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Unsupervised Bayesian Decomposition of Multiunit
EMG Recordings Using Tabu Search

Di Ge, Eric Le Carpentier, and Dario Farina∗, Senior Member, IEEE

Abstract—Intramuscular electromyography (EMG) signals are
usually decomposed with semiautomatic procedures that involve
the interaction with an expert operator. In this paper, a Bayesian
statistical model and a maximum a posteriori (MAP) estimator are
used to solve the problem of multiunit EMG decomposition in a
fully automatic way. The MAP estimation exploits both the like-
lihood of the reconstructed EMG signal and some physiological
constraints, such as the discharge pattern regularity and the re-
fractory period of muscle fibers, as prior information integrated
in a Bayesian framework. A Tabu search is proposed to efficiently
tackle the nondeterministic polynomial-time-hard problem of op-
timization w.r.t the motor unit discharge patterns. The method
is fully automatic and was tested on simulated and experimen-
tal EMG signals. Compared with the semiautomatic decomposi-
tion performed by an expert operator, the proposed method re-
sulted in an accuracy of 90.0% ± 3.8% when decomposing single-
channel intramuscular EMG signals recorded from the abduc-
tor digiti minimi muscle at contraction forces of 5% and 10% of
the maximal force. The method can also be applied to the auto-
matic identification and classification of spikes from other neural
recordings.

Index Terms—Bayesian analysis, electromyography (EMG) sig-
nal decomposition, Tabu search.

I. INTRODUCTION

I
NTRAMUSCULAR electromyography (EMG) signals are

the sum of series of action potentials discharged by the mo-

tor units (MUs) within the detection volume of the record-

ing electrodes. The interference intramuscular EMG signals

can be decomposed into the constituent MU action poten-

tials (MUAPs) to extract the discharge patterns of the mo-

tor neurons innervating the muscle. This procedure allows the

analysis of MU control properties [1] and thus provides a

unique insight into the neural drive to muscles. EMG signal

decomposition is usually performed by semiautomated meth-

ods, often based on serial detection and classification of action

potentials.
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Since the pioneer work completed by De Luca and cowork-

ers both in the development of detection needles, processing

techniques and in the use of EMG signal decomposition for

understanding fundamental physiological issues [1]–[4], many

techniques have been further developed for the EMG decompo-

sition (for review, see [5]). In classical approaches for intramus-

cular EMG decomposition, the MUAPs are identified from the

interference signal with a threshold and classified as belonging

to the active MUs. The challenge in the decomposition is mainly

the separation of MUAPs that overlap in time. The global op-

timization of overlapped MUAPs is indeed an nondeterministic

polynomial-time (NP) hard problem, i.e., a problem that cannot

be solved by polynomial complexity algorithms. The existing

methods either perform on the restrained search spaces [6], [7] to

reduce the complexity or are based on recursive algorithms [8],

[9] with specific trial strategies and residual threshold estima-

tions. Atiya [7] proposed a robust approach for decomposing

overlaps of action potentials in neural recordings by comparing

all possible combinations of up to two action potentials (re-

strained search space). Within the family of the spike sorting

algorithms, the dynamic programming method [6], which uses

the fast exploration technique of a k-d tree, is also limited by the

memory space necessary to generate such data structure, result-

ing in an equally restrained search space of up to two overlapping

action potentials. This restraint is not justified in several appli-

cations, for example, when decomposing intramuscular EMG

signals comprising many active MUs. Other approaches are not

limited in the number of overlapping sources, however, they usu-

ally require the interaction with an operator. For example, the

EMGLAB algorithm [8], [9] recursively matches the templates

(reference MUAPs) and reevaluates the residual errors, simi-

lar to the greedy algorithm, but requires an expert intervention

when the algorithm fails to reach the residual lower bound [8]

after a number of trials.

In this study, we propose a fully automatic EMG decompo-

sition algorithm that exploits both the signal model likelihood

and the regularity of the MU discharge patterns in a similar way

as it is done during the manual decomposition. Unlike previous

methods, which indirectly use the information on MU discharge

regularity in an interactive procedure involving human interven-

tion [9], the proposed method integrates this information as prior

law in a Bayesian framework. The NP-hard problem associated

to the decomposition of overlapping MUAPs is solved with the

Tabu metaheuristic without limiting the search space. Moreover,

contrary to methods for the multichannel surface EMG decom-

position [10]–[12], the proposed method requires one single

recording channel. The method was tested on simulated and

experimental signals.
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II. MODEL AND METHOD

A. Forward Model

An interference EMG signal comprising the contributions of

I MU discharge sources can be described as

z =
I∑

i=1

hi ∗ si + ǫ (1)

where z is the recorded EMG signal of length N , modeled as

a mixture of convolutions of the impulse trains si , i = 1, . . . , I
(the discharge patterns) and the linear filters hi , i = 1, . . . , I
(MUAPs). The shorthand (•)i replaces the whole set {•, i =
1 . . . , I} without ambiguity, thus (si)i = {si , i = 1 . . . , I}.

The following statistical assumptions are made on this mixture

of sources.

1) Each impulse source si = 1xi
(the discharge pattern) is

modeled as an arriving-time process with uniform ampli-

tudes. The subscript of the indicator function xi is a vector

containing the impulse coordinates for the ith source (ar-

riving time of impulses). We also denote ni = dim(xi),
the number of discharges.

2) The MU discharge patterns (1xi
)i are supposed mutually

independent.

3) The MUAP shapes (hi)i vary slowly during the EMG

recording (i.e. variations in shape of the MUAPs occur

during time intervals of seconds as order of magnitude).

4) The observation z is corrupted by an additive white Gaus-

sian noise with unknown variance σ2
ǫ .

In relation to assumption 2), it should be noted that two types

of correlations exist between MU discharge patterns. The first

consists of the common modulation of the time-varying dis-

charge rates between pairs of MUs (common drive) [1]. The

second is characterized by simultaneous or near-simultaneous

discharges of two or more MUs (including but not limited to

phase locked and entrained (1xi
)i) that occur more often than

would be expected with independent processes (short-time syn-

chronization [13], [14]). Models exist (e.g., see [15]) to simu-

late the interdependent discharge patterns, by introducing both

MU common drive and short-time synchronization among MUs.

However, these two types of correlation between MU discharge

patterns cannot be directly coded into the prior laws of (1xi
)i .

This a priori information is thus ignored in the present study

to yield a simple model structure. It is also as a general rule

in Bayesian inference problems that independency assumptions

often imply lack of tractability to exploit the data dependency

properties rather than proved scientific observations.

The data-generating process, given the source parameters

(xi ,hi)i , σ
2
ǫ , obeys the Gaussian law

P
(
z|(xi ,hi)i , σ

2
ǫ

)

=

(
1√
2πσ2

ǫ

)N

exp

(
−||z −∑i 1xi

∗ hi ||2
2σ2

ǫ

)
. (2)

The following additional assumptions are made on the discharge

pattern of each MU.

1) The interspike interval (ISI) Tij = xi,j+1 − xi,j between

two consecutive impulses for a given source si is larger

than a threshold value TR , which indicates a physiological

constraint on the ISI (e.g., TR may be set similar to the

refractory period of muscle fibers).

2) (Tij − TR ) follows a Gaussian-shaped distribution (Tij −
TR ) ∼ N (mi , σ

2
i ).

3) The ISI variability is smaller than a threshold: σi/mi <
Thσ i

; this constraint expresses the regularity of the dis-

charge patterns and the threshold Thσ i
controls the vari-

ability of the ISI.

According to the previous assumptions, the ISI follows a

truncated Gaussian distribution, in which

{
P (Tij ) = 0, Tij < TR

P (Tij − TR ) ∝ g(mi , σ
2
i ), Tij ≥ TR

. (3)

This assumption is in accordance with the histograms of exper-

imentally observed discharge patterns [16], i.e. approximately

Gaussian-shaped with a normalized variance σi/mi < Thσ i
. On

a discrete grid, the ISI probability in (3) is well-defined up to a

normalization factor. The source-generating process is thus the

following:

P
(
xi | mi , σ

2
i

)

=
1

4
erfc

(
xi,1 − TR − mi√

2σi

)
erfc

(
N − xi,n i

− TR − mi√
2σi

)

(
1

2πσ2
i

)(n i −1)/2

exp



−
n i −1∑

j=1

(xi,j+1−xi,j−mi−TR )2

2σ2
i





(4)

for a given configuration of a source si = 1xi
. The two terms

1/2erfc(•) in (4) evaluate the first impulse ISI with probability

P (Ti,1 > xi,1) and the (ni + 1)(th)
impulse ISI with probability

P (Ti,n i +1 > N − xi,n i
) respectively. For simplicity, the end-

effects by integration are neglected in the following, so that we

obtain

P
(
xi | mi , σ

2
i

)
≈
(

1

2πσ2
i

)(n i −1)/2

× exp



−
n i −1∑

j=1

(xi,j+1−xi,j−mi−TR )2

2σ2
i



.

(5)

With the independence assumption of MU discharge patterns

(xi)i , we also obtain

P
(
(xi)i | (mi , σ

2
i )i

)
=

I∏

i=1

P
(
xi |mi , σ

2
i

)
. (6)

In the following, P ((xi)i) will denote the prior law for the

discharge patterns to simplify the notation.
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B. Posterior Probability Law

In a Bayesian framework, we establish the posterior distribu-

tion for the unknown variables
{
(xi ,mi , σ

2
i ,hi)i , σ

2
ǫ |z
}

:

P
(
(xi ,mi , σ

2
i ,hi)i , σ

2
ǫ |z
)
∝ P

(
z|(xi ,hi)i , σ

2
ǫ

)

I∏

i=1

(
P
(
xi |mi , σ

2
i

)
P (mi)P

(
σ2

i

)
P (hi)

)
P
(
σ2

ǫ

)
. (7)

The decomposition task is accomplished by jointly maximizing

(7) w.r.t. the discharge patterns (xi)i , their statistics (mi , σ
2
i )i ,

the MUAP shapes (hi)i and the background noise variance σ2
ǫ .

Equations (2) and (4) provide the first two terms of the right-

hand side of (7). The remaining terms can be expressed as con-

jugate priors with noninformative hyperparameters (αi , βi)i ,

(αs , βs , µ0 , σ
2
0 , σ2

h
)

P (mi) ∼ N (µ0 , σ
2
0 ), P (σ2

i ) ∼ IG(αi , βi) (8)

P (hi) ∼ N (h
(0)
i , σ2

h
), P (σ2

ǫ ) ∼ IG(αs , βs) (9)

where IG stands for the inverse Gamma distribution.

For example, the inverse Gamma IG(1, 1) yields an almost

uniform distribution that covers a wide range of parameter val-

ues. The choice of µ0 , σ
2
0 expresses the prior information on the

discharge rate of each MU and the certainty of this information.

Typically, the Gaussian prior of mi can be interpreted as convey-

ing no specific prior information under the condition that [25 ms,

200 ms] ⊂ [µ0 − 3σ0 , µ0 + 3σ0 ] (i.e. most of the physiological

discharge rates ranging from 5 to 40 Hz are considered, corre-

sponding to a mean value of 200 and 25 ms, respectively). The

same remark is applied to σ2
h

that controls the uncertainty of the

initialized shapes (h
(0)
i )i , which are the approximated MUAP

obtained from the preprocessing phase (see Section III-A).

III. MAXIMIZATION ALGORITHM

This section describes the main features of the two-phase

EMG signal decomposition algorithm based on the maximum

a posteriori estimator (MAP) applied to the forward model de-

scribed earlier; the joint posterior distribution of (7) is maxi-

mized w.r.t. the unknown parameters

Θ̂ = arg max P (Θ|z)

with Θ =
{
(xi ,hi ,mi , σ

2
i )i , σ

2
ǫ

}
.

The Section III-A presents the overall structure of the method,

divided into a preprocessing phase and a complete EMG sep-

aration phase that iteratively maximizes (7). For fixed (xi)i ,

maximization w.r.t.
{
(hi ,mi , σ

2
i )i , σ

2
ǫ

}
leads to a closed-form

solution. On the other hand, the problem of estimating the dis-

charge pattern (xi)i cannot be practically solved by an ex-

haustive exploration due to computational time [6], [17]. The

decomposition problem consists of determining the MU label

set and the discharge instants that maximize the posterior dis-

tribution expressed by (7). The complete search space of the

discharge pattern (xi)i , containing all possible alignments of

all possible combinations of MU label sets, is exponential [18].

In this paper, we propose to use the Tabu search algorithm [19]

to deal with the maximization w.r.t. the discharge pattern (xi)i .

We clarify the main application issues such as the cost function

to minimize (equivalent to the maximization of the marginal

posterior law for (xi)i), the neighborhood definition (the set of

moves allowed in one iteration), and the Tabu list structure.

A. Overall Structure

The decomposition method consists of two phases. First,

the EMG signal is segmented and a few representatives of

the MUAPs (h
(0)
i )i are extracted for initialization of MUAP

shapes [see (9)]. It is implemented as a classic preprocessing

for MUAP detection in intramuscular recordings and comprises

bandpass filtering, thresholding for detection [17], [18], and iso-

lated MUAP shape classification [20]. In this study, we applied

a level threshold proportional to the background noise standard

deviation estimate σ̂ǫ . The active segments ({Segk}) are then de-

tected where either isolated or overlapped MUAPs occur. False

positives are preferred over false negatives since (xi)i = φ in

one active segment is an allowed solution of the MAP estimation

(the second phase).

The algorithms used in the first phase, inspired from the meth-

ods in [9], [20], are as follows.

1) Bandpass filtering of the raw EMG signal to enhance the

MUAP’s fast rising edges while suppressing the low-frequency

background activities. The first-order differentiator in [20] is

adopted for its simplicity, as in [9]: z
f
n = zn+1 − zn−1 , where

z and z
f represent the raw EMG data and its filtered output, re-

spectively. In the following, z ← z
f while we keep the notation

z for filtered EMG.

2) Segmenting the prefiltered EMG signal into temporal in-

tervals that contain either overlapped or separated MUAP ac-

tivities. A level threshold ThSeg is calculated based on a quick

estimation of σǫ by solving the implicit equation

ThSeg = 4

√∑T1

n=1 z2
nI(ThSeg , n)

∑T1

n=1 I(ThSeg , n)
(10)

in which the indicator function I(p, n) = 1 if |zn | < p and 0

otherwise. We fix T1 as the first 1-s interval of z, i.e. 10 000

samples if the sampling frequency is 10 kHz and the coefficient

4 in (10) corresponds to detect only MUAP activities whose

absolute amplitudes exceed 4σǫ . The solution of (10) is of com-

plexity O(T1) (code given in EMGLAB [9]). We then detect

all the local extrema of z whose absolute values exceed ThSeg

(empirically believed to be MUAP peaks). A new segment is

allocated when the distance between two adjacent extrema ex-

ceeds 2P + 1, P being the length of (hi)i . An example of two

segments is provided in Fig. 2 for which P is set to 5 ms.

3) Extracting recurrent isolated MUAP forms from the seg-

ments to obtain (h
(0)
i )i . Canonically registered discrete Fourier

transform (CRDFT) coefficients (see [20] and [21], and ref-

erences therein for implementation details) are calculated on

segments with lengths smaller than 3P to exclude those poten-

tially containing overlapped waveforms and a quadratic metric

is adopted on these CRDFT coefficients to make a one-pass

classification operation. The progressively averaged CRDFT
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coefficients are considered as the DFT of the representative

templates of (h
(0)
i )i , used as initialization in the second phase.

The segment length depends on the signal properties and the

parameters used for segmentation, such as the sparsity of z (ba-

sically depending on the number of active MUs) and the chosen

MUAP length P . Since the optimization of (7) w.r.t. (1xi
)i is

only performed for intervals of the active segments, the seg-

mentation step reduces the computational burden of the second

phase. The first phase of the decomposition, as described earlier,

is completely automated and requires a negligible computational

load compared to the second phase, that solves the problem of

MUAP overlaps.

The novel part of the decomposition method consists of

the second phase. After segmentation, the maximization–

decomposition phase is applied serially to each active segment

{Segk} to obtain: 1) the complete discharge patterns (xi)i for

each MUAP; 2) the MUAP shape estimates (hi)i ; and 3) the

background noise variance σ2
ǫ , with an MAP criterion. For each

segment, the joint posterior distribution [see (7)] is maximized

over the complete search space of the discharge patterns (xi)i

in an automatic algorithm. The kernel of this problem (MUAP

overlapping) is dealt with by a metaheuristic algorithm, called

Tabu search, first introduced by Glover [19] in the area of opera-

tional research. The generic Tabu search algorithm and its appli-

cation are described in Section III-C. The optimization strategy

is designed to overcome limitations such as early convergence

into local optima in NP-hard problems and is thus adapted to

solve the combinatorial problem of MUAP overlaps.

The MAP optimization are summarized as follows.

1) Initialize (h
(0)
i )i (MUAP shapes) using the information

from phase 1 (segmentation).

2) Initialize (mi , σ
2
i )i by their conjugate prior laws, and σǫ

by σ̂ǫ from (10).

3) Initialize xi = φ (1xi
= 0) for all i.

4) Iterate:

a) For each Segk , maximize:

P ((x
(k)
i )i |(x(−k)

i ,hi ,mi , σ
2
i )i , σ

2
ǫ ,z)

w.r.t. (x
(k)
i )i using Tabu search

b) Maximize (7) w.r.t. continuous parameters

(hi ,mi , σ
2
i )i , σ

2
ǫ (see Section III-B);

until convergence.

In the previous steps, x
(k)
i = xi ∩ Segk , i = 1, . . . , I, denote

the discharge coordinates vector of each MU within the given

Segk and the superscript (−k) in the following indicates vari-

ables belonging to segments ∪j �=k Segj .

The calculations in the step 4(b) are straightforward maxi-

mization problems, for which we provide detailed expressions

in Section III-B. Step 4(a), however, is a typical NP-hard combi-

natorial problem whose complete space amounts to 2Idim(Segk )

configurations for the kth active segment, where I denotes the

number of classes (MUs) and dim(Segk ) the length of the seg-

ment. Its maximization algorithm is explained in Section III-C

using the Tabu search metaheuristic. Step 4(a) is solved by an

iterative Tabu search that runs until convergence is detected

either by exhausting all valid neighbors or by reaching the max-

imum allowed iteration counts M as stated in the algorithm in

Section III-C. The external loop is run for both the steps 4(a)

and (b) until the global convergence of Θ. Jointly, the steps

4(a) and (b) bear a certain resemblance to a Gibbs simulation

scheme [22]. However, while a Gibbs simulation scheme iter-

atively generates samples asymptotically distributed to (7), the

proposed algorithm iteratively maximizes the posterior proba-

bility in (7), and finally, builds an estimate of Θ in an MAP

sense.

B. Maximization on Continuous Parameters

We describe first the maximization procedures in step 4(b).

1) Maximization w.r.t. mi: The maximization problem can

be written as: for all i,

mi = max
m i

P (Θ|z) = max
m i

P (xi |mi , σ
2
i )P (mi)

= max
m i



exp




− 1

2σ2
i

n i −1∑

j=1

(Sij − mi)
2




P (mi)





where {Sij = xi,j+1 − xi,j − TR} is the set of Gaussian sam-

ples. P (xi |mi , σ
2
i ) is given in (5). Since its prior law P (mi) is

also a Gaussian and the product of two Gaussian is still Gaus-

sian, the maximum is found at

mi =
(µ0/σ2

0 + (
∑n i −1

j=1 Sij )/σ2
i )

(1/σ2
0 + (ni − 1)/σ2

i )
. (11)

2) Maximization w.r.t. σ2
i : The maximization problem can

be written as: for all i,

σ2
i = max

σ 2
i

P (Θ|z) = max
σ 2

i

P (xi |mi , σ
2
i )P (σ2

i )

= max
σ 2

i

σ
−(n i −1)
i exp




− 1

2σ2
i

n i −1∑

j=1

(Sij − mi)
2




P (σ2
i ).

Since the inverse Gamma distribution is the conjugate prior

for Gaussian likelihood with known mean, their product is still

inverse Gamma with the maximum found at

σ2
i =

βi + (
∑n i −1

j=1 (Sij − mi)
2)/2

αi + 1 + (ni − 1)/2
. (12)

To take into account the regularity constraint that σi/mi <
Thσ i

, we impose that σ2
i ← min{σ2

i , (Thσ i
mi)

2}. This con-

straint can be tuned depending on the expected regularity of the

discharge pattern.

3) Maximization w.r.t. (hi)i: We propose to jointly maxi-

mize (hi)i by creating a concatenated column vector of size

IP × 1: h = [h1 , . . . ,hI ] and the maximization problem can

be written as

h = max
h

P (Θ|z) = max
h

P (z|(xi)i ,h, σ2
ǫ )P (h)

= max
h

(
exp

{
− 1

2σ2
ǫ

‖z − Mh‖2

}
P (h)

)

with M = [M1 , . . . ,MI ], where each submatrix Mi is the

Toeplitz matrix of convolution such that Mihi = 1xi
∗ hi .

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 01,2010 at 09:31:04 EST from IEEE Xplore.  Restrictions apply. 



GE et al.: UNSUPERVISED BAYESIAN DECOMPOSITION OF MULTIUNIT EMG RECORDINGS 565

It follows that z − Mh = z −∑i 1xi
∗ hi . Since P (h) ∼

N (h(0) , σ2
h
I), the maximum of the marginal posterior distri-

bution is found at

h =
(
σ−2

h
I + σ−2

ǫ M
t
M
)−1
(
σ−2

h
h

(0) + σ−2
ǫ M

t
z

)
. (13)

We note that the matrix σ−2
h

I + σ−2
ǫ MtM is PI × PI posi-

tive definite; thus, its inversion operation can be replaced by a

Cholesky factorization followed by matrix left division to re-

duce the calculation load. A minimum degree preordering can

also be used since MtM is sparse for any MU source. The

motivation behind the joint maximization of (hi)i is to ensure

one-step convergence to the joint Gaussian mode, instead of a

coordinate-by-coordinate maximization.

4) Maximization w.r.t. σ2
ǫ : The maximization problem can

be written as follows:

σ2
ǫ = max

σ 2
ǫ

P (Θ|z) = max
σ 2

ǫ

P (z|(xi ,hi)i , σ
2
ǫ )P (σ2

ǫ )

= max
σ 2

ǫ

σ−N
ǫ exp

{
− 1

2σ2
ǫ

C

}
P (σ2

ǫ )

where C = ‖z − Mh‖2 denotes the energy of the reconstruc-

tion error. And the maximum is found at

σ2
ǫ =

βs + C/2

αs + 1 + (N/2)
. (14)

C. Maximization on Combinatorial Sets

A Tabu search approach [19] is applied to solve step 4(a) as

the following optimization problem:

Minimize: c(y) ∈ R : y ∈ Y. (15)

The objective function c(y) should be a real-valued cost func-

tion, while Y is a discrete set containing all combinations of y.

Associated with each y ∈ Y is the set Neighbor(y) composed of

all possible moves (trial solutions) from a current configuration

y. A subset T ⊂ Y , the Tabu list, comprising prohibited moves is

managed using a first-in-first-out (FIFO) structure. All allowed

trials from a given state y belongs to the set Neighbor(y)\T . The

Tabu search tackles the optimization problem in (15) as follows:

First, the nonimproving moves are made possible through

step 4 since we do not necessarily have c(ym ) ≤ c(ym−1): a

best move rather than an improving move is chosen. Second,

visited local optima are forbidden for future moves by the FIFO

mechanism of T that remembers to a certain degree (depending

on the FIFO length) local optima to avoid. We begin by refor-

mulating the step 4(a) from an optimization point of view. Let

n
(k)
i = dim(x

(k)
i ) denote the discharge counts of MU i in Segk .

It follows that

arg max
(xi )

(k )
i

P ((xi)
(k)
i |(x(−k)

i ,hi ,mi , σ
2
i )i , σ

2
ǫ ,z)

= arg max
(xi )

(k )
i

exp






−
∥∥∥z(k) −∑I

i=1 hi ∗ 1
(k)
xi

∥∥∥
2

(2σ2
ǫ )






I∏

i=1

σ
−n

(k )
i

i exp



−
n

(k )
i∑

j=0

(
x

(k)
i,j+1 − x

(k)
i,j − mi − TR

)2

2σ2
i





= arg min
(xi )

(k )
i

1

2σ2
ǫ

∥∥∥∥∥z
(k)−

I∑

i=1

hi ∗ 1(k)
xi

∥∥∥∥∥

2

+ log σi

I∑

i

n
(k)
i

+

I∑

i




n

(k )
i∑

j=0

(
x

(k)
i,j+1 − x

(k)
i,j − mi − TR

)2

2σ2
i



 (16)

where for MU i, x
(k)
i,0 and x

(k)

i,n
(k )
i

+1
denote the last discharge

in the (k − 1)th segment and the first discharge in the (k +
1)th segment, respectively. The first term in the criterion of

(16) can be identified as the likelihood of the EMG signal z

given (hi , 1xi
)i and the last two terms as the prior information

(regularity) of the discharge patterns. From the Bayesian point of

view, they are naturally combined through the marginal posterior

distribution on (xi)i in the equation.

In the following, the superscript (k) is omitted without am-

biguity since only (xi)
(k)
i is considered for each segment. The

following elements are defined to apply the Tabu search:

1) y = (xi)i and Y = ({0, 1}dim(Segk ))I define a state and

the search space respectively;

2) the cost function c(y) is expressed in (16);

3) a cyclic fixed-length T (Tabu list) is updated to keep track

of previous solutions; each state is characterized by MUAP

classes and discharge instants;

4) for a given state, Neighbor((xi)i) is defined as:

{
(x∗

i )i

∣∣∣∣∣
∑

i

∣∣1x∗
i
− 1xi

∣∣
1
≤ 2,

∑

i

|n∗
i − ni | < 2

}

in which |·|1 defines the L1-norm of the vector (or the

Hamming distance in the case of two binary sequences).

It can be verified that such a neighborhood allows ei-

ther adding a spike at any unoccupied position of the

same MUAP, removing or changing the position of an ex-

istent spike. Furthermore, the neighborhood is both self-

included ((xi)i ∈ Neighbor((xi)i)) and reflective ((xi)
∗
i ∈

Neighbor((xi)i) ⇀↽ (xi)i ∈ Neighbor((xi)
∗
i )). It is also eas-

ily verified that the cardinality of Neighbor((xi)i) amounts

to (I +
∑

i ni) · dim(Seg) −∑i n2
i , or approximately (I +∑

i ni) · dim(Seg) for dim(Seg) ≫ ni . Because of the con-

straint on ISI (for example, indicating the absolute refractory

period of muscle fibers), the number of discharges ni for each
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MU in a given active segment is limited. The complexity of each

Tabu iteration is therefore linear w.r.t. the number of sources I
and the data length dim(Seg), in contrast to the NP-hardness of

the space.

D. Maximization on Two Segments

The segment-by-segment maximization method, as described

earlier, often converges to local rather than global maximal con-

figurations of (xi)i . It was experimentally observed that this

phenomenon occurs when the following two conditions concur

(see Section V-B for illustration): 1) two or more different MUs

have similar action potential shapes; and 2) at least two consec-

utive segments are separated by a time interval smaller than TR .

Under these conditions, an error in the estimation of (xi)i in one

segment is susceptible to yield a systematic estimation error on

the adjacent segment. A solution to the early convergence prob-

lem is to maximize jointly on two consecutive segments using

a similar algorithm structure of Tabu search as in Section III-C,

if the two segments are separated by less than TR .

For this purpose, we define the discharge patterns in two

connected segments as a concatenated vector: x
(k,k+1)
i =

[x
(k)
i ;x

(k+1)
i ], where k and k + 1 denote the segments index.

z
(k,k+1) covers the interval of both segments and the in-between

area of noises and n
(k,k+1)
i = n

(k)
i + n

(k+1)
i . Thus, the opti-

mization function reads

arg max
(xi )

(k , k + 1 )
i

P ((xi)
(k,k+1)
i |(x−(k,k+1)

i ,hi ,mi , σ
2
i )i , σ

2
ǫ ,z)

= arg min
(xi )

(k , k + 1 )
i

1

2σ2
ǫ

∥∥∥∥∥z
(k,k+1) −

I∑

i=1

hi ∗ 1(k,k+1)
xi

∥∥∥∥∥

2

+

I∑

i

n
(k , k + 1 )
i∑

j=0

(
x

(k,k+1)
i,j+1 − x

(k,k+1)
i,j − mi − TR

)2

2σ2
i

+ log σi

I∑

i

n
(k,k+1)
i . (17)

Similarly to (16), x
(k,k+1)
i,0 and x

(k,k+1)

i,n
(k , k + 1 )
i

+1
denotes the last

discharge in Segk−1 and the first discharge in Segk+2 respec-

tively. The neighborhood definition can be easily generalized

(see definition in Section III-C) on a concatenated version

(xi)
(k,k+1)
i , allowing either to add, remove or relocate an ex-

istent MUAP across two segments. The neighborhood space

is enlarged to (I +
∑

i n
(k,k+1)
i )(dim(Segk ) + dim(Segk+1))

from (I +
∑

i n
(k)
i )dim(Segk ). Note that for the two-segment

approach the iterative maximization process is also carried out

for each value of k.

With these modifications, a false label-switched configuration

in one segment is no longer stable, since relocating an MUAP to

the adjacent segment would further maximize (7). Comparisons

are made in Section V-B on experimental EMG recordings to

confirm that the two-segment maximization technique outper-

forms the one-segment version.

IV. VALIDATION METHODS

Validation tests were conducted using a PC equipped with a

3.2-GHz Intel Pentium 4 CPU processor and a 3 G RAM.

A. Simulation Model

An EMG signal generation tool designed by Farina et al. [23]

was used to simulate intramuscular EMG signals. In order to

test the performance of the proposed decomposition algorithm,

the following model parameter values were fixed (see 23 for

details on the model).

1) Four to five MUs were activated in a single channel with

∆Emax (the maximum normalized energy difference be-

tween MUAPs of different classes) set to 0.7.

2) Discharge rates of the active MUs were set in the range of

10 − 15 Hz.

3) Maximum degree of overlapping between action poten-

tials of different MUs was set as α% ,max = 1 (complete

overlap).

4) Percentage of MUAPs in the interference signal which

overlapped in time was set to N%s = 70%.

5) SNR ratio was SNRdB = 10.

Five signals with the earlier properties were generated to test

the proposed method. The sampling frequency of the simulated

signals was 10 kHz. For both simulation and experimental tests

in the following, the value of TR was fixed to 10 ms, i.e. 100

samples for a 10 kHz sampling frequency. Simulated signals

had duration of 10 s.

B. Experimental Recordings

Five healthy men (age, mean ± SD = 25.3 ± 4.5 years) par-

ticipated in the study. The study was conducted in accordance

with the Declaration of Helsinki, approved by the local Ethics

Committee, and written informed consent was obtained from all

subjects prior to participation.

The EMG measurements were obtained from the abductor

digiti minimi muscle. The fifth finger was fixed in a custom-

made brace to record the force exerted during an isometric con-

traction of the muscle (Politecnico di Torino, Torino, Italy).

The subjects performed three maximal voluntary contractions

(MVCs) with the abductor digiti minimi, with each trial sepa-

rated by a resting period of 2 min. The greatest force was used

as the reference MVC for the other contractions. A pair of wire

electrodes made of Teflon coated stainless steel (A-M Systems,

Carlsborg, WA; diameter 50 µm) was inserted into the muscle

with a 25-G needle. The insulated wires were cut to expose only

the cross section at the tip. The needle was inserted to a depth

of a few millimeters below the muscle fascia and removed to

leave the wire electrodes inside the muscle. The intramuscular

EMG signals were amplified and provided one bipolar record-

ing (Counterpoint EMG, DANTEC Medical, Skovlunde, Den-

mark) that was bandpass filtered (500 Hz–5 kHz) and sampled at

10 kHz. A reference electrode was placed around the wrist. Each

subject performed two 60-s contractions at forces of 5% and

10% MVC in random order and with 15 min of rest in between.
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As reference, the MUAPs were identified from the intra-

muscular recordings with a validated decomposition algorithm

(EMGLAB) [8], [9]. This interactive algorithm includes a user

interface for manually editing and verifying the results [9]. The

EMGLAB displays a segment of the EMG signal, the templates

of the action potentials of the identified MUs, the discharge

patterns, and a close-up of the signal for resolving missed dis-

charges and overlaps. Full, regular patterns provided confidence

that the decomposition was correct, whereas gaps, extra dis-

charges or uneven intervals provided an indication of possible

decomposition errors. To assist in identifying missed discharges

the program displays bars in the signal panel that indicate the

expected discharge times of each MU. The signal portion can

then be viewed in the close-up panel which displays the signal at

an expanded scale and allows matching MU templates to be se-

lected. The close-up panel also displays overlaps at an expanded

scale which allows visual verification of the result and different

sets of templates to be selected and adjusted to find the correct

fit. Commands are also available for undoing identifications and

deleting or merging templates. The acquired EMG signals were

manually inspected with this user interface by an expert oper-

ator. The decomposition with EMGLAB has been previously

cross-validated by decomposing on pairs of simultaneous EMG

signals containing the same MU activities [24]. The discharge

patterns estimated in this way were used as reference. To evalu-

ate the performance of the proposed methods, we followed the

accuracy criterion as introduced in [25] for the ith MU train

A(i) =
NDis(i) − NFP(i) − NFN(i)

NDis(i)
× 100%

where NDis(i) is the number of “true discharges” of the MU

and NFN(i) and NFP(i) are, respectively, the number of false

negatives and the number of false positives produced by the

unsupervised decomposition algorithms for the ith MU when

compared to the reference from manual decomposition (the true

discharges were assumed to be those extracted with manual

decomposition with EMGLAB). An MU discharge identified

by the proposed method was considered a correct estimate if it

was detected within a window of 1 ms centered at the time of

occurrence of the true discharge. It was also shown in [25] that

by adopting

A =
1

I

I∑

i=1

A(i)

as the overall decomposition accuracy, any MU train is of the

same significance regardless of the MUAP shape, duration and

number of discharges.

σi/mi < 0.3 corresponded to the limit of regularity a priori

imposed (this limit can be changed by the user if necessary).

Thus, among the MUs identified by the proposed method, those

with σi/mi > 0.3 were automatically excluded from the anal-

ysis. The overall decomposition accuracy A was thus averaged

only on those A(i) values corresponding to MUs under the

condition that σi/mi < 0.3. Results for experimental signals

were obtained from the decomposition of the first 10 s of the

experimental recordings.

Fig. 1. Decomposition example using one-segment maximization on simu-
lated EMG data. (a) Simulated EMG recordings and reference discharge pattern.
(b) Reconstructed EMG and discharge pattern estimated by the decomposition
method. No errors are present in this decomposition example. (c) Estimates of
the MUAP shapes. (d) Four MUAPs overlapped in the first segment analyzed
in this example on an expanded time scale.

TABLE I
DECOMPOSITION RESULTS ON SIMULATED EMG SIGNALS (10 S)

V. RESULTS

A. Simulations

Fig. 1(a) shows a portion of a simulated signal. The MUAP

shapes are illustrated in Fig. 1(c). The labels assigned to each

MUAP are also displayed. In this example, the decomposition

process took less than 5 min per iteration as described in steps

4(a) and (b) of the proposed method on an EMG signal of

duration 10-s sampled at 10 kHz. Two iterations were run in

this test and in all following results. Fig. 1(d) shows a segment

with four overlapping MUAPs, in which the positive lobe of

MUAP #3 is compensated by the negative lobes of MUAP #1

and MUAP #2 (destructive overlap).

Table I shows the decomposition results on five simulated

EMG signals. The MU discharge patterns from the decompo-

sition were validated if σi/mi < 0.3, and the overall efficiency

was calculated on validated MU sources. The one-segment max-

imization algorithm was sufficient for accurate decomposition

of all simulated EMG signals.

B. Experimental Signals

In the experimental EMG signals recorded for 10% MVC

force, the total length (duration) of the active segments
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Fig. 2. Comparison of Tabu search within the one- and two-segment optimization approach. (a) Upper panel: EMG signal portion in which two segments are
shown, delimited by square brackets. The reference MU labels are indicated with numbers as obtained by semiautomatic decomposition with an expert operator.
Middle panel: The EMG signal reconstructed on the basis of the proposed automatic decomposition method applied to one-segment at a time. The estimated MU
labels are shown and it can be observed that MU labels #5 and #7 are switched. Lower panel: The reconstruction error. (b) Same as in (a) but with the application
of the two-segment optimization strategy. The MU labels are in this case all correctly estimated. Lower reconstruction error is observed while the MU discharge
patterns remain regular. (c) and (d) MUAP shapes of the switched pair {#5, #7}.

corresponded to approximately 50% of the total recording dura-

tion when 8 MUs were active. Among the active segments, those

containing single MUAP (length inferior to 3P ) accounted for

approximately 50% of the total segments.

Contrary to the simulated signals, the one-segment maximiza-

tion method was not optimal in the case of decomposition of the

experimental EMG signals. Fig. 2 compares the two versions

of the automatic decomposition method (one- and two-segment

maximization) in the case of a 10% MVC EMG signal com-

prising seven active MUs. The MU labels in the upper panels

of both Fig. 2(a) and (b) was obtained by trained experts us-

ing EMGLAB, while the middle panels show the reconstructed

EMG signal based on the automatic decomposition method. In

this example, the label switched pair {#5,#7} in Fig. 2(a)

appears across the two segments that are sufficiently close to

each other (within 5 ms); their MUAP shape estimates given

in Fig. 2(c) and (d) show similar energy level. A local max-

imum of (xi)
(k)
i includes MU#7 instead of MU#5 in Fig.

2(a) and this local configuration error is propagated to Segk+1

since placing an MU#7 in x
(k+1)
7 would yield an unusually

small ISI and penalize the posterior distribution through the

prior laws on the discharge pattern of x7 . The joint optimal

solution on two segments is more “global” in a sense that the

corresponding residual level is lowered, while the ISI regular-

ity is almost unaltered, yielding a higher posterior probability

[see Fig. 2(b)].

TABLE II
COMPARISON OF TWO VERSIONS OF OPTIMIZATION METHOD

To better illustrate the efficiency of the two-segment joint

maximization method in comparison to the one-segment maxi-

mization method, decomposition statistics for each MU source

are listed in Table II for one representative signal. Three MU

discharge patterns are validated out of five for a two-segment

joint maximization algorithm while only one of them is val-

idated for the one-segment version. Some A(i) are not cal-
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Fig. 3. (a) Upper panel: Segment of EMG and the MU labels decomposed by an expert operator. Middle panel: Signal reconstructed by the automatic
decomposition method and the estimated MU labels. The proposed method estimated all labels correctly in this example. Lower panel: The reconstruction error.
(b) Estimated MUAP shapes.

TABLE III
ACCURACY OF THE TWO-SEGMENT OPTIMIZATION ON EXPERIMENTAL SIGNALS

culated as NFP(i) + NFN(i) exceeds the grand total of true

discharges for some sources in the first case. From these ex-

amples, it is evident that the decomposition quality of the two-

segment maximization is superior to that of the one-segment

maximization, while the computational time is less than dou-

bled. The results also show that the two-segment optimization

method corresponds to a better tradeoff between computation

time and accuracy as a function of segment length for adjacent

segments separated by less than 10 ms apart from each other as in

Fig. 2. The accuracy would still improve by jointly optimiz-

ing the marginal posterior law w.r.t. all the segments (the en-

tire EMG signal); however, the Tabu search computational load

would be unacceptable in this case because the neighborhood

complexity is dependent of the segment length (see discussions

in Section III-C and III-D); at the other extreme, a segment-

by-segment strategy requires less computational time but is less

reliable (see Fig. 2). The following results on experimental sig-

nals were all obtained with the application of the two-segment

optimization.

Fig. 3 reports an example of decomposition of a segment

which contains seven MUs. This example shows that the method

proposed is not limited by the number of overlapping MUAPs.

Table III reports the results on all the analyzed experimental

signals. Each column contains the total number of MU sources,

Fig. 4. (a) and (b) Instantaneous discharge rates obtained by the decomposition
results on EMG of 10% MVC. (c) and (d) Corresponding MUAP shapes. (a)
FP = 0, FN = 3 / Total = 171. (b) FP = 1, FN = 12 / Total = 137. (c) MUAP
#1. (d) MUAP #2.

as identified by an expert operator, the number of validated

MU discharge patterns and the overall accuracy rate A. No

less than half of the MU sources were validated using the cri-

terion σ/m < 0.3 and A was greater than 85% in all experi-

mental results. The average accuracy was 91.5% ± 4.4% and

88.4% ± 2.8% for the signals recorded during 5% and 10%
MVC contractions, respectively. The computational time re-

quired for the experimental signal decomposition (10-s duration)

was in the range of 15–30 min, longer than for simulated signals

mainly because of the higher discharge rates in experimental

recordings.

The instantaneous discharge rates for the two validated MUs

from the signal EMG #5 at 10% MVC (see Table III) are reported

in Fig. 4(a) and (b), as estimated by the proposed automatic
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decomposition method. The estimated MUAP shapes are re-

ported in Fig. 4(c) and (d). False-positive and false-negative

statistics are also given in Fig. 4.

VI. DISCUSSION

We have proposed a method for full decomposition of single-

channel intramuscular EMG signals that does not require any

manual interaction. The attained accuracy approximates 90%,

compared to the results obtained by an expert operator with

semiautomatic decomposition methods, for the case of contrac-

tion levels up to 10% MVC and at most eight concurrently

active MUs. In practical applications, this accuracy would be

sufficient for the analysis of MU properties, such as the dis-

charge rate and ISI variability. However, it may be insuffi-

cient to investigate physiological mechanisms for which a very

precise decomposition is required, such as MU synchroniza-

tion [26]. A manual decomposition may still be required in this

case.

The proposed MAP estimator provides an efficient and fully

unsupervised approach to cope with the decomposition of mul-

tiunit EMG signals. The Bayesian statistical model on the

EMG data generation process allowed the inclusion of avail-

able prior information, such as the Gaussian-like distribution of

ISIs, the refractory period of muscle fibers and the regularity

in the spike discharge trains. The discharge pattern regularity

has long been viewed as either a hint for the expert interaction

or a posteriori evaluation criterion of a given decomposition

method [8], [9], [17], and is now introduced into the com-

pletely automated decomposition method through the use of

prior laws on 1xi
. Although only general aspects of MU dis-

charges are considered in this paper, further information could

be integrated through the prior laws. The maximization of the

posterior probability was achieved iteratively w.r.t. the contin-

uous parameters and the NP-hard combinatorial discharge pat-

tern. In addition, an extension of the segment-by-segment opti-

mization method was introduced to treat the early convergence

problem.

Some aspects of the method can be improved in future re-

search. For example, the configurations of the Tabu algorithm

remain an open problem, as to how to fix the FIFO memory

length and the maximum number of iterations M , that in this pa-

per has been empirically fixed to 20. Another issue concerns the

design of neighborhood of a given state. The computational load

for each iteration grows as more configurations are included in

the neighborhood, with better chances of avoiding local optima.

The search space may also be increased by including optimal

alignment of the action potentials [21] which is now limited by

the sampling period. Finally, the proposed Bayesian decompo-

sition approach is based on the modeling of a single-channel

EMG recording. It is expected that a multichannel extension

will improve the performance by exploiting the interchannel

inference.

Concerning the statistical assumption on the independence

of discharge patterns, we note that it does not constitute a

limitation in the applicability of the approach but implies that

the potential correlation between discharge patterns is not in-

cluded in the prior laws. Thus, the method can still be ap-

plied to cases with high correlation between MU discharge pat-

terns, such as tremor. In these cases, the correlation informa-

tion is simply not exploited in the statistical model on which

the method is based. In fact, the experimental signals were

recorded from a muscle that presents relatively high degree

of short-term synchronization between MUs [27]; thus, the as-

sumption was not strictly valid in the analyzed experimental

signals.

In conclusion, a new method for the decomposition of intra-

muscular EMG signals was proposed. It is fully automatic and

provided an accuracy of approximately 90% on simulated sig-

nals and experimental single-channel recordings. The method

does not make any assumptions on the particular shape of the

action potentials or their spectral properties and can thus be

applied to the spike classification problems of intraneural or

intracortical recordings, for example.
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