following sim-

ple viral enrichment steps. The S3 enrichment approach

will be assessed for future NGS analysis on the Roche-

454 platform.

Genetic and phylogenetic analysis

We report the complete genomic sequence of a SEOV

strain isolated from R. norvegicus in France.

The S-segment has a total of 1755nt with a deduced

coding sequence of 1290nt. The putative encoded nucleo-

protein (N) (AGZ59811) is 429 amino acids for a pre-

dicted 48KDa protein. The S-segment complete coding

sequence shared the highest identity (98%) with the

complete coding sequences of Vietnamese strains [29,30],

the two Singaporean strains Rn41 and Rn46 [31], the

SEOV Belgian Rn895 strain and the French Replonges

strain [21] (respective GenBank accession numbers: AB6

18112 to AB618126, GQ274944 and GQ274945, JQ89

8106 and KC902522). All these strains originated from

wild R. norvegicus but the Replonges strain was obtained

from a patient. The putative N protein was identical to the

deduced N protein of strains that originated from South

Korea, China, Vietnam, the United Kingdom and the

French Replonges strain (NP_942556, ADE34611, BAL467

98, AGB05597 and AGL45258 respectively). It is identical

to the 91 amino acid long partial sequence of the France

90 strain (CAI47594), implying that the 2 substitutions

at the nucleotide level were silent. It also presents

99.76% nucleotide identity and 100% amino acid similarity

with the complete coding region of Belgium/Rn895 strain

(AFN11574).

The M-segment sequence (3638nt long) has a deduced

coding sequence of 3402nt encoding for a putative

polyprotein of 125KDa (AGZ59810). This putative pro-

tein precursor presented the conserved cleavage site

(WAASA) that is required to give rise to the Gn and Gc

membrane glycoproteins [32]. The full M-segment se-

quence shared, at the nucleotide and protein levels,

the highest identity with the strains originating from

Vietnam and Singapore. The putative polyprotein is

identical to the predicted partial protein sequence of

the France90 strain (CAI47595) confirming that the

3 substitutions are silent. It also presents 6 substitutions

(5 of which are synonymous substitutions) when com-

pared with the sequence of the Belgium/Rn895 strain

(JQ898107, AFN11575).

The L-segment sequence obtained is 6511nt long. The

deduced coding sequence (6456nt) encodes the putative

Table 1 Overview of the sequence reads and mapped SEOV sequences obtained using the Illumina NGS platform for

sample preparations S1-S3

Illumina
Sample Prep

Read data Reads from SEOV Segments Reads
from
SEOV

%
reads
from
SEOV

Total
reads

PF PF
aligned

% PF
aligned

%
Ribosomal

Viral
reads

% viral
reads

Segment
S

Segment
M

Segment
L

S1 91,661,298 75,522,658 66,580,460 88.16% 0.99% 255,911 0.34% 12,675 30,211 13,617 56,503 22%

S2 83,920,361 59,434,134 42,659,876 71.78% 30.95% 434,756 0.73% 10,610 37,111 43,345 91,066 20.90%

S3 62,479,875 46,105,731 21,974,935 47.66% 21.55% 1,016,600 2.20% 112,152 363,008 381,521 856,681 84.29%

PF: Pass Filter (Quality Check). PF Aligned – sequences aligned with rat genome (see methods).

Dupinay et al. Virology Journal 2014, 11:32 Page 4 of 9

http://www.virologyj.com/content/11/1/32



RNA-dependent RNA polymerase (AGZ59809) whose

size is predicted at 246KDa. When compared exclusively

to full length coding sequences, the LYO852 strain

shared the highest identity with the L-segment of the

China Z37 strain (96%). However, when considering par-

tial sequences, it presented the highest identity (99%)

with the Belgium/Rn895 strain partial L-segment se-

quence (JQ898108).

From the 3 reconstructed phylogenetic trees (Figure 3),

the LYO852 strain is resolved in the SEOV clade within

the South East Asian virus lineage, also referred to as

lineage 7 [27,33]. According to the nucleotide and pro-

tein analysis and the phylogenetic reconstruction of the

full length S-segment, the LYO852 strain shared the

most evolutionary relatedness with the strains previously

detected either in Belgium (Belgium/Rn895) or in France

(Replonges strain). Altogether, these findings are consist-

ent with the earlier genetic description of the Belgium/

Rn895 strain [33]. It supports further the hypothesis of a

SEOV introduction in Europe due to the migration of its

carrier, the brown rat, during trade between China and

Europe [14]. However, the Lyon SEOV (LYO852) strain

is clearly distinct from the strains isolated in the United

Kingdom (IR461, Humber and Banbury strains) which

appear to represent a distinct lineage. As the Replonges

strain had been detected in a patient, our results raise

concerns regarding the circulation of the SEOV virus in

the Lyon area. Unfortunately, the wider distribution of

SEOV in France is currently unknown. In particular,

SEOV prevalence should be investigated in other large

cities such as Marseille or Paris where commensal ro-

dent populations are significant.

We report the presence of multiple foci of SEOV in-

fected wild brown rats trapped in disparate locations in

and around the large French city of Lyon. The recent de-

tection of SEOV in wild brown rats in the UK [17] and

pet rats in the UK and Sweden [18-20] may suggest

SEOV emergence. However, there has been limited sur-

veillance for hantaviral RNA in brown rats in Europe. It

is likely that future surveillance will identify similar foci

of infection in R.Norvegicus in other European countries.

The contribution of SEOV to European HFRS cases

should be further investigated to estimate the public

health impact posed by commensal brown rats.

Materials and methods
Sample collection

Between October 2010 and March 2012, 128 brown rats

(Rattus norvegicus) were trapped in and around the city

of Lyon, France. Rats were trapped using small (28 cm ×

9 cm × 9 cm) or large (50 cm × 15 cm × 15 cm) single

catch rat traps. Captured rats were transported to the la-

boratory where live rats were immediately anaesthetised

using Isofluorane and sacrificed by cervical dislocation.

Each rat was aseptically dissected. Lung tissues were col-

lected from different lobes.

Rats provided for this study were trapped for the purpose

of pest control (agreement no. 69-1810). They were eutha-

nized and used (agreement no. 69-020931) according to

ethical rules supervised by the ethical committee of VetA-

groSup and European regulation (Directive EU 86/609).

Screening for Hantavirus RNA

Immediately after collection, lung tissue was stored

at -80°C pending further analysis. Approximately 50 to

100 mg of lung tissue was homogenised in 1 ml TRIzol®

Reagent (Invitrogen, Life Technologies, Paisley, UK) with

QIAGEN Stainless steel beads (5 mm) using a QIAGEN

TissueLyser (Qiagen, UK) for 2 mins at 30 Hz. RNA was

extracted from the homogenate according to the manu-

facturer’s instructions (Invitrogen, Life Technologies,

Paisley, UK). The RNA samples were reverse transcribed

using random hexamers and screened for hantavirus as

previously described [5] employing a pan-hantavirus

nested RT-PCR directed against partial polymerase (L)

gene sequences [34].

Phylogenetic analysis of partial L gene sequences

Multiple nucleotide sequence alignments of the 18 par-

tial polymerase gene sequences and available published

SEOV sequences were generated in MEGA5 [35]. Se-

quence identities were compared using Geneious 5.6.5.

Optimum substitution models were estimated and max-

imum likelihood phylogenetic trees generated in MEGA5

[35] with bootstrap replications of 10,000 [36].

Roche-454 and Illumina platform sequencing

Initially, the Roche-454 was employed to obtain genome

sequence for a representative Lyon SEOV following pre-

vious optimisation and success in obtaining complete

genome coverage for lyssaviruses using this platform

[37]. Viral specific reads from LYO852 were obtained

directly from lung tissue on the Roche 454 platform

without the use of viral enrichment or ultra centrifuga-

tion. Briefly, for performing 454 Roche sequencing, the

TRIzol® extracted viral RNA obtained during hantavirus

screening was depleted of host genomic DNA using

RNase-free DNAse (Qiagen, UK) and host ribosomal

RNA was depleted using Terminator™ 5’-Phosphate-

Dependent Exonuclease (Epicentre Biotechnologies) as

described previously [37]. The RNA was fragmented, a

random-primed cDNA library was made and run using

the Roche 454 GS FLX System. The sequencing data

were initially assembled in the GS de novo assembly soft-

ware (Roche). Subsequently, previously published SEOV

sequences were used to map specific reads from the ori-

ginal raw data using GS Reference Mapper (Roche).
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Subsequently Illumina sequencing was assessed. Total

RNA extractions were performed using RNeasy mini kit

(Qiagen) according to the manufacturer’s instructions.

The remaining rRNA was depleted using ScriptSeq

complete gold kit Human/Mouse/Rat (Epicentre) follow-

ing manufacturer instructions and controlled with the

2100 Bioanalyzer using “Eukaryote total RNA Pico

Assay” (Agilent Technologies). 3.5-5 ng of depleted RNA

was prepared for NGS using the Illumina protocol where

10 cycles of PCR were performed and standard TruSeq

adapters and TruSeq barcoded primers were used. A

final size selection was performed by native agarose gel

electrophoresis to yield a library of inserts 250-350 bases

in length. The library was extracted from the agarose gel

using purification columns. The prepared library was

then loaded onto an Illumina HiSeq 2500 v3 single read

flow cell, standard cluster generation was performed on

a Cbot and sequenced for 50 bases.

Sequence reads

Reads were processed using CASAVA 1.8.2 and demulti-

plexed based on index sequences. The FastQC was used

for Quality Check. Sequences were aligned, first, using

TopHat 2.0.6 to the Rat genome and the unaligned reads

were aligned using Bowtie 2.0.2 software against known

viruses.

Viral enrichment and Illumina Hiseq 2500 v3 sequencing

The different approaches for virus enrichment were also

evaluated in this study for the infected lung tissue sam-

ple (LYO852) (Figure 2). Briefly, a piece of lung tissue

was immersed in 1 ml of HBSS 1X and homogenized

with micropestle and then placed on dry ice for approxi-

mately two minutes until frozen, and thawed quickly

before returning to ice. Homogenization followed by

freezing and thawing was repeated a further two times

to disrupt the cells. Samples were then spun at 1500×g

for 5 minutes at 4°C to pellet the nuclei and large cellu-

lar aggregates. The resulting supernatant was transferred

to a new tube and 2 different treatments were applied:

for the condition S2 a step-wise filtration process involv-

ing 0.45 μm polyethersulfone membrane filters (diameter

13 mm) (Millipore) was performed before RNA extrac-

tion. Condition S3 combined a step-wise filtration and a

2-step digestion with 25U of RNase I at 37°C for 90 min

in 1× RNase I buffer and DNA is removed on-column

(Qiagen). Following treatment, we extracted viral encap-

sidated RNA and residual host nucleic acids using the

RNeasy mini extraction kit (Qiagen). Viral RNA was

eluted to a final volume of 30 μl. Total RNA concentra-

tion was quantified with Quant-iT ribogreen RNA kit

(Invitrogen).

The remaining rRNA was depleted using ScriptSeq

complete gold kit Human/Mouse/Rat (Epicentre) follow-

ing the manufacturer’s instructions and quantified using

the 2100 Bioanalyzer using “Eukaryote total RNA Pico

Assay” (Agilent Technologies).

Reverse transcription and qPCR quantification

cDNA was generated with random hexamers using the

iScript™cDNA Synthesis kit (Bio-Rad). RNA (30 ng) from

each sample was incubated in the presence of 5× iScript

reaction mix (containing iScript Reverse transcriptase)

and nuclease-free water added to bring the final reaction

volume to 20 μl. This volume was incubated at 25°C for

5 min, at 42°C for 30 min, at 85°C for 5 min. To quantify

the enrichment of viral RNA, we performed various

real-time PCRs targeting cDNA of Seoul Hantavirus,

GAPDH and β-actin (see Additional file 2 for primer de-

tails). We calculated the fold enrichment in viral RNAs

by comparing the proportion of encapsidated viral RNA

CT (threshold cycle) values between the control and

each treatment.

Genetic and phylogenetic analysis of genomic segments

The deduced amino acid sequences of the 3 genomic

segments of the LYO852 strain were obtained using the

Serial Cloner 2.6.1 software. The complete coding se-

quence of the S, M and L segments and the predicted pro-

tein sequences were compared to the NCBI database

using the BLAST program (http://blast.ncbi.nlm.nih.gov/).

Multiple sequence alignments of coding sequences

were carried out using ClustalW algorithm in the MEGA

5.2.2 software (default parameters) [35]. Phylogenetic

reconstructions were performed using the Maximum

Likelihood statistical method. Bootstrapping (1000 or

500 resamplings) was applied according to the best-fit

substitution model recommended.

(See figure on previous page.)

Figure 3 Phylogenetic tree of hantaviruses based on the S, M and L segment sequences (complete coding region). All analyses were

performed using the MEGA software [35]. A. S segment: analysis was performed applying the generalized time reversible model (GTR) using a

Gamma distribution with five rate categories and invariant site (+G + I) Only bootstrap percentages ≥70% (from 1000 resamplings) are indicated.

B. M segment: analysis was performed applying the generalized time reversible model (GTR) using a Gamma distribution with five rate categories

(+G). For clarity purpose, the nodes corresponding to bootstrap percentages ≥70% (from 1000 resamplings) are indicated by dots. C. L segment:

analysis was performed applying the generalized time reversible model (GTR) using a Gamma distribution with five rate categories (+G). Only

bootstrap percentages ≥70% (from 500 resamplings) are indicated. The scale bars indicate nucleotide substitution per site. The red boxes

highlight the LYO852 strain described in the present study. Accession numbers are indicated for each strain in the corresponding taxa name.
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Additional files

Additional file 1: The locations of the trapping sites (circles) within

a) France and b) Rhône-Alps department. SEOV positive variants ‘Lyon

I, II and III’ are represented by a star, triangle and blocked out circles,

respectively.

Additional file 2: A-Distribution of the SEOV variants detected in 6

of the 23 sites sampled. B-Oligonucleotides used in this study. vRNA:

viral RNA.
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