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Abstract. In CT (computed tomography), reconstruction from undersampling projection data is of-

ten ill-posed and suffers from severe artifact in the reconstructed images. To overcome this prob-

lem, this paper proposes a sinogram inpainting method based on recently rising sparse representa-

tion technology. In this approach, a dictionary learning based inpainting is used to estimate the 

missing projection data. The final image can be reconstructed by the analytic filtered back projec-

tion (FBP) reconstruction. We conduct experiments using both simulated and real phantom data. 

Compared to the comparative interpolation method, visual and numerical results validate the clini-

cal potential of the proposed method.  

Keywords: computed tomography (CT), under-sampling, dictionary learning, inpainting. 

1 Introduction 

How to reduce the radiation exposure of patients has always been an important concern since the intro-

duction of computed tomography (CT) [1-3]. Image reconstruction from sparse sampled sinogram data 

enables rapid scanning with a reduced x-ray dose delivered to patients. However, because of measure-

ment missing in the sparse sampling, the projection data is not sufficient for exact reconstruction, the 

application of standard analytic algorithms such as filtered back-projection (FBP) will lead to conspic-

uous artifact in the reconstructed images[4].  

A widely used reconstruction algorithm for sparse sampling is the iterative total variation (TV) min-

imization algorithm which relies on the assumption that the main information of the object being im-

aged can be well represented by sparse gradients [5]. Some Markov random fields (MRF) based bayes-

ian approaches were also applied to improve the iterative reconstructions by incorporating image in-

formation as priors [6-7]. The main drawback of these iterative methods is the high computation cost 

involved. Another solution is completing the sinogram data by inpainting the missing measurements [8-

9], and then perform analytic FBP reconstruction using the completed sinogram data. In recent years 

there has been a growing interest in the study of sparse representation based dictionary learning (DL) in 

signal processing [10-18]. Some successful applications in medical imaging have been explored. In 

[19-20], DL based regularizations were incorporated into the iterative algorithms to improve MRI and 

CT reconstructions under sparse sampling. Also an modified DL algorithm was developed in [21] to 

denoise CT images with simulated Poisson noise. In [22], J.Shtok utilized dictionary learning based 

method to denoise the sinogram in low-dose CT.  

In this paper, we apply DL method to inpaint the missing sinogram data caused by sparse scanning 

in CT. The dictionary is learned via the overlapping sinogram patches from a simulated phantom im-

age, then the missing sinogram data is estimated by performing the DL based inpainting. The final 

image can be reconstructed by performing FBP algorithm using the inpainted sinogram. The proposed 

method is explained in detail in Section 2. In Section 3, we demonstrate the performance of our algo-

rithm on simulated and real data. A conclusion and future work are given in Section 4. 



2 Method 

Based on [23], the classical FBP algorithm can be formulated as follows: 
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where, I is the reconstructed image with pixel index denoted by ( , )
x y
c c , p is the projection data, h  is 

the transfer function, ! is the projection view, rc is the rotational coordinates, r is the distance from 

the reconstructed point to the coordinate origin,! is the angle from the positive direction of x-axis to 

the vector which connect the origin to the reconstructed point , d is the sampling interval, N!  is the 

number of  projection views, !  is the angle increment, N is the number of projection bins. 

For a sparse signal 
n

y R! , y can be represented in a linear system =Ax y  (
n m

A R
!" ,

m

x R! , 

n

y R! , m  and n represent the dimension of the vector x  and y , respectively) [14]. The matrix A  

refers to a dictionary of atoms, and every column in A  is a atomic signal in 
n

R . x  is a sparse vector 

with 
0

00
x k= , and 

0

0
 is the 

0
norm which represents the number of non-zeros in the vector. The 

product of  by the sparse vector  produces a linear combination of 
0
k  atoms with varying portions 

as the signal , the vector  that generates  is called the sparse representation of . 

For our case, we assume that the original sinogram image 
n

u R! is a sparse-land signal, which 

means that there exists a dictionary , and a corresponding sparse representation vector !  allowing 

u A!=  [10]. The sparse measurement Z  can be defined as follows:  

                                                                    Z Mu != +                                                                        (2) 

where, M  denotes a binary mask matrix specifying the locations of the known or missing pixels, and 

!  represents the noise. To estimate the original image u , we use the coefficient sparsity as a prior 

constraint, which can be formulated as: 
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!  is a parameter that should be set proportional to the amount of noise, 
0

0
 and 

2

2
 represent the

0
 

norm and 
2
l norm, respectively. We can obtain the representation !  by solving the problem (3), and 

then calculate the inpainted sinogram u  as A! . Then with inpainted sinogram available, the simple 

FBP algorithm is applied to reconstruct CT image. Fig.1. shows the whole flow chart of the algorithm. 
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Fig.1.  The flow chart of the proposed algorithm 

 

 

 



2.1 Orthogonal Matching Pursuit 

To obtain the solution of equation (3), we use OMP algorithm to calculate the sparse coefficient !  

[24]. We consider the unknown !  from two aspects– the support of the solution and the non-zero val-

ues over this support. We treatMA  in (3) as a whole matrix '

A . The OMP algorithm was used to solve 

the solution of (4): 
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Fig.2. shows the flow chart of OMP algorithm. In initialization, we initialize 0=  ( is the itera-

tion index), and set the initial solution 
0

0! = ,the initial residual 
0 ' 0

r Z A Z!= " = , the initial solu-

tion support 
0

S =support {
0! }. 

In the next main iteration stage, we increase by 1 and perform the following steps: 

Sweep: we calculate the error of the following form:  
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j
M is a scalar, 

'

j
a is the jth column of '

A , 1k

r
! is the residual in the ( 1)k th!  iteration   
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Minimizing of ( )j!  leads to the optimal choice: 
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Then ( )j! can be deduced as following :  
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If one normalized column of the matrix '
A lead to the largest inner product (in absolute value) be-

tween the residual 1k

r
! and the normalized vectors of the matrix '

A , namely the second component 

in (8) is the largest, then the error ( )j!  will be the minimum. 

Update support: after the sweep step, we have calculated the inner product between all the normal-

ized column vectors of '
A and 1k

r
! to find a minimizer, 

0
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r Z A!= " . If 
2

2

k

r !< , the algorithm stops, otherwise, we apply 

another iteration. The output solution 
k! is obtained after iterations. 
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  Fig.2.  The flow chart of OMP algorithm 



                                                         
                                   (a)                                                                                (b) 

Fig.3.  Simulated sinogram and learnt dictionary. (a): simulated sinogram (b): trained dictionary. 

2.2 Dictionary Learning 

 In this study, considering the inherent sinusoidal features for all sinogram data in tomography, we 

use a simulated sinogram from simulated numeric image to build database { }
1

N

i i

u
=

with N signals, each 

signal was a patch extracted from the simulated sinogram, then the database was used to learn the dic-

tionary. Fig.3. (a) shows the simulated sinogram from which the learnt dictionary Fig.3. (b) is learned. 

Every representation 
i

!  has 
0
or fewer non-zero entries. Dictionary A  is learned by solving the fol-

lowing optimization problem: 
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where, each given signal 
i
u  is described as the sparsest representation 

i
!  over the unknown dictionary 

A . Here the K-SVD algorithm in [15] is applied to learn a dictionary. The K-SVD algorithm performs 

dictionary update in a sequential manner where each column of A  is updated jointly with the corre-

sponding representation coefficients. We perform inpainting on overlapped patches extracted from the 

corrupted sinogram images. The resulting inpainted sinogram is obtained by averaging the overlapped 

patches, and then can be used in the final FBP reconstruction.  

3 Experiment 

Reconstructions with both simulated data and real scanned phantom data were performed. In order to 

make comparison, we also use the traditional spline interpolation in [25] to recover the sinogram. 

Spline interpolation is a form of interpolation where the interpolation is a special type of piecewise 

polynomial called a spline [25], here we use the 3rd order B-spline interpolation. As to the dictionary 

learning in the proposed method, refer to the sparse-based image denoising work [14], [22], the patch 

size is set to be 8 8! and the number of the dictionary columns is 256, 
0
and iteration number are set 

to be 3 and 30 respectively,  and the initial dictionary is obtained from the discrete cosine transform 

(DCT). All the parameters are listed in Table 1. Hanning window was selected for all the FBP recon-

structions. A PC with Intel I5 CPU and 4G RAM is used as the workstation for experiments.  

Table 1. Parameters used in the methods 

Methods Parameters 

Spline interpolation  3, :order spline type B-spline=  

    Proposed method 0
patch size 8 8, dictionary size=64 256, 3, iteration number=30= =! !  

 



3.1 Simulated Phantom Data 

In this experiment, we use the 128 128!  Shepp-Logan numeric phantom with pixels intensities 

ranging from 0 to 255. The corresponding projected parallel sinogram is with 180 projection views and 

128 bins (Fig.4. (a)). Gaussian noise with 5! = was added into the sinogram to simulate the practical 

scanning. We take samples at every 4 degrees in the range of 180, and the simulated sparse sinogram is 

illustrated in Fig.4. (b).The recovered sinograms with the two different methods are depicted in Fig.4. 

(c)-(d) for spline interpolation and the proposed sparse inpainting, respectively. Fig.5. plots the profile 

and its partial enlargement in the middle line along the horizontal direction of the recovered sinograms. 

We can see that, compared to spline interpolated sinogram, sparse inpainted sinogram is closer to the 

original complete one (see the zoomed region in Fig.5.). Fig.6. shows the reconstruction results with 

zoomed regions, and we can see the sparse inpainted sinogram yields the reconstructed image closer to 

the original phantom image than spline interplolated sinogram. We can also observe some remaining 

artifacts in the image reconstructed from the proposed sparse inpainted sinogram, but obviously much 

less than the reconstruction using spline interpolated sinogram.  

 

                 

            
    

Fig.4. The original sinogram and the recovered sinograms using different methods (a):original sinogram (b):sparse 

sampled sinogram (c):spline interpolated sinogram (d): sparse inpainted sinogram 

                              

                  Fig.5. 1D Profiles along the specified horizontal direction (white line) in the recovered sinograms 

(d) 

(b) (a) 

(c) 



 

                       
 

                       
 

Fig.6. FBP reconstructions using (a): the original sinogram (b): the sparse sampling data (c) the spline interpolated 

sinogram (d): the sparse inpainted sinogram 

3.2 Real Data  

The real projected sinogram data (Fig.7.(a)) was collected by scanning a phantom from a real fan 

beam CT system with 120 kVp and 100mA. The sinogram is with 984 projection views and 888 bins 

(Fig.7.(a)), and we take one sample per 4 degrees to simulate the sparse scanned sinogram (Fig.7.(b)). 

The objective image is composed by 512 512!  pixels. Here we consider the abdomen window (center, 

50HU; window width, 350HU). 

Inpainted sinograms with the two different methods are depicted in Fig.7.(c)-(d) for spline interpo-

lation and the proposed sparse inpainting, respectively. Fig.8. plots the profile and its partial enlarge-

ment along the chosen horizontal profiles in the two recovered sinograms, and it shows that sparse 

inpainted sinogram is closer to the original complete one (see the zoomed regions). Fig.9. shows the 

corresponding reconstruction results with zoomed specified regions. Also in Fig.9., the visual compari-

sons indicate that for the real data our proposed method can lead to reconstructed image closer to the 

reconstruction using the original complete sinogram.  

 

 

(d) (c) 

(b) (a) 



                 
                     

                       
           

Fig.7. The original sinogram and the recovered sinograms using different methods (a):original sinogram (b):sparse 

sampled sinogram (c):spline interpolated sinogram (d): sparse inpainted sinogram 

 

                          Fig.8. 1D Profiles along the specified horizontal direction (white line) in the recovered sinograms 

(c) (d) 

(a) (b) 



           
 

      

Fig.9. FBP reconstructions using (a): the original sinogram (b): the sparse sampling data (c): the spline interpolated 

sinogram (d): the sparse inpainted sinogram 

3.3 Quantitative Analysis 

In Table 2, we list the metric peak signal to noise ratio (PSNR) and the structural similarity index  

comparisons (SSIM) of the recovered sinograms and the reconstructed images for the two experiments 

on simulated and real data [26]. We take the original complete sinograms and the corresponding recon-

structed images as the references. I represents the reference sinogram or image, and K represents the 

sinogram or image to be assessed. 
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I
MAX is the maximum intensity of the reference image I . 
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where 
x

µ and y
µ  denote the mean intensities of images x  and y , 

x
! and y

! are the standard deviation 

of images x  and y , 
xy

! is the covariance of x  and y , 
2

1 1
)(K Lc = and 

2

2 2
)(K Lc =  . L is the dynamic 

(d) (c) 
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range of the pixel values (255 for 8-bit grayscale images), 
1
0.01K = and 

2
0.03K = . We can see in 

Table 3. that, for the phantom and real data, our proposed method lead to sinograms and reconstructed 

images with a higher PSNR and SSIM than spline interpolated method.  

Also the CPU time for different reconstructions is displayed in Table 3. We can note that the com-

putation cost for the sparse inpainting method (including dictionary learning and sinogram inpainting) 

is comparably higher than the spline interpolation. Considering the dictionary can be learned from an 

available simulated sinogram, the calculation involved in dictionary learning can be avoided in practi-

cal application.  

Table 2. PSNR(dB)/SSIM values of the two methods 

 Spline interpolated Sparse inpainted 

Simulated 

data 

Recovered sinograms 32.8744/0.8852 33.9031/0.9306 

Reconstructed images 28.0298/0.8474 30.2174/0.9192 

Real data 
Recovered sinograms 43.7997/0.9761 46.9594/0.9850 

Reconstructed images 34.6735/0.9014 38.4771/0.9334 

Table 3. CPU time (in seconds) needed for the spline interpolation and the sparse inpainting 

   Spline interpolation Sparse inpainting 

CPU time 

Simulated data 0.2373 

Dictionary 

learning 
262.91 

Sinogram 

Inpainting 
115.64 

Real data 25.4530 

Dictionary 

learning 
333.59 

Sinogram 

Inpainting 
350.71 

 

4 Conclusion     

In this paper, a dictionary based sinogram inpainting method is proposed to compensate the artifact 

problem in CT sparse reconstruction. The patch-based dictionary is first learned by applying K-SVD 

algorithm with database composed by the patches from simulated CT sinogram. The learned dictionary 

is then used to inpaint the missing sinogram data which is then used in final image reconstruction via 

the classical FBP reconstruction. Experiments on both simulated and real data demonstrate the good 

performance of the proposed inpainting algorithm over other interpolation methods. This algorithm can 

enable fast scanning with a reduced x-ray dose and also can be easily extended to cone-beam CT sys-

tem.  

However, the proposed inpaining method requires more intensive computation than other ap-

proaches, and we can still observe some artifact in the images reconstructed from the proposed sparse 

inpainted sinogram. Future work includes accelerating the computation using parallelization methods, 

and improving the inpainting by investigating more elaborate methods on sparse coding. 
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