

Stable long-term pulmonary function after fludarabine, antithymocyte globulin and i.v. BU for reduced-intensity conditioning allogeneic SCT.

Stéphanie Dirou, Florent Malard, Arnaud Chambellan, Patrice Chevallier, Patrick Germaud, Thierry Guillaume, Jacques Delaunay, Philippe Moreau, Béatrice Delasalle, Patricia Lemarchand, et al.

▶ To cite this version:

Stéphanie Dirou, Florent Malard, Arnaud Chambellan, Patrice Chevallier, Patrick Germaud, et al.. Stable long-term pulmonary function after fludarabine, antithymocyte globulin and i.v. BU for reduced-intensity conditioning allogeneic SCT.. Bone Marrow Transplantation, 2014, 49 (5), pp.622-7. 10.1038/bmt.2014.15. inserm-00955626

HAL Id: inserm-00955626 https://inserm.hal.science/inserm-00955626

Submitted on 5 Feb 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

- 1 Stable Long-Term Pulmonary Function after Fludarabine, antithymocyte globulin, and
- 2 intravenous Busulfan for reduced-intensity conditioning allogeneic stem cell
- 3 transplantation
- 4 Stephanie Dirou^{1,2*}, Florent Malard^{2,3,4*}, Arnaud Chambellan^{1,2}, Patrice Chevallier³, Patrick
- 5 Germaud¹, Thierry Guillaume³, Jacques Delaunay³, Philippe Moreau^{2,3,4,5}, Béatrice
- 6 Delasalle^{1,2,6,7}, Patricia Lemarchand^{1,2,6,7}, Mohamad Mohty^{1,2,3,4,5}
- 7 ¹ Centre Hospitalier et Universitaire (CHU) de Nantes, l'institut du thorax, Service de
- 8 Pneumologie, Nantes, France
- 9 ² Université de Nantes, Faculté de Médecine, Nantes, France
- 10 ³ CHU de Nantes, Service d'Hématologie Clinique, Nantes, France.
- ⁴ CRNCA, UMR 892 INSERM 6299 CNRS, Nantes, France
- ⁵ Centre d'Investigation Clinique en Cancérologie (CI2C), CHU de Nantes, Nantes, France.
- 13 ⁶ INSERM, UMR1087, l'institut du thorax, Nantes, France
- 14 ⁷ CNRS, UMR 6291, Nantes, France
- * Both authors contributed equally to this work.
- 17 **Running head:** Stable pulmonary function after Flu Bu ATG based RIC
- Words count: Abstract: 195; Main text: 3186; number of figures: 2; number of tables: 2.
- 19 Correspondence and reprint requests: Mohamad Mohty, M.D., Ph.D.; Service
- 20 d'Hématologie Clinique, CHU Hôtel-Dieu, Université de Nantes and INSERM U892, Place
- 21 Alexis Ricordeau, F-44093 Nantes, France. Phone: +33 240083271; Fax: +33 240083250
- 22 E-mail: Mohamad.mohty@inserm.fr

ABSTRACT

1

19

2 Lung function decline is a well-recognized complication following allogeneic stem cell 3 transplantation (allo-SCT). Reduced-intensity conditioning (RIC) and in vivo T-cell depletion 4 by administration of antithymocyte globulin (ATG) may play a protective role in the 5 occurrence of late pulmonary complications. This retrospective study reported the evolution 6 of lung function parameters within the first 2 years after allo-SCT, in a population receiving 7 the same RIC regimen including fludarabine and i.v. busulfan in combination with low dose 8 ATG. The median follow-up was 35.2 months. With a median age of 59 years at time of 9 transplant, at 2 years, the cumulative incidences of non-relapse mortality was as low as 9.7%. 10 The cumulative incidence of relapse was 33%. At 2 years, the cumulative incidences of 11 extensive chronic graft-versus-host disease (cGVHD) and of pulmonary cGVHD were 23.1% 12 and 1.9%, respectively. The cumulative incidences of airflow obstruction and restrictive 13 pattern were 3.8% and 9.6%, respectively. Moreover, FEV1, FVC and FEV1/FVC ratio 14 remained stable from baseline up to 2 years post transplantation (p=0.26, p=0.27 and p=0.07, 15 respectively). These results compare favorably with results obtained with other RIC regimens 16 not incorporating ATG, and suggest that ATG may play a protective pulmonary role after 17 allo-SCT.

18 **Key Words**: pulmonary function, reduced intensity conditioning, ATG

INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (allo-SCT) is a well-established therapy 2 3 for several hematological diseases. Unfortunately, allo-SCT is limited by the high incidence 4 of non-relapse mortality (NRM), mainly due to acute and chronic graft versus host disease (aGVHD, cGVHD) ¹. Importantly, pulmonary complications, which occur in 30 to 60% of 5 6 patients after allo-SCT², account for meaningful mortality and morbidity, and up to 50% of transplant-related deaths.³ Multiple factors can contribute to pulmonary complications, 7 8 notably the type of conditioning regimen used. Reduced-intensity conditioning (RIC) 9 regimens are being used with the aim of decreasing NRM in elderly patients, in heavily 10 pretreated patients or in patients with medical comorbidities precluding the use of standard myeloablative conditioning (MAC). One study already showed that the use of RIC regimen 11 12 can reduce the risk of developing late pulmonary complications, with protection against declining lung function and a reduced incidence of bronchiolitis obliterans syndrome (BOS) ⁴. 13 Beyond the degree of myeloablation of the preparative regimen itself (RIC or standard 14 15 myeloablative conditioning), it is well admitted that the use of total body irradiation (TBI) in the conditioning is also associated with pulmonary toxicity ⁵. In contrast, in vivo T cell 16 depletion seems to reduce the risk of developing pulmonary complications after allo-SCT ⁶. 17 Also, cGHVD has been identified as a risk factor for late onset non-infectious pulmonary 18 complications and in particular BOS 7-10. On the other hand, cGVHD is usually significantly 19 reduced in patients receiving in vivo T cell depletion by administration of antithymocyte 20 globulins (ATG) 11. However, the onset of long term pulmonary complication in patients 21 22 receiving an ATG-based RIC regimen, without TBI, has not yet been investigated. This study evaluated the evolution of lung function parameters within the first 2 years following allo-23 24 SCT, in a population undergoing the same RIC regimen including fludarabine, i.v. busulfan in combination with low dose ATG. 25

2

PATIENTS AND METHODS

Patients' characteristics

3 This retrospective single-center study included 52 consecutive patients who received allo-4 SCT between January 2007 and September 2010 at the University Hospital of Nantes (CHU 5 de Nantes, Nantes, France). Per study inclusion criteria, all patients with available pre- and 6 post-transplant pulmonary function tests (PFT) and who received RIC regimen including 30 mg/m² fludarabine for 5 or 4 consecutive days, 6.4 mg/kg total dose IV busulfan and 5 mg/kg 7 8 total dose ATG (Thymoglobulin; Genzyme/Sanofi, Lyon, France), were included. In our 9 transplant program, eligibility criteria for RIC allo-SCT that preclude the use of standard 10 myeloablative conditioning (MAC) allo-SCT include: (i) patient age older than 50 years; (ii) 11 heavily pretreated patients who received auto-SCT or with more than 2 lines of chemotherapy before allo-SCT; and (iii) patients with poor performance status because of significant 12 medical comorbidities as described by Sorror et al ¹². Patients were treated as part of different 13 14 prospective clinical trials, and written informed consent was obtained from each patient and 15 donor. All clinical data were prospectively collected. 16 All patients received the preparative regimen as inpatients in private rooms, and remained 17 hospitalized until hematopoietic and clinical recovery. 29 donors (56%) were HLA-identical 18 sibling donors, while 20 (38%) were HLA-unrelated donors (MUD) and 3 (6%) were HLA 19 unrelated donors with one locus mismatch. The stem cell source was bone marrow in 2 cases 20 (4%) and G-CSF-mobilized peripheral blood stem cells in 50 cases (96%). In this series, the 21 median age was 59 (range, 23-70) years. Twenty-two patients were treated for acute myeloid leukemia (42%), 10 patients had a myelodysplastic syndrome (19%), 13 patients had non 22 23 Hodgkin lymphoma (25%), 3 patients had Hodgkin disease (6%), 3 patients had multiple 24 myeloma (6%) and 1 patient had acute lymphoblastic leukemia (2%). Supportive care and antimicrobial prophylaxis were given as reported previously ¹³. For 25

GVHD prophylaxis, patients received either CSA alone in case of an HLA-sibling donor or CSA and mycophenolate mofetil (MMF) in case of an HLA-matched unrelated donor ¹⁴. In this series, CSA was administered at a dose of 3 mg/kg/day by continuous intravenous infusion starting from day -3 or -2, and changed to twice daily oral dosing as soon as tolerated 15. MMF was given at a fixed oral dose of 2 g/day. No treatment adjustment was performed for MMF. MMF was decreased progressively over 4 weeks starting from day 60 and CSA from day 90 if no GVHD appeared. Of note, during the whole study period supportive care was the same. CMV infection management was also homogeneous. All blood products were filtered irradiated and CMV screened. In the first 100 days post allo-SCT, patients were assessed at least once per week for CMV reactivation by PCR assay in order to initiate preemptive ganciclovir therapy. Acute GVHD was evaluated according to the Seattle standard criteria 16.

Pulmonary Function Testing

PFT were performed before allo-SCT and then repeated 100 days, one and two years after transplant. All PFT were performed in the same laboratory in accordance with the American Thoracic Society and European Respiratory Society criteria ¹⁷. Lung volumes and spirometry were measured with a Jaeger constant volume body plethysmograph with a pneumotachograph connected to an Epson PC-AT (Epson, Suwa, Japan). All PFT values, except FEV₁/FVC ratio were expressed as a percentage of predicted values in healthy controls with corresponding age and gender. Published equations were used to calculate predicted values of forced expiratory volume in 1 second (FEV₁), forced vital capacity (FVC), total lung capacity (TLC) and lung carbon monoxide diffusing capacity (DLCO) ¹⁸. DLCO was measured using the single breath technique of Ogilvie et al. and corrected for the most recent hemoglobin concentration but not corrected for the alveolar volume ¹⁹. In those patients who

1 received a bronchodilator challenge, the prebronchodilator values were used. A lung function 2 score (LuFS) was calculated before transplantation, and at day 100, 1 year and 2 years after 3 transplant in order to grade the extent of lung function impairment (if any). A separate score 4 was assigned to relative values of FEV₁ and DLCO (>80% = 1, 70-79% = 2, 60-69% = 3, 50-69% = 35 59% = 4, 40-49%=5, <40%=6), these scores were then summed and divided into four 6 categories as LuFS (LuFS score 2 = category 0 [normal]; LuFS score 3-5 = category 1 [mildly 7 decreased]; LuFS score 6-9 = category 2 [moderately decreased]; LuFS score 10-12 = 8 category 3 [severely abnormal]), according to NIH recommendations ²⁰. Restrictive lung 9 disease (RLD) was defined as TLC <80% of the predicted value, and was graded as mild at 70–79%, moderate at 60–69%, moderately severe at 50–59%, and severe at <50%. Diffusion 10 impairment was defined as DLCO <80% of the predicted value and was graded as mild at 60– 11 79%, moderate at 40–59%, and severe at <40% ²¹. Airflow obstruction (AFO) was defined by 12 13 a FEV1/FVC < 70. Criteria from the NIH consensus guidelines were used for diagnosis of 14 BOS: 1) FEV1/ FVC < 70% and FEV1 < 75% of predicted value, 2) radiological, histological or lung volume evidence of air trapping and 3) absence of respiratory tract infection ²⁰. 15 16 The occurrence of infectious respiratory complications during the follow-up period of interest 17 was collected in medical records. Expiration scans to evaluate air trapping, chest high 18 resolution computed tomography and bronchoalveolar lavage with bacterial, fungal and 19 virological searches were left to the discretion of the attending physician, according to 20 symptoms presented by the patient.

21

22

Statistical Methods

Continuous variables were presented as mean ± standard deviation (SD) or median (range), categorical variables as count and percent. Mixed models were used to analyze PFT data during time (before transplantation until 2 years post transplantation). Comparison

l	between LuFS scores before transplantation and at 100 days, 1 year and 2 years post
2	transplantation was performed with the McNemar's test. Overall survival (OS) and
3	progression-free survival (PFS) were calculated by the Kaplan-Meier method. Probabilities of
4	relapse, NRM and GVHD were calculated using the cumulative incidence procedure. The risk
5	of respiratory failure, RP and AFO were also calculated using the cumulative incidence
6	procedure with death considered as the competing event. Data were computed using SAS
7	software version 9. 3, the R package (R Development Core Team, 2006. R: A language and
8	environment for statistical computing. R Foundation for Statistical Computing, Vienna,
9	Austria. ISBN 3-900051-07-0, URL http://www.R-project.org) and GraphPad Prism 5.0
10	(GraphPad Software, San Diego, CA).

RESULTS

1

2 Patients' characteristics

- 3 In this series, the overall median follow-up was 35.2 months (range, 20.0-59.8) among
- 4 surviving patients. Patients, donors and transplant characteristics are summarized in **Table 1**.
- 5 The median age was 59 (range 23-70) years. Patients engrafted at a median of 17 (range, 0-
- 6 48) days after allo-SCT. The cumulative incidence of severe grade III-IV aGVHD at day 100
- 7 was 15.4%. At 2 years, the cumulative incidence of extensive cGVHD was 23.1%. In this
- 8 series, 23 (44%) patients were active or former smokers while 21 (40%) never smoked.
- 9 Smoker status data were missing for 8 patients (15%).

10 11

PFT and development of airflow obstruction and restrictive pattern

- 12 Pretransplantation PFT were performed at a median of 17 (range, 10-76) days before allo-13 SCT. Subsequently, PFT were performed at a median of 101 (range, 77-119), 365 (range, 14 251-490) and 717 (range, 588-846) days after transplantation. The proportion of surviving 15 patients with available PFT was 85%, 89% and 82% at day 100, 1 year and 2 years, 16 respectively. PFT data before transplantation and at day 100, 1 year and 2 years postransplantation are summarized in **Table 2.** Before stem cell transplantation, lung function 17 18 was normal in 83% (n=43) of patients, while 6 patients met the criteria for obstructive lung 19 disease defined as FEV1/FVC <70, and 3 patients had restrictive lung disease, defined as 20 TLC <80%. Restrictive lung disease was graded as mild for 2 patients and moderate for one. 21 Among patients with a pretransplantation obstructive pattern, only one patient had a FEV1 22 inferior to 75% predicted. DLCO was impaired (mean value <80%) in 83% of patients before 23 transplantation, and remained altered but stable from baseline up to 2 years post
- 24 transplantation (p=0.84). Furthermore, 60% (n=31) had a mild diffusion impairment, 19%
- 25 (n=10) a moderate diffusion impairment, and 4% (n=2) a severe diffusion impairment of
- 26 DLCO (Figure 1 E). FEV1, FEV1/FVC ratio, FVC and TLC remained stable from baseline

Dirou et al.

1 up to 2 years post transplantation (p= 0.26, p=0.07, p=0.27, p=0.44, respectively) (**Figure 1**

2 A-D). Evaluation of LuFS showed a mildly abnormal lung function (category 1) in 44 patients

(77%) at baseline. From baseline up to 2 years, LuFS score remained stable with most of

patients with normal or mildly abnormal lung function, and no patient had a severely

abnormal lung function (Figure 2). There was no statistical difference when comparing time-

points: before allo-SCT versus 100 days (p=0.53), before allo-SCT vs 1 year (p=0.29), and

7 before allo-SCT versus 2 years (p=0.54).

Mortality, infectious and non-infectious pulmonary complications

Of the 52 patients included in this study, a total of 19 patients died (36.5%) during the follow-up period. Overall survival, cumulative incidences of relapse and NRM rates at 2 years after allo-SCT were 65% (95% CI, 51-76%), 33% and 9.7% respectively. Four deaths (21%) were related to GVHD, 1 (5%) death was directly related to a pulmonary cause (pleuropericarditis), and 1 (5%) due to a secondary malignancy. The remaining 13 (69%) deaths were caused by relapse or progression of original disease. In this series, 8 patients presented a possible or probable invasive aspergillosis before transplantation (1 to 8 months before). After transplantation, two patients presented a possible aspergillosis (3 months and one year after transplantation) and one patient presented a probable aspergillosis 4 months after allo-SCT ²². None of the patients was diagnosed with a CMV disease within 2 years after transplantation. At 2 years, the cumulative incidence of AFO and RP was 3.8% and 9.6% respectively. RP was graded as mild for the majority of patients. The cumulative incidence of pulmonary cGVHD at 2 years was 1.9%, and only one patient met the criteria for BOS diagnosis according to the NIH consensus guidelines ²⁰ during the follow-up period of interest.

DISCUSSION

1

2 In this study, we reported a stable pulmonary function with a low rate of pulmonary 3 complications including airflow obstruction, restrictive lung disease and BOS in the two years 4 following allo-SCT conditioned by fludarabine, i.v. busulfan and ATG. It is well established 5 that pulmonary complications are a major cause of morbidity and mortality after allo-SCT and occur in 30 to 60% of cases, and up to 80% in autopsy studies ^{2, 23}. Infectious complications 6 are the more frequent, especially in the early phase after allo-SCT, however, many non-7 8 infectious pulmonary complications can occur after allo-SCT: restrictive lung disease, 9 impaired gas exchange or obstructive lung disease in particular in patients with concomitant cGVHD²¹. 10 11 The advent of RIC regimen allowed to perform allo-SCT in older patients or young patients 12 with severe comorbidities, including pulmonary comorbidities. The type of agents used as 13 part of the RIC regimens is a crucial determinant for the occurrence of pulmonary 14 complications. In the current study, we analyzed the results of a well-established RIC regimen 15 combining fludarabine, intermediate dose of i.v. busulfan and ATG (Thymoglobulin®) used 16 at a total dose of 5 mg/Kg. Such regimen combines an effective disease control with low NRM and an acceptable toxicity profile ²⁴⁻²⁶. In our study, RP and AFO cumulative 17 incidences remained very low, at 3.8% and 9.6% respectively, suggesting that such regimen 18 19 does not induce a significant pulmonary toxicity. Indeed, fludarabine is known to be less toxic to the pulmonary system than the traditional cyclophosphamide ²⁷. On the other hand, high 20 dose busulfan, along with cGVHD are the main risk factors identified for spirometric 21 obstruction ^{21, 28-30}. Furthermore, low dose TBI which is another component of RIC protocols, 22 23 remains an important risk factor of airflow decline, despite changes in TBI techniques aiming to limit pulmonary toxicity 31. Regarding ATG, previous data from the standard 24 myeloablative setting already suggested a potential protective role of this agent on lung 25

function. The GITMO randomized trials ³² showed that in patients receiving ATG, FEV1 and 1 FVC values remained stable at 2 years after allo-SCT (Δ FEV1, -3% and Δ FVC, +3%), 2 3 whereas there was a significant decrease of FEV1 and FVC and an increase of cGVHD in the non-ATG group. Our results in the RIC setting are in accordance with these findings, further 4 supporting the value of ATG towards reducing the incidence and severity of GVHD ³³. Here, 5 6 we reported a low cumulative incidence of extensive cGVHD at 2 years (23.1%). Such protective role of ATG on lung function is likely mediated (at least in part) by its 7 8 effectiveness in reducing overall cGVHD. Indeed, pulmonary damage occurs during cGVHD, 9 and BOS is well linked to cGVHD. According to previous studies, BOS incidence ranges from 6 to 20% in long term survivors ³⁴. This important variability is probably related to 10 11 many parameters, including the nature of conditioning regimen, stem cell source, type of donor etc. Furthermore, different definitions of airflow obstruction have been used over the 12 13 years to define BOS, contributing to this variability. We chose to apply the most recent NIH criteria ²⁰, and reported results according to the cumulative incidence procedure which is more 14 15 appropriate. In our cohort, despite the use of busulfan, the cumulative incidence of BOS was 16 very low (1.9%), supporting a protective role of ATG in the occurrence of cGVHD and BOS. 17 In addition, cGVHD might be responsible for indirect lung damage: severe chronic 18 scleroderma GVHD can lead to true RP. Thus, one may reasonably conclude that ATG can 19 contribute to the low cumulative incidence of RP (9.6%) observed in our study. One classical 20 argument against the use of ATG is the higher risk of opportunistic infections and disease relapse. However, in our study, the use of ATG did not result in an increased incidence of 21 relapse, in contrast to the study by Soiffer et al 35. This difference may be explained by the 22 23 lower dose of ATG we used (5 mg/Kg total dose). Likewise, whereas higher doses of ATG 24 are known to favor infections, there were very few infectious pulmonary complications in our cohort, in line with our previously published findings³⁶. Furthermore, low cumulative 25

Dirou et al.

1 incidence of extensive cGVHD and NRM at 2 years (23.1% and 9.7% respectively), compare favorably with long term follow-up of the German randomized ATG study³⁷: at 3 years, the 2 3 cumulative incidence of extensive cGVHD and NRM were 12.2% and 19.4% respectively in 4 the ATG group and 45.0% and 33.5% respectively in the non ATG group. Thus ATG seems 5 to exert a strong protective effect against severe cGVHD, leading to a low NRM incidence, 6 indicating a good quality of life, since extensive cGVHD is well known to be responsible for 7 a worsened quality of life³⁸. 8 In the current series, a significant percentage of patients had DLCO impairment before allo-9 SCT. After allo-SCT, DLCO remained impaired, but without evidence of worsening, as previously described in the paediatric setting ³⁹. The baseline impairment of DLCO in these 10 patients is likely multifactorial reflecting previous bacterial and viral infections, or toxicities 11 related to prior chemotherapy. 40. The impact of baseline DLCO impairment on outcome is 12 13 still controversial. However, a few studies have suggested a significant impact of DLCO 14 values on transplant outcome 41, 42 43. 15 Unfortunately, in the current study, we were not able to compare the results obtained using 16 the fludarabine, i.v. busulfan and ATG-based RIC regimen with a similar regimen not 17 containing ATG, because this is not common practice in our centre. Likewise, one may argue that lung function measurements performed during the first 2 years after allo-SCT may not be 18 19 sufficient as lung function decline could appear after 2 years, and up to 18 years after allo-SCT ^{1, 21, 28, 44}. However, one must acknowledge that reduction in lung volumes and diffusing 20 capacity often occurred early within 12 months after allo-SCT, followed by an incomplete 21 recovery within the next two years ^{21, 45}. 22 In conclusion, we report a low rate of pulmonary complications and lung function impairment 23 24 in patients undergoing a RIC regimen including fludarabine, i.v. busulfan and low dose of 25 ATG. These results further support the use of ATG as part of the so-called reduced-toxicity

Stable pulmonary function after Flu Bu ATG based RIC

Dirou et al.

1 regimens aiming to decrease long-term toxicities and to improve patients' quality of life.

13

Acknowledgements

2 We thank the nursing staff for providing excellent care for our patients and the following 3 physicians: N. Blin, A. Clavert, V. Dubruille, T. Gastinne, B. Mahe, F. Mechinaud, and F. 4 Rialland for their dedicated patient care. FM was supported by educational grants from the 5 "Association for Training, Education and Research in Hematology, Immunology and 6 Transplantation" (ATERHIT). We also thank the "Région Pays de Loire", the "Association 7 pour la Recherche sur le Cancer", the "Fondation de France", the "Fondation contre la 8 Leucémie", the "Agence de Biomédecine", the "Association Cent pour Sang la Vie", the 9 "Association Laurette Fuguain", the IRGHET, and the "Ligue Contre le Cancer" (Comités 10 Grand-Ouest), for their generous and continuous support for our clinical and basic research 11 work. Our group is supported by several grants from the French national cancer institute (PHRC, INCa to MM). 12

1 Author contributions

- 2 S. Dirou: collected, assembled and analyzed PFT data and wrote the manuscript;
- 3 F. Malard: helped in collecting, assembling and analyzing data, performed statistical analyses
- 4 and wrote the manuscript;
- 5 A Chambellan: performed and analyzed PFT data, helped in collecting, assembling and
- 6 analyzing PFT data;
- 7 P Chevallier, T Guillaume, J Delaunay, P Moreau, and S. Le Gouill: recruited patients, and
- 8 commented on the manuscript;
- 9 P Germaud: helped in collecting PFT data, and commented on the manuscript;
- 10 B. Delasalle: helped in analyzing PFT data and performed statistical analysis;
- 11 P Lemarchand: analyzed data and wrote the manuscript;
- M Mohty: recruited patients, supervised research, analyzed data, and wrote the manuscript;
- All authors approved submission of the manuscript for publication purposes.

15 Financial disclosure statement

- 16 MM and PM received lectures honoraria and research support from Sanofi whose product is
- discussed in this manuscript. The remaining authors reported no potential conflicts of interest.

18

REFERENCES

2

1

Savani BN, Montero A, Srinivasan R, Singh A, Shenoy A, Mielke S *et al.*Chronic GVHD and pretransplantation abnormalities in pulmonary function are the main determinants predicting worsening pulmonary function in long-term survivors after stem cell transplantation. *Biol Blood Marrow Transplant* 2006; **12**(12): 1261-9.

8

9 2. Walter EC, Orozco-Levi M, Ramirez-Sarmiento A, Vigorito A, Campregher PV,
10 Martin PJ *et al.* Lung function and long-term complications after allogeneic
11 hematopoietic cell transplant. *Biol Blood Marrow Transplant* 2010; **16**(1): 5312 61.

13

Savani BN, Montero A, Wu C, Nlonda N, Read E, Dunbar C *et al.* Prediction and prevention of transplant-related mortality from pulmonary causes after total body irradiation and allogeneic stem cell transplantation. *Biol Blood Marrow Transplant* 2005; **11**(3): 223-30.

18

Yoshihara S, Tateishi U, Ando T, Kunitoh H, Suyama H, Onishi Y *et al.* Lower incidence of Bronchiolitis obliterans in allogeneic hematopoietic stem cell transplantation with reduced-intensity conditioning compared with myeloablative conditioning. *Bone Marrow Transplant* 2005; **35**(12): 1195-200.

23

5. Soule BP, Simone NL, Savani BN, Ning H, Albert PS, Barrett AJ *et al.* Pulmonary function following total body irradiation (with or without lung shielding) and allogeneic peripheral blood stem cell transplant. *Bone Marrow Transplant* 2007; **40**(6): 573-8.

28

Ditschkowski M, Elmaagacli AH, Trenschel R, Peceny R, Koldehoff M, Schulte C *et al.* T-cell depletion prevents from bronchiolitis obliterans and bronchiolitis obliterans with organizing pneumonia after allogeneic hematopoietic stem cell transplantation with related donors. *Haematologica* 2007; **92**(4): 558-61.

33

7. Duncker C, Dohr D, Harsdorf S, Duyster J, Stefanic M, Martini C *et al.* Non-infectious lung complications are closely associated with chronic graft-versushost disease: a single center study of incidence, risk factors and outcome.

80. Bone Marrow Transplant 2000; **25**(12): 1263-8.

38

Bacigalupo A, Chien J, Barisione G, Pavletic S. Late pulmonary complications after allogeneic hematopoietic stem cell transplantation: diagnosis, monitoring, prevention, and treatment. *Semin Hematol* 2012; **49**(1): 15-24.

42

43 9. Martin PJ, Chien JW. What we know and mostly do not know about bronchiolitis obliterans syndrome. *Bone Marrow Transplant* 2012; **47**(1): 1-4.

45

Uhlving HH, Buchvald F, Heilmann CJ, Nielsen KG, Gormsen M, Muller KG.
 Bronchiolitis obliterans after allo-SCT: clinical criteria and treatment options.
 Bone Marrow Transplant 2012; 47(8): 1020-9.

2 11. Bacigalupo A. Antilymphocyte/thymocyte globulin for graft versus host disease prophylaxis: efficacy and side effects. *Bone Marrow Transplant* 2005; **35**(3): 225-31.

12. Sorror ML, Giralt S, Sandmaier BM, De Lima M, Shahjahan M, Maloney DG *et al.* Hematopoietic cell transplantation specific comorbidity index as an outcome predictor for patients with acute myeloid leukemia in first remission: combined FHCRC and MDACC experiences. *Blood* 2007; **110**(13): 4606-13.

13. Mohty M, Jacot W, Faucher C, Bay JO, Zandotti C, Collet L *et al.* Infectious complications following allogeneic HLA-identical sibling transplantation with antithymocyte globulin-based reduced intensity preparative regimen. *Leukemia* 2003; **17**(11): 2168-77.

14. Brissot E, Chevallier P, Guillaume T, Delaunay J, Ayari S, Dubruille V *et al.* Prophylaxis with mycophenolate mofetil and CsA can decrease the incidence of severe acute GVHD after antithymocyte globulin-based reduced-intensity preparative regimen and allo-SCT from HLA-matched unrelated donors. *Bone Marrow Transplant* 2010; **45**(4): 786-8.

22 15. Malard F, Szydlo RM, Brissot E, Chevallier P, Guillaume T, Delaunay J *et al.*23 Impact of cyclosporine-A concentration on the incidence of severe acute graft24 versus-host disease after allogeneic stem cell transplantation. *Biol Blood*25 *Marrow Transplant* 2010; **16**(1): 28-34.

27 16. Glucksberg H, Storb R, Fefer A, Buckner CD, Neiman PE, Clift RA *et al.*28 Clinical manifestations of graft-versus-host disease in human recipients of
29 marrow from HL-A-matched sibling donors. *Transplantation* 1974; **18**(4): 29530 304.

17. Lung function testing: selection of reference values and interpretative strategies. American Thoracic Society. *Am Rev Respir Dis* 1991; **144**(5): 1202-18.

36 18. Crapo RO, Morris AH, Gardner RM. Reference spirometric values using techniques and equipment that meet ATS recommendations. *Am Rev Respir Dis* 1981; **123**(6): 659-64.

40 19. Single breath carbon monoxide diffusing capacity (transfer factor).
41 Recommendations for a standard technique. Statement of the American
42 Thoracic Society. *Am Rev Respir Dis* 1987; **136**(5): 1299-307.

Filipovich AH, Weisdorf D, Pavletic S, Socie G, Wingard JR, Lee SJ *et al.*National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. *Biol Blood Marrow Transplant* 2005; **11**(12): 945-56.

Frisk P, Arvidson J, Hedenstrom H. A longitudinal study of pulmonary function after stem cell transplantation, from childhood to young adulthood. *Pediatr*

5

6

7

1 Blood Cancer 2012; **58**(5): 775-9.

2 3

22. De Pauw B. Walsh TJ. Donnelly JP. Stevens DA. Edwards JE. Calandra T et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis 2008; **46**(12): 1813-21.

8 9

10 23. Sharma S, Nadrous HF, Peters SG, Tefferi A, Litzow MR, Aubry MC et al. Pulmonary complications in adult blood and marrow transplant recipients: 11 autopsy findings. Chest 2005; 128(3): 1385-92. 12

13 14

15

16

17

24. Slavin S, Nagler A, Naparstek E, Kapelushnik Y, Aker M, Cividalli G et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 1998; **91**(3): 756-63.

18 19

20 25. Krejci M, Brychtova Y, Doubek M, Tomiska M, Navratil M, Racil Z et al. Long-21 term results of allogeneic hematopoietic stem cell transplantation after 22 reduced-intensity conditioning with busulfan, fludarabine, and antithymocyte 23 globulin. Neoplasma 2011; 58(5): 406-14.

24 25

26 27 26. Malard F, Cahu X, Clavert A, Brissot E, Chevallier P, Guillaume T et al. Fludarabine, antithymocyte globulin, and very low-dose busulfan for reducedintensity conditioning before allogeneic stem cell transplantation in patients with lymphoid malignancies. Biol Blood Marrow Transplant 2011; 17(11): 1698-703.

29 30

28

31 27. Milano F, Au MA, Boeckh MJ, Deeg HJ, Chien JW. Evaluating the impact of 32 antithymocyte globulin on lung function at 1 year after allogeneic stem cell 33 transplantation. Biol Blood Marrow Transplant 2011; 17(5): 703-9.

34

35 28. Lahzami S, Schoeffel RE, Pechey V, Reid C, Greenwood M, Salome CM et al. Small airways function declines after allogeneic haematopoietic stem cell 36 37 transplantation. *Eur Respir J* 2011; **38**(5): 1180-8.

38

39 29. Gopal R, Ha CS, Tucker SL, Khouri IF, Giralt SA, Gajewski JL et al. 40 Comparison of two total body irradiation fractionation regimens with respect to 41 acute and late pulmonary toxicity. Cancer 2001; 92(7): 1949-58.

42

Santo Tomas LH, Loberiza FR, Jr., Klein JP, Layde PM, Lipchik RJ, Rizzo JD 43 30. 44 et al. Risk factors for bronchiolitis obliterans in allogeneic hematopoietic stem-45 cell transplantation for leukemia. Chest 2005; 128(1): 153-61.

46

47 31. Kelsey CR, Horwitz ME, Chino JP, Craciunescu O, Steffey B, Folz RJ et al. 48 Severe pulmonary toxicity after myeloablative conditioning using total body 49 irradiation: an assessment of risk factors. Int J Radiat Oncol Biol Phys 2011; 50 **81**(3): 812-8.

2 32. Bacigalupo A, Lamparelli T, Barisione G, Bruzzi P, Guidi S, Alessandrino PE *et al.* Thymoglobulin prevents chronic graft-versus-host disease, chronic lung dysfunction, and late transplant-related mortality: long-term follow-up of a randomized trial in patients undergoing unrelated donor transplantation. *Biol Blood Marrow Transplant* 2006; **12**(5): 560-5.

7

8 33. Bacigalupo A. Antilymphocyte/thymocyte globulin for graft versus host disease prophylaxis: efficacy and side effects. *Bone Marrow Transplant* 2005; **35**(3): 225-31.

11

12 34. Afessa B, Litzow MR, Tefferi A. Bronchiolitis obliterans and other late onset non-infectious pulmonary complications in hematopoietic stem cell transplantation. *Bone Marrow Transplant* 2001; **28**(5): 425-34.

15

Soiffer RJ, Lerademacher J, Ho V, Kan F, Artz A, Champlin RE *et al.* Impact of immune modulation with anti-T-cell antibodies on the outcome of reduced-intensity allogeneic hematopoietic stem cell transplantation for hematologic malignancies. *Blood* 2011; **117**(25): 6963-70.

20

21 36. Peric Z, Cahu X, Chevallier P, Brissot E, Malard F, Guillaume T *et al.* Features of Epstein-Barr Virus (EBV) reactivation after reduced intensity conditioning allogeneic hematopoietic stem cell transplantation. *Leukemia* 2011; **25**(6): 932-8.

25

26 37. Socie G, Schmoor C, Bethge WA, Ottinger HD, Stelljes M, Zander AR *et al.*27 Chronic graft-versus-host disease: long-term results from a randomized trial
28 on graft-versus-host disease prophylaxis with or without anti-T-cell globulin
29 ATG-Fresenius. *Blood* 2011; **117**(23): 6375-82.

29 30

31 38. Pidala J, Kurland B, Chai X, Majhail N, Weisdorf DJ, Pavletic S *et al.* Patientreported quality of life is associated with severity of chronic graft-versus-host disease as measured by NIH criteria: report on baseline data from the Chronic GVHD Consortium. *Blood* 2011; **117**(17): 4651-7.

35

36 39. Ginsberg JP, Aplenc R, McDonough J, Bethel J, Doyle J, Weiner DJ. Pretransplant lung function is predictive of survival following pediatric bone marrow transplantation. *Pediatr Blood Cancer* 2010; **54**(3): 454-60.

39

40. 40. Patriarca F, Skert C, Sperotto A, Damiani D, Cerno M, Geromin A *et al.*41. Incidence, outcome, and risk factors of late-onset noninfectious pulmonary
42. complications after unrelated donor stem cell transplantation. *Bone Marrow*43. *Transplant* 2004; **33**(7): 751-8.

44

45 41. Chang PM, Chiou TJ, Yen CC, Hsiao LT, Liu JH, Chen PM. Diffusion capacity predicts long-term survival after allogeneic bone marrow transplantation for acute lymphoblastic leukemia. *J Chin Med Assoc* 2008; **71**(5): 234-40.

48

49 42. Yanada M, Naoe T, Iida H, Sakamaki H, Sakura T, Kanamori H *et al.* 50 Myeloablative allogeneic hematopoietic stem cell transplantation for

Philadelphia chromosome-positive acute lymphoblastic leukemia in adults: significant roles of total body irradiation and chronic graft-versus-host disease. *Bone Marrow Transplant* 2005; **36**(10): 867-72.

43. Chiou TJ, Tung SL, Wang WS, Tzeng WF, Yen CC, Fan FS *et al.* Pulmonary function changes in long-term survivors of chronic myelogenous leukemia after allogeneic bone marrow transplantation: a Taiwan experience. *Cancer Invest* 2002; **20**(7-8): 880-8.

44. Lund MB, Brinch L, Kongerud J, Boe J. Lung function 5 yrs after allogeneic bone marrow transplantation conditioned with busulphan and cyclophosphamide. *Eur Respir J* 2004; **23**(6): 901-5.

45. Crawford SW, Pepe M, Lin D, Benedetti F, Deeg HJ. Abnormalities of pulmonary function tests after marrow transplantation predict nonrelapse mortality. *Am J Respir Crit Care Med* 1995; **152**(2): 690-5.

1 FIGURE LEGENDS

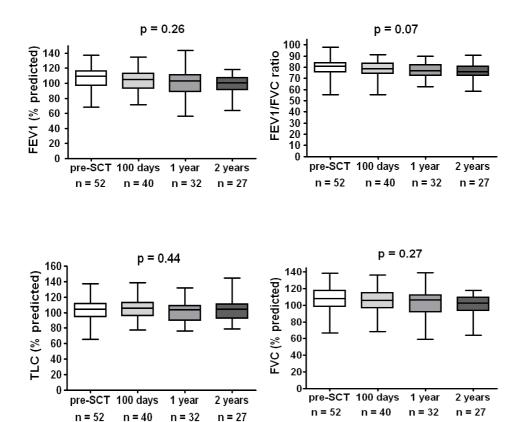
- 2 Figure 1. Changes in PFT parameters from baseline up to 2 years post allo-SCT. Data are
- 3 represented by boxplot. FEV1, FEV1/FVC, FVC, TLC, DLCO are expressed as percentage of
- 4 predicted value.

5

- 6 Figure 2. Lung Function Score (LuFS) before allo-SCT, 100 days, 1 year and 2 years after
- 7 allo-SCT. A separate score was assigned to relative values of FEV₁ and DLCO (>80% = 1,
- 8 70-79% = 2, 60-69% = 3, 50-59% = 4, 40-49%=5, <40%=6), these scores were then summed
- 9 and divided into four categories: LuFS 2 = category 0, LuFS 3-5 = category 1, LuFS 6-9 =
- category 2, LuFS 10-12 = category 3. No patient had severely abnormal lung function. There
- were no statistical differences in changes of LuFS before and after allo-SCT (Before allo-SCT
- 12 vs 100 days (p=0.53), vs 1 year (p=0.29), vs 2 years (p=0.54)).

1 **Table 1.** Demographic characteristics of patients and transplant-related events

Characteristic (%)	Study population (N=52)
Patient age, median (range)	59 (23-70)
Patient gender	
Male	32 (62)
Female	20 (38)
Smoker	
Yes	23 (44%)
No	21 (40%)
Data missing	8 (15%)
CMV serologic status	
Seronegative donor-recipient pair	23 (44%)
Diagnosis	
AML	22 (42)
MDS	10 (19)
NHL	13 (25)
Other*	7 (14)
Stem cell source	
Bone marrow	2 (4)
PBSC	50 (96)
Donor type	
Matched related donor (MRD)	29
Unrelated donor (UD)	23
CD34 ⁺ cell infused, × 10 ⁶ /Kg, median (range)	6.22 (1.15-16.3)
GVHD prophylaxis	
CsA alone	31 (60)
CsA + MMF	21 (40)
Grade 3-4 aGVHD at day 100 (cumulative incidence)	15.4%
Extensive cGVHD at 2 years (cumulative incidence)	23.1%


Abbreviations: CMV indicates cytomegalovirus; AML acute myelogenous leukemia; MDS myelodysplastic syndrome; NHL, non-Hodgkin lymphoma; CsA, Ciclosporine A; MMF, mycophenolate mofetil.

^{*}Others: 3 Hodgkin's disease, 3 multiple myeloma and 1 acute lymphoblastic leukemia.

Table 2. PFT Data Obtained Pretransplantation and at 100 Days, 1 Year, and 2 Years Posttransplantation (Median expressed as percentage of predicted value).

	FEV1,	FVC,	FEV1/FVC,	TLC,	DLCO,
	Median	Median	Median	Median	Median
	[range]	[range]	[range]	[range]	[range]
Pretransplantation (n = 52)	109.8	108.2	80.9	104.5	69
	[68.5- 137.3]	[66.5-138.4]	[55.3-98.1]	[65.2-137.1]	[37.5-96.1]
Day 100 (n = 40)	105.1	105.8	78.48	105.8	69.8
	[71.5-135.1]	[68.1-136.3]	[55.5-91.1]	[77.9-138.7]	[43.3-106.3]
1 year $(n = 32)$	103.4	106.7	76.86	103.7	70
	[56.1-143.7]	[59-139]	[62.8-89.9]	[76.2-132.2]	[37.4-94.4]
2 years (n = 28)	100.6	102.7	76.2	104.4	68.1
	[63.8-118.1]	[63.9-117.8]	[58.7-90.7]	[79-144.9]	[34.4-86.2]

Abbreviations: FEV1 indicates forced expiratory volume in 1 second; FVC, forced vital capacity; TLC, total lung capacity; DLCO, lung carbon monoxide diffusing capacity.

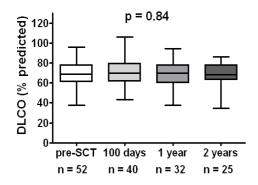


Figure 1.

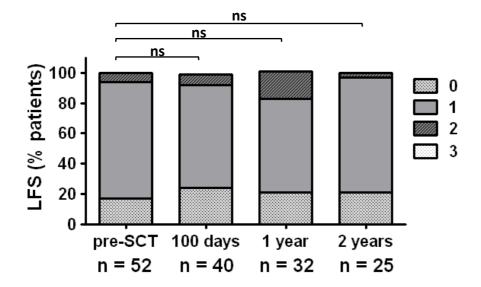


Figure 2.