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Spike Sorting by Stochastic Simulation
Di Ge, Eric Le Carpentier, Jérôme Idier (Member, IEEE) and Dario Farina (Senior Member, IEEE)

Abstract—The decomposition of multiunit signals con-
sists of the restoration of spike trains and action po-
tentials in neural or muscular recordings. Because of
the complexity of automatic decomposition, semiautomatic
procedures are sometimes chosen. The main difficulty in
automatic decomposition is the resolution of temporally
overlapped potentials. In a previous study [1], we proposed
a Bayesian model coupled with a maximuma posteri-
ori (MAP) estimator for fully automatic decomposition
of multiunit recordings and we showed applications to
intramuscular EMG signals. In this study, we propose a
more complex signal model that includes the variability
in amplitude of each unit potential. Moreover, we propose
the Markov Chain Monte Carlo (MCMC) simulation and a
Bayesian minimum mean square error (MMSE) estimator
by averaging on samples that converge in distribution to
the joint posterior law. We prove the convergence property
of this approach mathematically and we test the method
representatively on intramuscular multiunit recordings.
The results showed that its average accuracy in spike
identification is greater than 90% for intramuscular signals
with up to 8 concurrently active units. In addition to
intramuscular signals, the method can be applied for spike
sorting of other types of multiunit recordings.

Index Terms—Bayesian model, MMSE estimation,
Markov chain Monte Carlo, intramuscular EMG decom-
position

I. INTRODUCTION

Invasive electrodes inserted into the brain, nerves, or
muscles provide multiunit recordings consisting of the
activity of neural cells or muscle fibers that respond to
the activity of motor neurons. In several applications, it is
necessary to decompose these multiunit recordings into
the individual sources, i.e. to identify the individual unit
spike trains from the interference signal. For example,
the decomposition of intramuscular recordings provides
information on the behavior of spinal motor neurons.
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The decomposition problem of multiunit recordings,
often referred to as spike sorting, is usually solved with
template matching approaches [2]. In some of these
approaches, the action potentials that are overlapped in
time are not classified and are considered outliers [3].
When the number of sources is small, this limitation
may provide an acceptable amount of information on
the sources under study. However, when there are many
sources active concurrently, overlapped action potentials
constitute the majority of the potentials in the recorded
signals. Therefore, in some template matching methods,
the superpositions are resolved by iterative subtraction
of all possible template combinations from unidentified
waveforms [4], [5]. As an alternative, neural network
classifiers are applied to resolve the superposition prob-
lem by introducing overlapped spikes into the training
data [6].

The main challenge underlying the resolution of super-
imposed spikes is that the global optimization problem is
non-deterministic polynomial-type (NP) hard, i.e., it can-
not be solved by polynomial complexity algorithms [1].
Therefore, the existing methods either perform on the
restrained search spaces [4], [7], which reduces the
complexity, or are based on recursive algorithms [8],
[9] with specific trial strategies and residual threshold
estimations. For example, Atiya [7] proposed a robust
approach for decomposing overlaps of action potentials
in neural recordings by comparing all possible combi-
nations of up to two action potentials (restrained search
space). Within the family of spike sorting algorithms,
the dynamic programming method [4], which uses the
fast exploration technique of a k-d tree, is also limited
by the memory space necessary to generate such data
structure, resulting in practice in an equally restrained
search space of up to two overlapping action potentials.
This constraint is not justified in several applications.
Similar issues arise when determining a representative
training set of overlapped spikes and then using neural
networks to identify overlapped sources [6].

Other approaches are not limited in the number of
overlapping sources but require an interaction with an
operator. For example, a recent algorithm for decom-
posing intramuscular electromyographic (EMG) signals
into the constituent motor unit spike trains recursively
matches the templates and reevaluates the residual errors,
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until it is able to prove that it has found the global
optimum [8]. To avoid too long recursions in cases of
difficult spike superpositions, the algorithm stops and
requires an expert intervention after a number of trials
without reaching the lower bound value.

Other methods make use of independent component
analysis (ICA), of clustering and ICA [10], [11], [12] to
avoid the limitation on the number of units concurrently
active and the need for the intervention of an operator.
However, these methods are applied to multi-channel
recordings. Similarly, blind source separation (BSS) ap-
proaches such as the Convolution Kernel Compensation
(CKC) used for surface EMG decomposition [13], [14],
are usually applied to multi-channel recordings for which
at least as many channels as sources are needed.

A Bayesian model coupled with a maximuma posteri-
ori (MAP) estimator was recently proposed for fully au-
tomatic decomposition of multiunit recordings in single-
channel signals [1]. The method was tested on intramus-
cular EMG recordings to identify individual motor unit
spike trains and proved to have similar performance as
obtained with a semi-automatic decomposition by expert
operators [1]. Furthermore, the number of concurrent
action potentials was not limited although the search
space augmented exponentially.

One assumption of the Bayesian model in [1] is that
action potentials discharged by a unit have the same
amplitude and shape for the entire recording. However,
although the shape of action potentials may not change
substantially, the amplitude may be variable in some
conditions. For example, the amplitude of single motor
unit action potentials in intramuscular EMG may be in-
fluenced by the rate of discharge because of the velocity-
recovery function of muscle fibers [15]. Moreover, small
displacements of the recording electrodes with respect to
the sources may influence action potential amplitude.

In this study, we address the spike sorting problem in
single-channel recordings by proposing a more complex
signal model than in [1]. This model includes the vari-
ability in magnitudes of each unit potential to provide
a better fit with the experimental signals in a least-
squared-residual sense. Since action potentials may also
change in shape, which is not modeled, this new model
is not expected to provide a perfect fit. However, it is
hypothesized that it would provide better overall perfor-
mance compared with the invariant amplitude and shape
model. Moreover, instead of the MAP estimator [1], we
propose a new approach for the solution of the spike
sorting problem. The approach is based on the Markov
Chain Monte Carlo (MCMC) simulation tool to build
a minimum mean square error (MMSE) estimator for
continuous parameters and a marginal MAP estimator for

discrete parameters (discharge instants) using samples
that converge in distribution to the joint posterior law.
The study also provides the mathematical proof of the
convergence property of this approach. As in [1], the pro-
posed method is representatively tested on intramuscular
multiunit recordings, although it can also be directly ap-
plied to other multiunit signals. The test on intramuscular
EMG signals will allow a direct performance comparison
with the MAP estimator previously proposed [1]. The
main part of the validation is performed on experimental
data, however we also present results on EMG signals
simulated with very irregular spike trains as a proof of
its robustness.

II. M ODEL WITH VARIABLE IMPULSE MAGNITUDES

The generation of a multiunit recording is schemati-
cally represented in Fig. 1. Each impulse train is con-
volved by a characteristic action potential whose shape
is assumed to vary minimally during the recording.

+
z (single-channel)

Action Potentialh1

Action PotentialhI

...

impulse trains1

...

impulse trainsI

noiseǫ

Fig. 1. Multiunit direct model.

The direct problem model can thus be expressed
mathematically as a convolution product:

z =

I∑

i=1

hi ∗ si + ǫ (1)

where z is the recorded signal of lengthN , si, i =
1, . . . , I andhi, i = 1, . . . , I are the impulse trains (the
discharge patterns) and their linear filters (action poten-
tials) respectively. Note that in the present study, the
impulses insi can have different amplitudes reflecting
the amplitude variation of the different action potentials
in the train.(•)i denotes the set{•, i = 1 . . . , I}, e.g.,
(si)i = {si, i = 1 . . . , I} gathers the discharge patterns
of all impulse trains.

Assuming thatǫ is an independent, identically dis-
tributed (i.i.d.) Gaussian noise with unknown variance
σ2
ǫ , the likelihood of the data, given the source parame-

ters (si,hi)i, σ
2
ǫ can be written:

P (z | (si,hi)i, σ
2
ǫ ) =

1

(2πσ2
ǫ )

N

2

e
−

| z−
∑

i si∗hi | 2

2σ2
ǫ (2)
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A. Prior laws on parameters

The modeling of the impulse trains(si)i is based on
the following assumptions and notations:

A1) (si)i are supposed mutually independent discrete
time impulse trains;

A2) the coordinates of non-zero elements (discrete dis-
charge instants) in eachsi are contained in a vector
noted asxi;

A3) eachsi conditional toxi andσ2
si

is supposed to be
a truncated Gaussian:

si |xi, σ
2
si

∼ N (1xi
, σ2

si
diag(1xi

)) · 1si≥0 (3)

where1xi
is binary vector with ones at positions

xi, and diag(1xi
) is the diagonal matrix whose

diagonal is1xi
.

The sparsity in each spike train is modeled by the vector
xi, whereas the variability in the amplitude of spikes
generated by the same source is taken into account
via the conditional Gaussian law (Eq.(3)). We note that
negative magnitudes are not relevant in spike sorting,
thus the law of the magnitudes should be a Gaussian
truncated to the positive hyperoctant,i.e., 1si≥0 imposes
a non-negative constraint on each element ofsi.

In the literature, the Bernoulli-Gaussian (BG) model
has been adopted for the restoration of a sparse and
magnitude variable train [16], [17], [18], [19]. The BG
model first defines the discharge instantsxi using the
Bernoulli law:

P (xi) = λni(1− λ)N−ni

whereni = dim(xi) denotes the unknown number of
discharges, andλ ∈ (0, 1) the Bernoulli parameter; and
then definessi conditionally toxi as a Gaussian variable,
in the same manner as in Eq. (3). Let us remark that
a Gaussian random variable with zero-variance corre-
sponds to a variable of constant value (the Gaussian
meanm), for which the distribution can also be defined
as a Dirac.

On the other hand, the Bernoulli model needs also
adaptations when used for neural spike trains, in order
to account for physiological constraints. In this study,
the model of the impulse instants(xi)i is based on the
following assumptions:

A4) the inter-spike interval(ISI) Tij = xi,j+1 − xi,j,
or the temporal distance between two consecutive
impulses of the same source, is assumed to be larger
than a threshold valueTR. This value represents
the refractory periodneeded to discharge the spikes
and thus depends on the specific application;e.g.,
for intramuscular EMG decomposition, it is the
absolute refractory period of muscle fibers;

A5) among all the admissible solutions satisfying the
refractory period condition, spike trains that are
more regularly spaced are favored. Following [1],
this is achieved by a Gaussian-shaped distribution
on the variablesTij − TR.

The resulting law ofxi (in a discrete, regularly sampled
time framework) for each unit can be written:

P
(
xi | mi, σ

2
i

)
∝ 1C(xi) f

−(ni−1)
mi,σ

2
i

exp



−

1

2σ2
i

ni−1∑

j=1

(xi,j+1 − xi,j −mi − TR)
2



 (4)

where

fmi,σ
2
i
=

+∞∑

k=−mi

exp

(
−

k2

2σ2
i

)
,

andC = {xi, xi,j+1 − xi,j > TR for all j} is the set of
admissiblexi satisfying the refractory period condition,
1C is the indicator function ofC:

1C(xi) =

ni−1∏

j=1

1{xi,j+1−xi,j>TR}.

Contrarily to the BG case, a spike trainsi is no more
an i.i.d. sequence, because the discharge instantsxi are
not independent. In the BG deconvolution framework, a
comparable model calledmodified Bernoulli processhas
been proposed in [20] to impose the minimum distance
constraint on the impulse train. The integration constant
fmi,σ

2
i

depends on bothmi and σ2
i . In practice, the

following approximation can be adopted:

fmi,σ
2
i
≈

∫ +∞

−mi

exp

(
−

k2

2σ2
i

)
dk

≈

∫ +∞

−∞
exp

(
−

k2

2σ2
i

)
dk =

√
2πσ2

i , (5)

under the assumptions that
• σi is large enough to ignore the discretization error;

e.g., for σi = 10ms and a sampling frequency of
10kHz, the3σ Gaussian lobe is discretized by600
samples;

• σi/mi is small enough to ignore the integral trun-
cation at−mi, typically if σi/mi < 1/3, then the
truncation error is controlled at0.135%.

Finally, in order to define a proper probability, Eq. (4)
should be modified to incorporate a prior law on the first
discharge instantxi1. Here we suppose it is uniform for
the sake of simplicity.

Using the independence assumption A1, we obtain:

P
(
(xi)i | (mi, σ

2
i )i

)
=

I∏

i=1

P
(
xi |mi, σ

2
i

)
. (6)
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B. Joint posterior law

In the Bayesian framework, the posterior distribution
P (Θ |z) for Θ =

{
(xi, si,mi, σ

2
i ,hi, σ

2
si
)i, σ

2
ǫ

}
can be

expressed:

P (Θ |z) ∝ P (z | (si,hi)i, σ
2
ǫ )P (σ2

ǫ )∏

i

P (si |xi, σ
2
si
)P (σ2

si
)P (xi |mi, σ

2
i )P (mi)P (σ2

i )P (hi)

(7)

Fig. 2 illustrates the hierarchical Bayesian model with all
intervening parameters, among which unknown parame-
ters (inΘ) are circled. The decomposition task consists
of deriving an estimator̂Θ from Eq. (7). We note that
Θ contains both continuous and discrete parameters and
that the combinatorial nature of(xi)i, precludes the
exhaustive exploration method even in one segment [7].

Eqs. (2), (3) and (4) provide the likelihood term and
the prior laws on(si,xi)i that enter the joint poste-
rior (7). For the remaining terms, we choose conjugate
priors with non-informative hyper-parameters(αi, βi)i,
(αs, βs, µ0, σ

2
0 , σ

2
h) (see [1] for a discussion on this

choice):

mi ∼ N (µ0, σ
2
0), hi ∼ N (h

(0)
i , σ2

hI),

σ2
i ∼ IG(αi, βi), σ2

ǫ ∼ IG(αǫ, βǫ),

σ2
si

∼ IG(αs, βs),

whereIG stands for the inverse Gamma distribution and
I is an identity matrix of appropriate size.(h(0)

i )i denote
approximate spike shapes that are determined by the
preprocessing step described in the following section.

hi si

posterior likelihood

σ
2
ǫ

mi σ
2
i

m0, σ
2
0 αi, βi

xi

αs, βs

z

h
(0)
i , σ2

h
σ
2
si

as, bs

Fig. 2. Directed acyclic graph representing the hierarchical Bayesian
model. Unknown parameters are circled in the graph.

III. PREPROCESSING

The resolution of superimposed spikes and complete
decomposition is preceded by a preprocessing phase.
The preprocessing consists of: 1) filtering the signal to
enhance spike train activities, 2) segmenting the filtered
signal into temporal intervals containing spikes [21],
[9], 3) classifying isolated individual spikes (those not
overlapped temporally with others) to determine the
number of unitsI and the approximate spike shape for
each classh(0)

i .
The preprocessing steps described above have robust

solutions described in the literature. The thresholding
method proposed in [21] was adopted in this study for
the segmentation. The classification of isolated action
potentials can be performed with several techniques.
For example, the canonically registered discrete Fourier
transform (CRDFT) [22] or non-parametric Bayesian
estimation (NPB) [23], have been proven to be ef-
fective methods for this purpose [24]. These solutions
for segmentation and classification of isolated spikes
have excellent performance and do not need substantial
improvements. Therefore, the methods described in [21]
and [22] have been used in this study for preprocessing.
On the contrary, the decomposition of temporally over-
lapped spikes poses more challenges and is the main
contribution of this study, as described in the following.

IV. D ECOMPOSITION OF OVERLAPPED POTENTIALS

USING MCMC

Markov chain Monte Carlo (MCMC) methods are a
class of stochastic simulation algorithms used to con-
struct a Markov chain whose stationary distribution is
invariant and converges to the desired distribution after
a number of iterations (burn-in period). The estimator is
then calculated from valid samples (i.e., those after the
burn-in period) and its quality improves as a function
of the sample population according to the Monte Carlo
principle. TheMetropolis-Hastings(MH) and Gibbsal-
gorithms are among the most classic algorithms in the
MCMC family, while Reversible Jump MCMC(RJM-
CMC) [25] further extends the application field by in-
cluding variable dimension problems. These algorithms
constitute widely used numerical tools in the field of
Bayesian statistics and computational physics [26].

In the multiunit spike sorting context, the joint pos-
terior law in Eq. (7) is considered as the distribution of
interest. The Markov chain is generated using aGibbs
sampler, by re-sampling iteratively each parameter inΘ
according to its posterior conditional law derived from
Eq. (7) while fixing the other parameters. The choice of
conjugate prior laws on{(mi, σ

2
i ,hi, σ

2
ǫ )i, σ

2
ǫ } facilitates



5

the re-sampling on continuous parameters (steps (6)-(10)
of Tab. I). The conditional laws to sample steps (6)-
(10) are detailed in [1]. In particular, the conditional law
for mi and σ2

i are, respectively, Gaussian and Inverse
Gamma if the two approximations (5) are satisfied.

The difficulty lies in the sampling of the discrete
parameters(xi)

(k)
i

1. We denoteCk as the set of firing
instants (xi)

(k)
i of all units in the k-th segment that

satisfy the refractory period condition with respect to
(xi)

(−k)
i . Thus, each element inCk yields a non-zero

joint posterior probability according to Eq. (4). Let
us roughly evaluate the cardinality ofCk to stress the
computational burden of sampling(xi)

(k)
i . Even in a very

favorable case for which at most4 units are active in
a segment of duration of8ms sampled at10kHz, we
would have814 < |Ck| < 2500. The inferior bound
corresponds to a subspace ofCk containing at most
one impulse for each unit in the segment. For segment
lengths that vary between8 and 60ms and number of
units that varies between4 and 8, the cardinal of|Ck|
is at least4.30 × 107 and 1.68 × 1022 in each case.
Thus, sampling the conditional probabilities of(xi)

(k)
i by

evaluating all probabilities in the setCk for each segment
yields unrealistic computational load.

To solve this problem, we propose a Metropolis-
Hastings algorithm summarized in Tab. I. The algorithm
explores a subspace ofCk at each iteration Its validity is
shown by verifying that the corresponding Markov chain
remains irreducible: all configurations of non-zero prob-
abilities (∈ Ck) are explored with non-zero probabilities
regardless of the initial state. This proof is provided in
appendix. Consequently, the MCMC algorithm in Tab. I
is a valid stochastic simulation algorithm, ofMetropolis-
Hastings within Gibbstype.

TABLE I
STOCHASTIC SIMULATION ALGORITHM BY MCMC.

repeat
for k = 1 . . .K do% Integrate (si)i analytically

Sample(xi)
(k)
i
∼ P ((xi)

(k)
i
|Θ\{(si)i, (xi)

(k)
i
},z)% MH

end for
Sample(si)i ∼ P ((si)i |Θ \ (si)i,z)
Sample(hi)i ∼ P ((hi)i |Θ \ (hi)i,z)
Sample(mi)i ∼ P ((mi)i |Θ \ (mi)i)
Sample(σ2

i )i ∼ P ((σ2
i )i |Θ \ (σ

2
i )i)

Sample(σ2
si
)i ∼ P ((σ2

si
)i |Θ \ (σ

2
si
)i)

Sampleσ2
ǫ ∼ P (σ2

ǫ |Θ \ σ
2
ǫ ,z)

until number of iteration reached

In what follows, Sections IV-A and IV-B enter into
more details about the sampling of(xi)

(k)
i (first step in

1The superscript(k) and (−k) denote parameters in thek-th
segment and parameters in all other segments, respectively.

Tab. I): they respectively focus on its marginal condi-
tional law and on the implementation of the Metropolis-
Hastings step.

A. Marginal conditional law

We first rewrite the convolution sum in the following
matrix form:

I∑

i=1

hi ∗ si = HS

whereH = [H1, . . . ,HI ] is composed of convolution
matrices such thathi ∗ si = Hisi, andS = [s1; . . . ; sI ]
represents aNI × 1 column vector by vertical concate-
nation. In thek-th segment, the data generation can be
written:

z(k) = H
(k)S(k) + ǫ(k)

wherez(k) is the signal in thek-th segment;H(k) =

[H
(k)
1 , . . . ,H

(k)
I ] andS(k) = [s

(k)
1 ; . . . ; s

(k)
I ] denote the

corresponding submatrix ofH and subvector ofS.
From Eq. (7), we obtain for each segmentk the

conditional law of(si,xi)
(k)
i | rest. In the following, the

term rest stands for the set{Θ,z}, except the concerned
parameters.

P
(
(si,xi)

(k)
i | rest

)
∝ P

(
z(k) | (s

(k)
i ,hi)i, σ

2
ǫ

)

∏

i

P
(
s
(k)
i |x

(k)
i , σ2

si
)P (x

(k)
i |mi, σ

2
i ,x

(−k)
i

)

∝ exp

(
−

1

2σ2
ǫ

∥∥z(k) −Ga1

∥∥2
)
|V|

1

2 δ(a0)

exp
(
−
1

2

(
a1 − 1

)t
V
(
a1 − 1

))∏

i

P
(
x
(k)
i |mi, σ

2
i ,x

(−k)
i

)

(8)

where the k-th segment specific matrices are noted
without the superscript(k) for simplicity:




G =
[
(H

(k)
1 )

x
(k)
1
, . . . , (H

(k)
I )

x
(k)
I

]

V = diag
(
[σ−2

s1
, . . . , σ−2

s1︸ ︷︷ ︸
n

(k)
1

, . . . , σ−2
sI

, . . . , σ−2
sI︸ ︷︷ ︸

n
(k)
I

]
)

a1 =
[
(s

(k)
1 )

x
(k)
1
, . . . , (s

(k)
I )

x
(k)
I

]

a0 = S(k) \ a1

δ(·) denotes the multi-dimensional Dirac function, and
n
(k)
i = dim(x

(k)
i ) is the number of impulses of unit#i

in the segmentk. The vector1 is a column vector of
size

∑
i n

(k)
i while a1 anda0 are, respectively, the non-

zero spike magnitudes of all units in the segment and its
complement.{a1,a0} constitutes thus a permutation of
spike trainsS(k).
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Let us remark that matricesG andV are functions of
(xi)

(k)
i , (hi, σ

2
si
)i, but not of (si)

(k)
i . It is thus possible

to integrate out firsta0, and thena1 in Eq. (8) since it
is merely the product of two exponential terms and thus
remains Gaussian.

The conditional probability of(xi)
(k)
i after marginal-

ization of (si)
(k)
i from Eq. (8) can be written:

P
(
(xi)

(k)
i | rest\ (si)

(k)
i

)
∝

∣∣Σ
∣∣ 1

2 exp
(
1

2

(
m

)t(
Σ
)−1

m−
1

2
1
t
V1

)

∏

i

σ
−n

(k)
i

si
P
(
x
(k)
i |mi, σ

2
i ,x

(−k)
i

)
(9)

where
{

Σ−1 = 1
σ2
ǫ

(G)tG+V

m = Σ
(

1
σ2
ǫ

(G)t z(k) +V1

)

Σ−1 andm are, respectively, the variance and mean of
the Gaussian vectora1. Let us remark that the marginal
law in Eq. (9) involvesΣ−1 andm. In the special case
where (x(k)

i )i = ∅, Σ−1 andm cannot be defined. To
obtain the marginal distribution, we first rewrite Eq. (8):

P
(
(s

(k)
i )i = 0, (xi)

(k)
i = ∅ | rest

)
∝ exp

(
−
‖z(k)‖2

2σǫ

)

δ
(
(s

(k)
i )i

)∏

i

P
(
x
(k)
i = ∅ |mi, σ

2
i ,x

(−k)
i

)
.

Integrating out (s(k)i )i and considering the common
exponential factor w.r.t. cases where(xi)

(k)
i 6= ∅, its

marginal probability then can be written:

P
(
(xi)

(k)
i =∅ | rest\ (si)

(k)
i

)

∝
∏

i

P
(
x
(k)
i = ∅ |mi, σ

2
i ,x

(−k)
i

)
(10)

Eqs. (9) and (10) describe the marginal conditional
probability of (xi)

(k)
i up to a normalization factor.

The termP (x
(k)
i |mi, σ

2
i ,x

(−k)
i ) can be directly de-

rived from Eq. (4) and measures the regularity of the
binary sequences(1xi

)i for each spike train while the
Gaussian variability of magnitudes of the spikes is ex-
pressed in the first two terms in Eq. (9).

We recall that though the marginal conditional prob-
ability of (xi)

(k)
i can be analytically expressed, its

combinatorial space makes it a hard problem either to
maximize (as proposed in [1] using a Tabu search) or to
simulate the distribution using the MCMC approach. The
next section proposes an MCMC algorithm that does not
sample directly according to the conditional probability,
but rather iteratively on local subspaces.

B. Metropolis-Hastings step

We propose here a reversibleMetropolis-Hastingsstep
to avoid the evaluation of all probabilities of(xi)

(k)
i ∈

Ck. The strategy is to explore areasonablesubspace of
Ck per iteration while the exploration of the whole space
Ck is mathematically guaranteed in the long run. We note
that this strategy can be adapted to the full model that
includes Gaussian variability in spike magnitudes.

Let ω(u) ⊂ Ck be the local subspace (to be specified
hereafter) to explore for each iteration and thus contains
accessible configurations from the current configuration,
noted byu = [1

x
(k)
1
, . . . ,1

x
(k)
I

] of lengthI · dim(Segk).
It is constructed by concatenating spike trains of all units
in the segmentk. In Tab. II,P (u) denotes the conditional
probability as specified by Eq. (9) and (10) for a partic-
ular configurationu, F (u) the sum of probabilities of
the configurations inω(u), i.e., F (u) =

∑
y∈ω(u) P (y),

andq(u 7→ u+) the instrumental law or the probability
of proposingu+ given the current stateu. Note that∑

u+∈ω(u) q(u 7→ u+) = 1.

TABLE II
METROPOLIS-HASTINGS STEP TO SAMPLE(xi)

(k)
i

IN TAB . I.

1: Proposeu 7→ u
+ using the instrumental law:

q(u 7→ u
+) =

{
0 if u

+ /∈ ω(u)

P (u+)/F (u) otherwise

2: Acceptu+ with probability

ρ(u 7→ u
+) = min{1, F (u)/F (u+)}

In this application, we defineω(u) = {v | |u−v|1 ≤
2 and

∣∣|u|1 − |v|1
∣∣ ≤ 1} with | · |1 the L1-norm. The

following conditions are verified:

1) |u− v|1 = 0 ⇔ u = v, s.t.u ∈ ω(u);
2) |u− v|1 = 1, adding or removing a spike;
3) |u − v|1 = 2 and

∣∣|u|1 − |v|1
∣∣ ≤ 1, shifting

an existing spike in the same spike train or being
replaced by a spike in another train;

4) u ∈ ω(v) ⇔ v ∈ ω(u), together with condition
1), assures the reversibility of the chain: for all pairs
(u,u+) ∈ Ck,

P (u)K(u 7→ u+) = P (u+)K(u+ 7→ u),

where K(u 7→ u+) denotes the transition kernel
derived from the Metropolis-Hastings step of Tab. II
and equals to:
{

P (u+)
F (u) ρ(u 7→ u+) + r(u)δu(u

+) u+ ∈ ω(u)

0 otherwise
(11)
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where r(u) =
∑

u+∈ω(u)

P (u+)

F (u)

(
1− ρ(u 7→ u+)

)

5) the Markov chain is irreducible: it is capable of
exploring the entire spaceCk (see demonstration in
Appendix);

6) the Markov chain is also aperiodic since the ker-
nel (11) satisfies:

∀u, P (u) > 0 ⇒ K(u 7→ u) > 0.

by verifying that P (u)
F (u) > 0 and ρ(u 7→ u) = 1.

It is thus possible to have two consecutive samples
that are identical, and such a Markov chain cannot
be periodic.

7) the complexity per iteration (measured by|ω(u)|)
remains linear with respect to to the segment length
dim(Segk) and the number of unitsI.

In conclusion, the Markov chain generated from the
proposed algorithm is irreducible, reversible and aperi-
odic. Therefore the only equilibrium distribution isP (u)

(which means from any initial stateu, Kn(u, •)
D
→

P (•) [27, Theorem 1]).
The numerical implementation of the spike decompo-

sition algorithm is summarized in Tab. III.

C. Bayesian estimators

With the convergence property of the Markov chain,
we thus obtain for each parameter inΘ a population
of random samples distributed according to its marginal
posterior lawP (· |z). For continuous parameters,i.e.,
Θ \ (xi, si)i, a minimum mean square errorestimator
(MMSE) optimizes the following criterion:

ŷ = min
y0

∫
‖y − y0‖

2 P (y |z)dy

= min
y0

EP (y |z)

(
‖y − y0‖

2
)

= EP (y |z) (y)

According to the Monte Carlo principle, this estimator
is approximated by:

ŷ = EP (y | z) (y) =

∫
yP (y |z)dy ≈

N∑

j=N0+1

yj,

where {yj}j=1,...,N are simulated samples,N0 and N
represent, respectively, the number of burn-in iterations
and the total number of iterations. In our tests, we fixed
N = 2N0 = 200.

The same estimator, however cannot be applied on the
discrete parameters(xi)i since averaged firing instants
do not have any physical interpretation. Note that dif-
ferent samples may contain vectors of(xi)i of different

TABLE III
IMPLEMENTATION OF THE MCMC ALGORITHM .

repeat
for k = 1, . . . ,K do% for each segment k

% --- Metropolis-Hastings step---------
u← [1

x
(k)
1

, . . . ,1
x
(k)
I

]

EvaluateP (u+),u+ ∈ ω(u) in Eq. (9) (10)
Fu ←

∑
u

+∈ω(u) P (u+)

Proposeu∗ ∼ P (u+)/Fu,u
+ ∈ ω(u)

Fu
∗ ←

∑
u

+∈ω(u∗) P (u+)
Acceptu∗ with probability ρ = min {1, Fu/Fu

∗}
% ---- Magnitudes sampling------
[s

(k)
1 , . . . , s

(k)
I

]← 0

if (x
(k)
i

)i 6= ∅ then
G←

[
(H

(k)
1 )

x
(k)
1

, . . . , (H
(k)
I

)
x
(k)
I

]

d← [σ−2
s1
ones(n(k)

1 , 1), . . . , σ−2
sI
ones(n(k)

I
, 1)]

V ← diag(d)
Σ−1 ← 1

σ2
ǫ
GtG+V

Q← chol(Σ−1) % Cholesky factor of Σ−1

b← randn(
∑

i
n
(k)
i

, 1)% iid Gaussian vector
% a1 ∼ N (m,Σ), Eq. (9)
a1 ← Q−1(Q−t(Gt

z
(k)/σ2

ǫ +V · 1) + b)

[(s
(k)
1 )

x
(k)
1

, . . . , (s
(k)
I

)
x
(k)
I

]← a1

end if
end for
% -Sampling of remaining parameters [1] -
h = [h1; . . . ;hI ],h ∼ P ((hi)i | rest)
For eachmi, mi ∼ P ((mi)i | rest)
For eachσ2

i , σ
2
i ∼ P ((σ2

i )i | rest)
For eachσ2

si
, σ2

si
∼ P ((σ2

si
)i | rest)

σ2
ǫ ∼ P (σ2

ǫ | rest)
until number of iteration reached

dimensions since the number of detected spikes are not
fixed. An alternative is to estimate binary sequences
(1xi

)i using a marginal component MAP detector,i.e.,
the marginal majority vote for each instant (component).

However, considering only one component marginally
at a time may result in counter-intuitive estimators. Sup-
pose for example that in an intervalJ , 2 < dim(J ) <
TR, the probability that there is one and only one
detected event is1 (

∑
j∈J P (si,j 6= 0) = 1) for a

particular sample population. Further suppose that no
one event is more likely than the sum of the others
(in terms of probability), and thusP (si,j 6= 0) < 0.5
for all j ∈ J . From these assumptions, it would then
follow that ŝi,j = 0 for all j ∈ J , using the marginal
component MAP detector. The result is clearly counter-
intuitive because the probability that there is no event in
J is zero.

Recently, Kail et al. [20] proposed a MAP block
detector. The main idea is to perform the majority
vote on a block of the binary variables in1xi

. The
number of binary combinations in each block should be
much smaller than the number of available samples (the
Markov chain length) while the length of the block is
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big enough to avoid false negatives using the marginal
component MAP detector due to spike shifts in the
sample population. The same strategy is adopted in this
study for the estimation of the discrete parameters(xi)i.

V. VALIDATION ON EXPERIMENTAL AND SIMULATED

SIGNALS

A. Experimental signals

The method proposed can be applied to several spike
sorting applications, such as intraneural or intramuscular
recordings. The assumptions of the model include a
refractory period, which can be set depending on the
application, and the cost associated to the firing irregu-
larity. Note that the latter does not imply that irregular
firings cannot be identified but simply that a solution
with very irregular firings is less favored than one with
more regular firings.

The validation of the method was performed on a
set of experimental intramuscular EMG signals, where
the spikes represent the activation of spinal motor neu-
rons. These signals were chosen for direct comparison
between the proposed method with the Tabu search
method proposed in [1]. The same experimental signals
as described in [1] were thus used for this study.

Briefly, the experimental signals were recorded from
the abductor digiti minimi muscle of five healthy men
(age, mean± SD = 25.3 ± 4.5 yr) with a pair of wire
electrodes made of Teflon coated stainless steel (A-M
Systems, Carlsborg, WA, USA; diameter50µm) inserted
into the muscle with a25 G needle. The intramuscular
EMG signals were amplified and provided one bipo-
lar recording (Counterpoint EMG, DANTEC Medical,
Skovlunde, Denmark) that was band-pass filtered (500
Hz-5 kHz) and sampled at10 kHz. A reference electrode
was placed around the wrist. The decomposition method
was evaluated on intervals of20 s of signals recorded
during isometric contractions at10% of the maximal
voluntary contraction (MVC) force. The validation was
performed by comparing the results of the proposed
methods with those provided as reference results by
manual decomposition of an expert operator using the
EMGLAB tool. The proposed method was applied in
a fully automatic way, without any intervention by the
operator.

B. Simulated signals

The experimental signals were recorded in conditions
where the firing patterns were expected to be rather
regular (isometric contractions). In addition to experi-
mental signals, the method was also applied to a set
of simulated signals. This set of simulations was used

to test the performance of the algorithm in cases of
very irregular spike firings. The simulated signals were
generated with the intramuscular EMG model proposed
in [28] and also previously applied for the validation
of the method proposed in [1]. The simulated signals
were obtained by an imposed coefficient of ISI variation
of 60%, corresponding to very irregular firings. The
other parameters of the model were set as in a previous
study [1], including the level of noise that corresponded
to a SNR of10dB). In total, five signals were simulated
with the same set of parameters. These signals differed
from each other because the shape of the action po-
tentials were varied within the library of shapes of the
model [28] and because the spike trains were generated
randomly, according to the imposed statistics.

C. Performance index

The performance index for each spike source was
defined as [29]:

A(i) =
NDis(i)−NFP(i)−NFN(i)

NDis(i)
× 100%

whereNDis(i) are spike numbers of the unit#i detected
by EMGLAB for the experimental signals or simulated
by the model for the synthetic signals.NFN(i) andNFP(i)
are respectively the false negatives and the false positives
with respect to the reference (EMGLAB or the model). A
detected impulse was considered a correct one if within a
1ms-window centered on the instant of reference for the
same unit. The global performance of the decomposition
was then measured by the following index [29]:

A =
1

I

I∑

i=1

A(i)

For the experimental signals, discharge patterns for
which σi/mi > 0.3 were excluded from the analysis,
since the ISI variability of motor unit spike trains is
usually lower than this limit in the experimental condi-
tions [30], [31]. Therefore, among the discharge patterns
obtained by the application of the proposed method to
experimental signals, only those satisfying the condition
σi/mi < 0.3 were selected for analysis and the global
performance criterionA was thus averaged on theA(i)
of the validated units. Thisa-posteriori selection of
sources is not necessary in other applications in which
the firing instants are less regular. The decomposition
results of simulated firings provide a test of the method in
conditions of very irregular spike firing. The a-posteriori
selection of sources was not applied to the simulated
signals and results are reported as average over all motor
units. Note that the ISI variability of the simulated spike
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trains is doubled compared with the upper limit imposed
to the experimental spike train decomposition.

D. Results of decomposition

The constant parameters of the Bayesian model
(Fig. 2) and the Markov chain initializations are listed in
Tab. IV. (h(0)

i )i, σ̂ǫ are results of the preprocessing and
we fixedσh = 0.1max(h) in the tests.

TABLE IV
CONSTANT PARAMETERS INFIG. 2 AND MARKOV CHAIN

INITIALIZATION .

m0 σ2
0 αi βi αs βs as bs

100ms (30ms)2 1 1 1 1 1 1

mi σ2
i si xi σ2

si
hi σǫ

100ms (30ms)2 0 ∅ (0.15)2 h
(0)
i

σ̂ǫ

Fig. 3 shows an example of raw experimental signal
and the decomposition of two adjacent segments with
overlapped potentials using the proposed method. In this
example, the fully automatic method proposed provided
the same result as that obtained by the reference decom-
position tool used by an expert operator.
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Fig. 3. Example of EMG decomposition of two adjacent segments
using the proposed approrach in comparison with the reference
decomposition. In these two segments a total of 7 sources areactive.
The numbers on top of the raw signal represent the source labels as
identified by the automatic decomposition with the proposedmethod
(top numbers) and the decomposition with interaction of an expert
operator using EMGLAB (lower numbers). The labelling of sources
in this example led to perfect matching with the reference result. The
raw (solid line) and the reconstructed signal (dashed line)are shown
in the upper panel whereas the residual error is plotted in the lower
panel.

Fig. 4 shows an example of decomposition of sim-
ulated signals to better represent the ability of the
method to identify complex superimpositions of action
potentials. In this example, four overlapping action po-
tentials are present in two segments. The shape of action
potential#4, which is isolated in the second segment, is

fully cancelled by overlaps of other action potentials in
the first segment. Similarly, action potential#1 was rel-
atively isolated in the first segment and cancelled in the
second. Despite these complex overlaps, the automatic
method was able to identify all action potentials in the
two segments correctly. In this example, the reference
decomposition result was provided by the simulation tool
and is thus exact.
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Fig. 4. Illustration of decomposition result of one segmentcon-
taining up to four overlapped action potentials and the neighboring
segment with three overlapped action potentials. Upper labels repre-
sent the source numbers identified by the proposed automaticmethod
while lower labels those from the simulation tool. The residual error
is also shown in the lower panel.

The decomposition results for the experimental signals
are shown in Tab. V. # Sources and # Val are respectively
the number of sources identified by EMGLAB (reference
results) and the number of validated spike trains accord-
ing to thea-posterioricriterion on the regularity. Because
the main challenge in the decomposition is dealing with
overlapped action potentials[2], especially when more
than two action potentials are superimposed, in Tab.V
we also report the percentage of action potentials that
are overlapped with others. Therefore, in Tab. V,%
overlapand % overlap≥ 3 indicates the percentage of
overlapped action potentials (over the total number of
action potentials) and the percentage of action potentials
in superposition with at least other two action potentials
(superposition of at least 3 action potentials), respec-
tively. The algorithm runtime complexity was measured
by computational time in seconds per iteration for the
decomposition of each second of the experimental signal
z. In order to decompose EMG signals of sufficient
length (≈ 20 s to get reliable statistics) and upon
several experimental signals, the Markov chain was
systematically run for200 iterations. The estimation of
the discharge patterns was then obtained by a majority
vote on each temporal window (of length= TR), whose
advantages are discussed in [20].

The decomposition accuracy of the proposed method,
as evaluated with the global performance indexA, was
improved (by approximately3%) compared to that ob-
tained by the joint maximization by Tabu search [1]
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(see Tab. V). Most importantly, more spike trains were
validated with the proposed method than with the Tabu
search. For all tested methods in Tab. V, the detection
errors (both false positives and false negatives) occurred
less often in segments with single action potentials, while
most errors were found in segments with overlaps, as
it was expected. Therefore, the accuracy of the method
on identifying overlapped action potentials was also
computed. Over the entire number of overlapped action
potentials, the accuracy was89% and over all action
potentials in superimpositions of at least three action
potentials, the accuracy was85%. Note that by using
the MCMC method, the decomposition results would
not vary for the same signal even if the latter is ana-
lyzed several times with different initialization values.
This convergence property (independent of initialization
values) derives directly from the convergence in the
distribution sense of the MCMC method (see discussion
in Section IV).

Tab. V also shows the decomposition results obtained
by the proposed MCMC algorithm with the constant
spike magnitude model for each source,i.e., without
including the variable amplitude model. The same expert
results were used in each case and the "#Sources" row
reports the number of detected sources. The decompo-
sition performance degraded using this simplified model
compared to the model with variable magnitudes: the
latter have achieved better results in both extracting more
valid trains and better accuracy calculated upon these
valid trains.

TABLE V
COMPARISON OF DECOMPOSITION RESULTS ON THE5

EXPERIMENTAL EMG SIGNALS (10%MVC, 20 S RECORDINGS).

EMG # 1 2 3 4 5
# Sources 5 5 8 8 4
% overlap 81 84 91 88 82

% overlap≥ 3 63 61 74 69 65
MCMC on extended model

# Val 5 4 6 5 2
A 91.1% 90.6% 90.5% 89.3% 94.4%

Computing time (s.) 13.2 14.9 15.2 13.8 15.0
MCMC on uniform magnitude model

# Val 4 4 4 4 2
A 87.1% 90.4% 92.3% 89.2% 90.7%

Optimization using Tabu search [1]
# Val 3 4 4 4 2

A 89.4% 85.1% 87.7% 87.2% 92.5%

The background noise variance estimationσ̂2
ǫ can also

be considered a good indicator of decomposition quality,
since it measures the difference between the observed
signal and its reconstruction from the detected discharge
patterns and the estimated spikes. Indeed,σ2

ǫ is sampled

according to its conditional law IG(ᾱs, β̄s), where

αs = αs +
N

2
, βs = βs +

1

2

∥∥∥z −
∑

i

si ∗ hi

∥∥∥
2

and the mean value decreases as‖z −
∑

i si ∗ hi‖
2

decreases.
Tab. VI showsσ̂2

ǫ from the preprocessing (shown as
reference), after full decomposition with optimization by
Tabu search [1] and with the proposed MCMC approach
with and without spike magnitude variability. The lower
value of residual noise level with the proposed approach
(Tab. VI) is in agreement with the improvement ofA
by the MCMC method and the magnitude variability
model that adjusts the energy for each detected spike.
The lower error likely represents a better fit of the model
w.r.t. the data rather than overfitting the noises since
the reduction in residual error is also accompanied by
superior accuracy, as shown in Tab. V.

TABLE VI
COMPARISON OFσ̂2

ǫ BY OPTIMIZATION WITH TABU SEARCH AND

BY MCMC ON THE 5 EXPERIMENTAL EMG SIGNALS (10% MVC,
20 S RECORDINGS).

EMG # 1 2 3 4 5

preprocessing 0.0012 0.0014 0.0012 0.0019 0.0011
Tabu search 0.0023 0.0029 0.0030 0.0034 0.0026

MCMC (full model) 0.0016 0.0027 0.0024 0.0030 0.0016
MCMC (si = 1xi

) 0.0018 0.0027 0.0026 0.0033 0.0019

Finally, simulated signals with high variability in
firing were used to evaluate the proposed decomposition
method. One example of decomposition of simulated
signals is presented in Fig. 4, as commented above.
The average accuracy (over all motor units and over
the 5 signals simulated) obtained for these signals was
83± 5%. The accuracy calculated for overlapped action
potentials in the simulations was80± 3%.

VI. D ISCUSSION AND CONCLUSION

We have proposed a novel method for fully automatic
spike sorting in multiunit recordings. The main difficulty
in the problem of spike sorting is the resolution of
superimposed spikes. The isolated spikes can indeed
be detected and clustered with robust techniques, that
have high performance. On the contrary, the global
optimization of overlapped action potentials is a non-
deterministic polynomial-type (NP) hard problem, and
thus cannot be solved by polynomial complexity algo-
rithms. Therefore, methods for full spike sorting differ
mainly for their performance when separating overlapped
action potentials. We have previously proposed a method
for the solution of overlapped spikes in neural or intra-
muscular recordings based on a Bayesian model coupled
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with a MAP estimator and the Tabu search technique [1].
In the present study, we have expanded the signal model
to allow for a variability in the spike magnitudes in the
same source. Moreover, we have proposed a new method
for the solution of the spike sorting problem based on
MCMC simulation. The convergence property of this
method was proven theoretically (Appendix), whereas
the Tabu search algorithm described in [1] is heuristic.
The performance of this approach is further improved by
including variable magnitudes in the spike model.

The model is based on the assumption of a refractory
period in neural firing, which implies to set a minimum
time lapse between two consecutive discharges of the
same source. Further, the model also favors regular
firings with respect to irregular firings, but without
constraining the solution space to regular firings. Accord-
ingly, the method was tested on simulated signals with
very large firing variability and proved to be relatively
accurate also in those conditions. As it was expected, the
accuracy was lower in case of irregular than for regular
firings but the method could still be successfully applied
in a fully automatic way with accuracy greater than
80% for an ISI variability of 60% (simulation results).
It has to be noted that the imposed variability in the
simulations was so large that the spike train regularity
could not be used as a relevant information for reducing
the solution space in the automatic method. The model
is also based on the assumption of independence of
the spike trains. We note however that this assumption
is not always met since neural cells often fire more
synchronously than by mere chance. However, the spike
train independence assumption should not be viewed as
a limitation of the approach since it does not imply that
dependent spike trains cannot be identified, similarly to
the discussion above for regular firings. The assumption
only implies that the potential correlation between firing
patterns is not taken into account in the prior laws,
thus the correlation property is simply not exploited
by the model. Accordingly, the method was proved
successful in decomposing motor unit activities in a hand
muscle, characterized by a high degree of motor unit
synchronization [32].

A limitation of the method is that, although it includes
changes in amplitude, it does not track changes in
the shapes of the action potentials, which often occur
over time. Some previous methods (e.g., [33], [34])
have included this possibility, at least for slow changes
over time. Inclusion of slow changes in shape in the
current approach could be incorporated in the first pre-
processing phase in which the individual motor unit
action potential shapes are estimated from segments
containing only one potential. However, this extension

has not been tested in the current study.
In conclusion, a new fully automatic method for

spike sorting of multiunit recordings has been derived
and compared to a previously proposed solution on
experimental intramuscular recordings. The method was
proven to provide good accuracy in signal decomposition
with relatively limited computational time even in the
case of several spikes overlapped in time.

APPENDIX

Proof: To show the irreducibility of the chain in
Tab. I, it is sufficient to show that for allu ∈ Ck, such
thatP (u) > 0, the probability of a particular trajectory
composed of{u(0) = 0, . . . ,u(i), . . .u(L) = u}, where
L = |u|1 and |u(i) − u(i−1)|1 = 1, is non-zero.

Such a chain is constructed by adding a spike of
a certain source in each iteration. It is then sufficient
to show that for all i, K(u(i−1) 7→ u(i)) > 0, or
equivalently,

q
(
u(i−1) 7→ u(i)) ρ(u(i−1) 7→ u(i)

)
> 0. (A-1)

It is evident thatu(i) ∈ ω(u(i−1)), and it follows that:

q
(
u(i−1) 7→ u(i)) ρ(u(i−1) 7→ u(i)

)

=
P (u(i))

F (u(i−1))
min

{
1,

F (u(i−1))

F (u(i))

}

= min

{
P (u(i))

F (u(i−1))
,
P (u(i))

F (u(i))

}

The inequality (A-1) is thus guaranteed by the fact that
P (u(i)) > 0 for all i. SinceP (u) > 0 implies that
P (u(i)) > 0 for all i (u ∈ Ck ⇒ u(i) ∈ Ck for all i).
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