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QUANTITATIVE RELAXATION TEMPLATES FOR THE HUMAN BRAIN AT 3T

Fang Cao, Olivier Commowick, Camille Maumet, Christian Barillot

VisAGeS U746 INSERM/INRIA, IRISA UMR CNRS 6074, Rennes, France

ABSTRACT

The development of brain Magentic Resonance Imaging

(MRI) is driving increasing demand for quantitative mea-

surements. Quantitative MRI (qMRI) templates of relaxation

times and proton density can be of particular interest for

dedicated clinical applications such as characterizing brain

tissue abnormalities, as well as general research purposes. In

this paper, we have developed 3D qMRI statistical templates

consisting of T1, T2, T ∗

2
and ρ∗ maps from the human brain

at 3T. The qMRI templates were built from a population of 20

normal controls, for which individual maps were estimated in

a robust manner, accounting for acquisition artifacts and ex-

pected relationships between the relaxometry parameters. For

validation, we fed the qMRI templates into a realistic MRI

simulator to synthesize MR-weighted images, and compared

these images with the real MR acquisitions. High correlation

coefficients (>0.80) show that the developed qMRI templates

can be used as input dataset for MRI simulation community,

which may be of great interest to clinical neuroscience field.

Index Terms— T1; T2; T ∗

2
; relaxation time; effective pro-

ton density ρ∗; brain template; MRI simulation

1. INTRODUCTION

Objective measurements from quantitative MRI have a great

importance in characterizing diseased brain tissues and have

attracted wide interest [1]. They can be used as brain struc-

tures fingerprints for characterization of pathologies as sug-

gested recently in [2]. The availability of relaxometry tem-

plates (relaxation times and proton density) could be of great

interest for MRI simulations. It would allow to generate pop-

ulations of images with realistic variations of contrast and in-

tensities, possibly with the addition of brain pathologies (i.e.

tumor and lesions), to study brain disease evolutions. In addi-

tion, having a relaxometry template would be of great use to

quantitatively study the influence on brain tissues of a patient

suffering from neurodegenerative diseases.

Recent works have studied the construction of anatomi-

cal atlases from different points of view. First, we may use

one typical brain image or model, either to generate typi-

cal brain acquisitions1 [3] or as a reference for studies such

Thanks to the ANR-VIP project and ARSEP France for funding.
1http://www.bic.mni.mcgill.ca/brainweb

as the Talairach atlas [4]. However, the large variability in

brain anatomy makes it difficult to construct a representative

atlas from a single brain image and therefore several groups

studied the construction of average atlases [5, 6]. All these

approaches, although relying on different registration algo-

rithms (pairwise or groupwise registration), have the objective

of creating an unbiased average anatomy of the brain from a

database of subjects.

Based on such template creation methods, several atlases

of the brain have been proposed recently. Mazziotta et al. [7]

proposed the MNI152 atlas built from the ICBM consortium

database, which consists of an average T1-w image and as-

sociated segmentations. From this same database, a larger

atlas ICBM4522 was built to serve as an anatomical standard.

The LPBA40 atlas [8] consists of an average anatomical T1-

w image and gray matter parcellation and is often used for

automatic brain segmentation. Finally, the SRI24 atlas was

recently developed [9], grouping T1-w, segmentation and dif-

fusion tensor information into one single multi-channel atlas.

However, all recently proposed atlases of the human brain do

not include quantitative features of the human brain such as

those extracted from relaxometry.

We propose a novel method to create qMRI templates of

T1, T2, T ∗

2
and ρ∗. It integrates a robust estimation of indi-

vidual relaxometry maps, accounting for acquisition artifacts

and expected relationships between different relaxometry pa-

rameters. At the same time, a high-resolution T1-w template

was created from the individual MPRAGE images. The relax-

ation maps were then registered on the T1-w template space to

compute the qMRI templates. We validate the constructed at-

las using simulation tools, and finally present the application

of our atlas to generate a population of subjects with different

modalities.

2. MATERIAL AND METHODS

2.1. Data Acquisition

Whole-brain MR images were acquired on 20 healthy sub-

jects (7 male, 13 female, mean age=32.0±15.1 y.o.). All

imaging experiments for this study were performed on a 3T

Siemens Verio (VB17) scanner with a 32-channel head coil.

2http://www.loni.ucla.edu/Atlases



The acquisition protocol included T1, T2, T ∗

2
relaxome-

try sequences and a 3D MPRAGE T1-w sequence. For the

T1 relaxometry measurement, we used two Spoiled GRE se-

quences with fixed repetition time TR = 15 ms and flip an-

gles θ = [5.0◦, 30◦]. For the T2 relaxometry sequence, seven

echoes were acquired using SE sequence with TR = 4530

ms and TE = [13.8, 27.6, 41.4, 55.2, 69.0, 82.8, 96.6] ms.

For the T ∗

2
relaxometry sequence, five echoes were acquired

using GRE sequence with TE = [4.36, 11.9, 19.44, 26.98,

34.52] ms. All relaxometry sequences have an image size

of 192×192×44 and a voxel size of 1.3×1.3×3 mm3. The

MPRAGE sequence is a 3D high resolution T1-w sequence.

The acquisition parameters were TR/TE/TI = 1900/2.98/900

ms, image size = 256×256×160, voxel size = 1×1×1 mm3.

For validation purposes, T1-w and T2-w/PD-w sequences

were acquired. The T1-w image was acquired with an SE

sequence. The acquisition parameters were TR/TE = 500/8.4

ms, image size = 256×256×44, voxel size = 1×1×3 mm3.

The PD-w and T2-w images were acquired with a Turbo Spin

Echo sequence. Its parameters were TR/TE = 6530 ms, TE =

[9.4, 84] ms, image size = 192×256×44, voxel size = 1×1×3

mm3.

2.2. QMRI Statistic Template Construction

Fig. 1 illustrates the overall workflow for construction of the

3D qMRI template from 20 subjects. To compensate for

between-scans subject motion, a six-parameter rigid-body

registration of each relaxometry map (T1, T2, T ∗

2
and ρ∗) on

the MPRAGE image was carried out for each subject based

on normalised mutual information.

Fig. 1. Brain qMRI template generator.

Our construction method is composed of two parts. (1)

From the T1-w images (right part in Fig. 1), we used the Mat-

lab toolbox SPM83 to generate an MPRAGE average tem-

3http://www.fil.ion.ucl.ac.uk

plate. The anatomical image of each subject was segmented

using unified segmentation [10]. Spatial normalisation across

subjects was then carried out with DARTEL [11]. It should

be noted that we only applied DARTEL registration to white

matter and gray matter as CSF segmentation is not always ac-

curate. Then, we built the MPRAGE template by calculating

the mean and variance on the group of subjects. This template

was used to create the anatomical model in order to serve as a

common space for all subjects. (2) Starting from the T1, T2,

T ∗

2
relaxometry sequences (left part in Fig. 1), we performed

map estimations for each subject and transformed them to the

MPRAGE template. The estimations of maps were performed

successively, and all estimations were modeled as non-linear

regression problems with constraints.

The estimation of T1 considered potential small uncer-

tainties or variations of the flip angles when the sequences

were acquired. To ensure a smooth variation of the flip angles,

we added an L-2 regularisation term in the energy function.

The T1 value was restricted in the range of [1, 5000] ms based

on prior knowledge [12]. The problem amounted to minimize

the energy function for all voxels v in the whole volume V :

ET1
=

∫

V

‖F1(T1,M0, θ)− ST1
‖2dv + λ

∫

V

‖∇θ‖2dv (1)

where M0 is proportional to the equilibrium value of the mag-

netization, θ is the vector of the two flip angles, ST1
denotes

the vector with the acquired two T1 relaxometry signals, and

F1(T1, θ) is the vector with the two simulated signals ob-

tained from the equation [13]

F1 (T1,M0, θ) =
M0(1− e

−TR

T1 ) sin θ

1− e
−TR

T1 cos θ
(2)

The optimization process was performed iteratively on the

two terms in equation (1) until convergence. We performed

an iterative minimization scheme, starting from minimizing

the first term using fixed initial values T1 = 1, M0 = 0 and

θ = [θ1 θ2]. Then, the second term was optimized via Gaus-

sian smoothing.

The estimations of T2 and T ∗

2
are similar optimization

problems (shown here for the T2 maps):

ET2
=

∫

V

‖F2(T2,M0)− ST2
‖2dv (3)

where ST2
denotes the vector with the acquired multiple T2

relaxometry signals and F2(T2,M0) is the vector with the

simulated signals following the exponential equation [13]

F2(T2,M0) = M0e
−TE

T2 (4)

Besides the constraints [0, 1000] ms for both T2 and T ∗

2
, we

use a sequential design to introduce extra constraints T2 ≤ T1

and T ∗

2
≤ T2 [14] into the T2 and T ∗

2
estimation respectively.



Effective proton density ρ∗ [15] was calculated from

the M0 in the T2 estimation, as the T2 relaxometry se-

quence has the largest number of echoes among all relax-

ometry sequences and thus potentially the highest accuracy.

The ρ∗ map was drawn from M0 by applying the formula

M0/(1 − e
−TR

T1 ) and by adjusting receive sensitivity using

the bias correction in SPM [10]. Moreover, the values of ρ∗

vary from subject to subject, which is not the case for T1, T2

and T ∗

2
maps. Therefore, we integrated the intensity normal-

ization for ρ∗ map into the workflow. An iterative linear least

square method was used to center the ρ∗ values in the areas

of gray matter and white matter across all subjects.

Finally, we modeled the voxel values using a univariate

Gaussian distribution that fits well the real measures, and cal-

culated the means and standard deviations on the group of

subjects to generate the relaxometry templates.

2.3. Dataset Description

All data were saved as Nifti files. The 3D T1, T2 and T ∗

2
map

templates, the 3D T1-W MPRAGE template together with the

DARTEL template were included in the package. All images

have a dimension of 181×217×181 with the voxel size of

1×1×1 mm3. The data can be loaded using SPM, Mricron or

MedInria. A readme file is also given in the package.

2.4. QMRI Statistic Template Validation

We used a MRI simulator4 based on Bloch equations [16] to

validate the estimated qMRI templates. The validation pro-

cess included two parts. (1) The first part was to acquire

different MR sequences on the same population. We used

T1-w SE and T2-w/PD-w sequences and applied spatial nor-

malization to the sequences in order to match the existing

MPRAGE T1-w template. The template for each weighted

image was generated after applying intensity normalisation

across all subjects. These T1-w, T2-w and PD-w image tem-

plates were used as reference datasets (the real acquisitions)

for the template validation. (2) The second part for the valida-

tion was to use the qMRI mean templates as inputs of the MRI

simulator to generate the simulated T1-w, T2-w and PD-w

images. The simulations were done with the same sequences

and parameters as the real acquisitions. Assuming that the

templates are ideally constructed and the simulations are per-

fect, a linear relationship should be obtained between the sim-

ulated and the real image. As a validation of the template

coherence, we calculated the correlation coefficient R in the

brain to measure the strength of linear dependence between

the simulated images and the corresponding real acquisitions.

A value of R = 1 implies a perfect simulation.

4SimuBloch v0.3 http://vip.creatis.insa-lyon.fr

3. RESULTS AND DISCUSSION

QMRI Template Visualization: Fig. 2 presents the mean and

standard deviation templates of T1, T2, T ∗

2
and ρ∗ maps. It

shows the homogenization in gray matter and white matter

regions on the mean templates. Averaging over multiple sub-

jects enhances the visibility of fine structures in deep brain.

(a) T1 map, µ

[134, 3612] ms

(c) T2 map, µ

[42, 163] ms

(e) T ∗

2
map, µ

[20, 116] ms

(g) ρ∗ map, µ

[48, 106]

(b) T1 map, σ

[0, 1159] ms

(d) T2 map, σ

[0, 149] ms

(f) T ∗

2
map, σ

[0, 31] ms

(h) ρ∗ map, σ

[0, 31]

Fig. 2. QMRI mean and standard deviation templates. [min,

max] give the range of the colorbar for each template.

Validation: In Fig. 3, the first column gives the weighted

mean templates (real acquisitions) and the second column

gives the simulated weighted images. In the brain, the cor-

relation coefficients R between the real acquisitions and the

simulated images are 0.96 for the T2-w sequence and 0.94 for

the PD-w sequence. Both T2-w and PD-w simulations show

a strong positive correlation (the R values are close to 1)

between the simulated sequence and the real acquisition. The

value of R for the T1-w sequence is equal to 0.82, which is

relatively lower than these for the T2-w and PD-w sequences.

This may be due to the B1 inhomogeneities in the T1 map

that needs further investigation.

Diverse MR Sequence Generation: A direct application

of the qMRI templates is to simulate realistic MR weighted

sequences over a population. We took the mean and standard

deviation templates (Fig. 2) and used a random value x to

generate a sample from the Normal distribution (µ + xσ) for

each of the relaxometry maps. The generation process was re-

peated twice to provide various contrasts and intensities in the

sequence images. In the third and fourth columns of Fig. 3,

the values of x for the sample maps (T1, T2, T2*, ρ∗) are

(0.22, 1.38, 0.90, -0.98) for #1 and (-0.75, -0.36, 3.58, 0.07)

for #2. These samples of maps were used as input modalities

to feed the MRI simulator in order to synthesize different MR

sequences, such as T1-w, T2-w and PD-w images (Fig. 3(g-



(a) T1-w, real (d) T1-w, simu (g) T1-w, #1 (j) T1-w, #2

(b) T2-w, real (e) T2-w, simu (h) T2-w, #1 (k) T2-w, #2

(c) PD-w, real (f) PD-w, simu (i) PD-w, #1 (l) PD-w, #2

Fig. 3. Validation and diverse MR sequences simulation.

l)). The results show that using quantitative atlas allows us

to generate images with realistic variations of contrast and

intensity, thereby enabling to quantify the sensitivity of an al-

gorithm to these variations.

4. CONCLUSIONS

We have proposed a 3D qMRI template generator from

healthy human brain at 3T. The templates were constructed

using the relaxometry and MPRAGE sequences on 20 nor-

mal subjects. The mean templates showed a clear enhance-

ment of the visibility of fine structures in deep brain. We

have validated the templates by showing high correlation

coefficients (>0.80) between the simulated weighted im-

ages and the real acquisitions. We have also demonstrated

the effectiveness of using these templates to simulate MR

scans. Our qMRI templates can complement the lack of

quantitative data in MRI simulation field. A future work

may be to create disease-specific brain templates, in con-

ditions like Multiple Sclerosis, which may aid in crucial

neuroimage analysis. The qMRI templates are available

at https://www.irisa.fr/visages/download to

serve as a quantitative dataset for neuroimaging studies.

5. REFERENCES

[1] J.B.M. Warntjes, O.D. Leinhard, et al., “Rapid magnetic

resonance quantification on the brain: Optimization for

clinical usage,” MRM, vol. 60, no. 2, pp. 320–329, 2008.

[2] D. Ma, V. Gulani, et al., “Magnetic resonance finger-

printing,” Nature, vol. 495, no. 7440, pp. 187–192, Mar.

2013.

[3] B. Aubert-Broche, M. Griffin, et al., “Twenty new digi-

tal brain phantoms for creation of validation image data

bases,” IEEE Trans. Med. Imaging, vol. 25, no. 11, pp.

1410–1416, 2006.

[4] J. Talairach and T. Tournoux, Co-planar Stereotaxic At-

las of the Human Brain: 3-Dimensional Proportional

System - An Approach to Cerebral Imaging, New York:

Thieme Medical Publishers, 1988.

[5] S. Joshi, B. Davis, et al., “Unbiased diffeomorphic atlas

construction for computational anatomy,” Neuroimage,

vol. 23 Suppl 1, pp. S151–60, 2004.

[6] K.K. Bhatia, P. Aljabar, et al., “Groupwise combined

segmentation and registration for atlas construction,” in

MICCAI, 2007.

[7] J. Mazziotta, A. Toga, et al., “A probabilistic atlas

and reference system for the human brain: International

Consortium for Brain Mapping (ICBM),” Philos Trans

R Soc Lond B Biol Sci, vol. 356, pp. 1293–1322, 2001.

[8] D.W. Shattuck, M. Mirza, et al., “Construction of a 3D

probabilistic atlas of human cortical structures,” Neu-

roimage, vol. 39, pp. 1064–1080, 2008.

[9] T. Rohlfing, N.M. Zahr, et al., “The SRI24 multichannel

atlas of normal adult human brain structure,” HBM, vol.

31, pp. 798–819, 2010.

[10] J. Ashburner and K.J. Friston, “Unified segmentation,”

NeuroImage, vol. 26, pp. 839–851, 2005.

[11] J. Ashburner, “A fast diffeomorphic image registration

algorithm.,” Neuroimage, vol. 38, no. 1, pp. 95–113,

2007.

[12] C. Dagia and M. Ditchfield, “3T MRI in paediatrics:

challenges and clinical applications,” Eur J Radiol, vol.

68, no. 2, pp. 309–319, 2008.

[13] P. Tofts, Quantitative MRI of the Brain: Measuring

Changes Caused by Disease, J. Wiley & Sons, 2003.

[14] M.A. Heinrichs and A. Siemens, Magnets, Spins, and

Resonances: An Introduction Into the Basics of Mag-

netic Resonance Imaging, Siemens, 1992.

[15] N. Weiskopf, J. Suckling, et al., “Quantitative multi-

parameter mapping of R1, PD*, MT, and R2* at 3T: a

multi-center validation,” Front. Neurosci., vol. 7, no. 95,

2013.

[16] F. Bloch, “Nuclear induction,” Physical Review, vol. 70,

pp. 460–474, 1946.


