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Abstract. In this article we propose to investigate the analogy between

early cortical folding process and cortical smoothing by mean curvature

flow. First, we introduce a one-parameter model that is able to fit a

developmental trajectory as represented in a Volume-Area plot and we

propose an efficient optimization strategy for parameter estimation. Sec-

ond, we validate the model on forty cortical surfaces of preterm newborns

by comparing global geometrical indices and trajectories of central sulcus

along developmental and simulation time.

1 Introduction

The onset and rapid extension of cortical folds between 20 and 40 weeks of

human gestation has been long known from ex vivo examination and observed

in vivo since the early days of MRI [10]. Recently reconstruction and segmenta-

tion techniques have allowed to study more quantitatively normal developmental

⋆ This work is funded by the Agence Nationale de la Recherche (ANR-12-JS03-001-01,
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trajectories of premature newborns [6] or foetus [15, 4] as well as abnormal tra-

jectories in diseases such as ventriculomegaly [16].

Nevertheless the normal and abnormal gyrification process is still suffering

from a lack of comprehensive biological mechanisms. In this context several nu-

merical models have been proposed recently with different underlying hypotheses

such as mechanical tensions along white matter fibers [8], genetic determination

of future gyri [18, 13] or tissue growth [19] that can be modulated by skull con-

straints [14]. However there is no real consensus on this issue and validations are

often focused on a limited number of parameters.

Other approaches have modeled cortical folding process in a less biologically

explicit but maybe more pragmatic way. Harmonic analysis has been proposed

through spherical wavelets [20] or manifold harmonics (Laplace-Beltrami eigen-

functions) [9]. They both make an analogy between the appearance of new folds

and the addition of new non-vanishing components in the spectral decomposi-

tion of surface coordinates. A related approach was found before in [2] where a

scale-space of the mean curvature was used to recover the early steps of gyro-

genesis and identify ”sulcal roots” - putative elementary atoms of cortical folds.

This last theory has been used to study the issue of cortical folding variability

but to our knowledge it has never been confronted to real developmental data.

That is why this article aims at going beyond a strict visual analogy by

testing in which extent some geometric flows can play backward the gyrification

process. Our contributions are twofold: first we propose a 1 parameter model

derived from mean curvature flow as well as an optimization procedure to fit the

parameter on any brain developmental sequence. Second, we present validation

tools based on global geometric indices and sulci, tested on 40 preterm newborns.

2 Methodology

2.1 Mathematical preliminaries

In the following we will consider M0 a compact surface of R3, without bound-

aries, which will be a left hemisphere in our applications. M0 can be represented
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by local mappings around open sets U , Q : U ⊂ R
2 → Q(U) ⊂ M0 ⊂ R

3. The

surface is supposed to be smooth enough to define a normal vector N(x), ori-

ented from the outside to the inside and principal curvatures κ1 ≥ κ2 at each

point x. The mean curvature H(x) is given by (κ1 + κ2)/2. Thus the mean

curvature flow equation can be defined by two equivalent ways :

∂tP (x, t) = H(x, t)N(x, t) (1) ∂tP (x, t) = ∆Mt
P (x, t) (2)

with initial condition P (x, 0) = Q(x). For each time t, P (x, t) represents a

local mapping or equivalently coordinates associated to an evolving surface Mt

whose ∆Mt
is the Laplace-Beltrami operator and H(x, t) the mean-curvature.

There are several numerical implementations of mean curvature flow using (nor-

malized or not) umbrella operator [5] or finite element methods [3]. It is known

that the mean curvature equation has a solution on a finite time interval and if

M0 is convex it shrinks to a single point becoming asymptotically spherical [11].

It is also important to briefly recall that Laplace-Beltrami operator of a surface

M is a functional ∆M : f → ∆Mf that acts as a classical Laplacian (or second

derivative) on a function f : M → R. This operator has important spectral

properties (see [17, 9]) since for the functional space of square integrable func-

tions on M equipped with the scalar product < f, g >=
´

M
fg there exists an

orthonormal basis Φi and positive integers 0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λi such

as ∆MΦi = −λiΦi. Those manifold harmonics Φi represent brain shapes with

slightly better sparsity than with spherical harmonics [17].

Last the volume inside the surface M can be efficiently computed by discretizing

the following equality that is a consequence of Green-Ostrogradski formula:

Vol(M) =

ˆ

M

F (x) ·N(x)dx (3)

provided that F is a vector field whose divergence is 1 (e.g. F (x, y, z) = (x, 0, 0)).

2.2 Mean curvature flow for retrospective morphogenesis

It has often been observed that mean curvature flow, Laplacian smoothing or

truncation in manifold harmonics reconstruction are offering a striking analogy
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Fig. 1: Left: Trajectories in a Volume-Area plot with different techniques: mean curva-

ture flow with two different discretization, manifold harmonics and our optimization

method. Circles in blue correspond to Volume-Area measurements on Premature new-

borns. Right: Surfaces of premature newborns with largest (1) and smallest (2) volume.

Mean-curvature flow (3) and our method (4) applied on surface (1) till reaching surface

(2). Scales are not preserved for visualization. Only left hemispheres were considered.

with a developmental sequence of brains. This analogy can be illustrated by

simple visualizations of real cortical surface versus smoothed ones or more ob-

jectively by comparing quantitative values such as volume or areas (see Fig. 1).

In the case of mean curvature flow, the surface areas in the smoothed sequence

are lower than expected from data. This supports that the shrinking process

during smoothing is too fast and therefore we may compensate this effect by an

”anti-shrinking” force, for instance proportional to N(x, t). When this propor-

tionality factor equals the average of the mean curvature on M, the volume is

preserved [7] which is not the case in the developmental process. Thus we have

adopted a pragmatic approach by adding a simple linear term −aP (x, t) to Eq.

(1) and (2). In the case of a sphere this quantity has the same direction as the

inward normal and one can consider that it is a crude approximation of normal

direction for closed shapes. This leads to consider the following one-parameter

model:

∂tPa(x, t) = ∆Mt
Pa(x, t)− aPa(x, t) (4)
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This partial differential equation is non-linear and we can also propose a linear

version by taking the laplacian ∆M0
on the original surface M0 instead of ∆Mt

.

The following proposition will simplify optimization in the next part:

Proposition 1. For each a ∈ R, Eq. (4) and the equivalent with ∆M0
have an

unique solution given by:

Pa(x, t) = e−atP0(x, t) (5)

Proof. Given the formula it is easy to compute ∂tPa(x, t) and to check that

Pa(x, t) is solution of both PDE (4). We give in appendix a more constructive

proof of this result in the linear case which involves Manifold Harmonics.

2.3 Parameter estimation

We consider a collection of surfaces S = {S1, ..., Sd} that represents a reversed

developmental sequence from a final surface S1. Each surface Si correspond to

a gestational age (G.A.) ti and td ≤ ... ≤ t1. We have to define a criterion that

measures the error between a real developmental sequence and a simulated one

starting from a surface Sk with G.A. tk through one of our two models. In the

case of brain development, we only consider global quantities that are the volume

(Vol(S)) inside the surface and the total area (Area(S)), respectively normalized

by maxi Vol(Si) and maxi Area(Si). We can therefore define an error attached

to a sequence S, a starting surface Sk and a parameter a:

E(S, tk, a) =
∑

i≤k

di(a, t
∗
i ) with t∗i = argmin

t
di(a, t) (6)

where di(a, t) =
[
Area(Si) − Area

(
Pa(·, t)

)]2
+

[
Vol(Si) − Vol

(
Pa(·, t)

)]2
. This

error can be easily interpreted as the sum of distances between each data and

the simulations Pa(·, t) obtained from Sk in a Volume-Area plot such as on Fig.

1. Our criterion to be minimized is defined in the Volume-Area space to avoid

a direct identification of a simulation time t∗i - that depends also on a - and a

developmental time ti.
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Proposition 1 yields a trick to avoid a systematic computation of simulated

surfaces for each value of a. Namely volumes and areas Pa are given by:

Vol
(
Pa(·, t)

)
= Vol

(
P0(·, t)

)
e−3at, Area

(
Pa(·, t)

)
= Area

(
P0(·, t)

)
e−2at (7)

since Eq. (5) can be simply understood as an homothety. To simplify notations

we will denote them as Vola(t) and Areaa(t) in the following. Optimization of

parameter a can then be done by using a classical low-dimensional approach

such as Nelder-Mead Simplex Method.

When a = 0, we have classical formulas [7] that we will use at initial time

dArea0(t)

dt
= −

ˆ

Mt

H(x, t)2
dVol0(t)

dt
= −

ˆ

Mt

H(x, t) (8)

Thus we can choose dt, discretization step of the mean curvature flow such as

A(Sk)−A(Sk−1) ≥ αdtĤ2
k and V (Sk)− V (Sk−1) ≥ αdtĤk (9)

for any starting surface Sk. The hat denotes an average of the mean curvature on

the surface. For α = 10 it guarantees to have a good sampling of the simulations

in the Volume-Area domain. All the previous results can be summarized in:

Algorithm 1 Optimize Trajectory

Require: {S1, ..., Sd}, k ∈ {1, .., d}

1: M := S0, i=0, Bool=TRUE

2: Compute biggest dt satisfying (9)

3: while Bool do

4: Compute A[i]:=Area(M) and Compute V[i]:=Vol(M) with Eq. (3)

5: Bool=A[i] > minArea(Si) OR V[i] > minVol(Si)

6: Compute M at (i+1)dt with discretized Eq. (4)

7: i++

8: end while

9: Define objective function f(·)=E(S, tk, ·) through Eq. (6) and (7)

10: a∗=Nelder Mead Simplex Method (f)

11: return a∗
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3 Validation

3.1 Quantitative tools

Global geometric indices In a first attempt to validate our retrospective model

we compared visual aspects of simulations to real data by using geometric mea-

surements that can be done on the cortical surface. Rather than using directly

principal curvatures we transformed these quantities in a more interpretable

way thanks to curvedness and shape index (see [1] for a recent application in

neuroimaging):

C(x) =
√
κ2
1 + κ2

2 SI(x) =
2

π
arctan

κ1 + κ2

κ1 − κ2
(10)

Curvedness encodes the degree of folding whereas Shape Index that varies be-

tween -1 and +1 is scale invariant and only represents changes in local configu-

rations at x from cusp (-1) to casp (1) through saddle (0) or cylinder (0.5). We

compute three global indices (C, SI+, SI−) from these two quantities by taking

a) the median of C(x), b) the median of SI(x) for x such as SI(x) > 0, c) the

same for SI(x) < 0.

Sulcus-based validation A second validation of our model was done by consider-

ing very early developing sulci such as the central one. Lines of central sulcus

(CS) fundi were delineated semi-automatically [12]. Then evolution of these lines

were followed through the developmental sequence and the simulations, provided

that a matching process exists to register the surfaces. For a given surface Mt

we defined the following mapping based on the three first manifold harmonics:

x →
(
Φ1(x)

2 + Φ2(x)
2 + Φ3(x)

2
)−1/2(

Φ1(x), Φ2(x), Φ3(x)
)

(11)

By construction it transforms each point of Mt to a point of the sphere of

R
3. Empirical properties of the 3 harmonics guarantee the transformation to be

an homeomorphism, in particular the fact that (Φi)i=1,2,3 have always 2 nodal

domains on the studied surfaces. If necessary we flip the sign of Φi by considering

coordinates of their extremal points in a common 3D referential.
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Fig. 2: 1: Sensibility analysis of parameter a for 35 largest brains: bootstrap estimation

of mean and confidence intervals (blue) vs direct optimization (red). 2-4: Comparison

of the three global indices (C, SI+, SI−) between data (blue), our model (green) and

mean curvature flow (red).

3.2 Results

Data We considered 40 T2-weighted images of preterm newborns with no ap-

parent anatomical abnormalities and whose gestational age ranges from 26.7 to

35.7 weeks. They were segmented according to the method exposed in [6].

Sensibility analysis Our method allows a fast bootstrap estimation of the mean

and confidence intervals of a∗k (for the 35 largest brains to keep at least 5 points

to estimate a) by applying algorithm (1) to different resampled sets {S∗
1 , ..., S

∗
d}

taken from S (45 s for 1000 bootstrapped samples). Comparison of a through

direct optimization and through resampling is shown on Fig. 2 with respect to

G.A. It seems that one can distinguish three different temporal periods (28−31,

31− 34, 34− 36) where the values of a are different as well as the sensibility.

Geometric measurements We compared the three global geometric indices be-

tween premature newborns, simulations with optimal parameter a∗ and a = 0

starting from the largest brain S1 (see Fig. 2). For each subject i we obtain a

time t∗i from Eq. (6) that can be located on the x-axis. The behavior of the dif-

ferent curves is reproducible with different initial brains Sk (not shown): one can

observe that the median curvedness is decreasing from larger to smaller brains,

whereas SI+ and SI− are relatively more stable. It is quite remarkable to note

the good fit of the optimal model and the divergence of mean curvature flow for
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the three different measurements that are not surrogates of volume and areas.
Trajectory of central sulcus On Fig. 3 we

have a direct comparison of the evolution

of CS fundi on original surfaces and on

corresponding smoothed surfaces with our

model starting from the largest brain. The

spherical mapping allows to see clearly

a translation of CS lines when we start

from older brains (yellow in the middle)

to younger ones (black) and similarly from

initial (yellow) to final (black) ones in the

simulation.

Fig. 3: Lines of CS fundi on real data

(left) and on our simulations (right).

See text for color code. North pole

corresponds to frontal lobe.

4 Discussion

Our results demonstrate the feasibility of simulating the reversed cortical folding

process observed on a cross-sectional study of premature newborns through a

one parameter model derived from the mean curvature flow. Our model is only

constrained by two global quantities, volume and area but it is able to predict

evolution of geometrical quantities related to the shape of the cortical surfaces.

Even if global, these quantities are not surrogates of those to optimize. More

locally our model reproduces also a translation of central sulcus observed in the

data that suggests a faster growth in frontal area than in parietal one that may

be consistent with results in [15] for fetal brains from 24 to 28 G.A. Sensibility

analysis on the parameter a reveals 3 different periods where its values and

confidence intervals are fluctuating. Since a can be interpreted as the amplitude

of an ”anti-shrinking” force, this result suggests possible different scenarios in

the cortical folding process with different kinetics. However larger confidence

intervals in the interval 31− 34 G.A. may also come from a bias resulting from

less time points to estimate the parameter.

In future works we intend to apply our method on fetal brains and compare

their developmental trajectories to those of premature newborns such as in [4].



10 Julien Lefèvre et al.

Longitudinal studies would also be an ideal application of our framework to

compare more accurately in space the relevance of our model.
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Appendix: proof of Proposition 1

We decompose Pa(x, t) in the basis of eigenfunctions of the operator ∆M0
:

Pa(x, t) =

+∞∑

i=0

p̂i(a, t)Φi(x)
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where p̂i(a, t) ∈ R
3 is given by

´

M0

Pa(x, t)Φi(x)dx. Then since Pa satisfies Eq.

(4) (with ∆M0
instead of ∆Mt

):

0 = ∂tPa − a∆M0
Pa + aPa =

+∞∑

i=0

[
∂tp̂i(a, t) + λip̂i(a, t) + ap̂i(a, t)

]
Φi(x)

So p̂i(a, t) = p̂i(a, 0)e
−λite−at. Last we have to notice that p̂i(a, 0) is inde-

pendent of a since they correspond to the coefficients of the initial surface M0

and that p̂i(a, 0)e
−λit are the coefficients of Mt for a = 0. We conclude that

Pa(x, t) = e−atP0(x, t).


