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Surface smoothing: a way back in early brain morphogenesis
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Abstract

In this article we propose to investigate the analogy between early cortical folding process and cortical smoothing by mean curvature

flow. First, we introduce a one-parameter model that is able to fit a developmental trajectory as represented in a Volume-Area plot

and we propose an efficient optimization strategy for parameter estimation. Second, we validate the model on forty cortical surfaces

of preterm newborns by comparing global geometrical indices and trajectories of central sulcus along developmental and simulation

time.
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Introduction

The onset and rapid extension of cortical folds between 20 and 40 weeks of human gestation has been long known from ex vivo

examination and observed in vivo since the early days of MRI 10 . Recently reconstruction and segmentation techniques have allowed to[ ]
study more quantitatively normal developmental trajectories of premature newborns 6  or foetus 15, 4  as well as abnormal trajectories in[ ] [ ]
diseases such as ventriculomegaly 16 .[ ]

Nevertheless the normal and abnormal gyrification process is still suffering from a lack of comprehensive biological mechanisms. In

this context several numerical models have been proposed recently with different underlying hypotheses such as mechanical tensions along

white matter fibers 8 , genetic determination of future gyri 18, 13  or tissue growth 19  that can be modulated by skull constraints 14 .[ ] [ ] [ ] [ ]
However there is no real consensus on this issue and validations are often focused on a limited number of parameters.

Other approaches have modeled cortical folding process in a less biologically explicit but maybe more pragmatic way. Harmonic

analysis has been proposed through spherical wavelets 20  or manifold harmonics (Laplace-Beltrami eigenfunctions) 9 . They both make[ ] [ ]
an analogy between the appearance of new folds and the addition of new non-vanishing components in the spectral decomposition of

surface coordinates. A related approach was found before in 2  where a scale-space of the mean curvature was used to recover the early[ ]
steps of gyro-genesis and identify sulcal roots  - putative elementary atoms of cortical folds. This last theory has been used to study the“ ”
issue of cortical folding variability but to our knowledge it has never been confronted to real developmental data.

That is why this article aims at going beyond a strict visual analogy by testing in which extent some geometric flows can play

backward the gyrification process. Our contributions are twofold: first we propose a 1 parameter model derived from mean curvature flow

as well as an optimization procedure to fit the parameter on any brain developmental sequence. Second, we present validation tools based

on global geometric indices and sulci, tested on 40 preterm newborns.

Methodology
Mathematical preliminaries
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In the following we will consider  a compact surface of , without boundaries, which will be a left hemisphere in ourℝ3 

applications.  can be represented by local mappings around open sets ,    ( )    . The surface is supposed to beU Q : U ⊂ ℝ2 → Q U ⊂ ⊂ ℝ
smooth enough to define a normal vector ( ), oriented from the outside to the inside and principal curvatures    at each point .N x κ 1 ≥ κ 2 x 

The mean curvature ( ) is given by (    )/2. Thus the mean curvature flow equation can be defined by two equivalent ways:H x κ 1 + κ 2 

(1)

(2)

with initial condition ( , 0)  ( ). For each time , ( , ) represents a local mapping or equivalently coordinates associated to anP x = Q x t P x t

evolving surface  whose  is the Laplace-Beltrami operator and ( , ) the mean-curvature. There are several numericalH x t

implementations of mean curvature flow using (normalized or not) umbrella operator 5  or finite element methods 3 . It is known that the[ ] [ ]
mean curvature equation has a solution on a finite time interval and if  is convex it shrinks to a single point becoming asymptotically

spherical 11 . It is also important to briefly recall that Laplace-Beltrami operator of a surface  is a functional  :     that acts as[ ] f → f

a classical Laplacian (or second derivative) on a function  :   . This operator has important spectral properties (see 17, 9 ) since forf → ℝ [ ]
the functional space of square integrable functions on  equipped with the scalar product < ,  >    there exists an orthonormal basisf g = fg

 and positive integers 0   <       such as    . Those manifold harmonics  represent brain shapes with slightly betterΦ = λ 0 λ 1 ≤ λ 2 ≤ … λ Φ = −λ Φ

sparsity than with spherical harmonics 17 .[ ]

Last the volume inside the surface  can be efficiently computed by discretizing the following equality that is a consequence of

Green-Ostrogradski formula:

(3)

provided that  is a vector field whose divergence is 1 (e.g. ( , , )  ( , 0, 0)).F F x y z = x

Mean curvature flow for retrospective morphogenesis

It has often been observed that mean curvature flow, Laplacian smoothing or truncation in manifold harmonics reconstruction are

offering a striking analogy with a developmental sequence of brains. This analogy can be illustrated by simple visualizations of real

cortical surface versus smoothed ones or more objectively by comparing quantitative values such as volume or areas (see Fig. 1). In the

case of mean curvature flow, the surface areas in the smoothed sequence are lower than expected from data. This supports that the

shrinking process during smoothing is too fast and therefore we may compensate this effect by an anti-shrinking  force, for instance“ ”
proportional to ( , ). When this proportionality factor equals the average of the mean curvature on , the volume is preserved 7N x t [ ]
which is not the case in the developmental process. Thus we have adopted a pragmatic approach by adding a simple linear term ( , )−aP x t

to Eq. (1) and (2). In the case of a sphere this quantity has the same direction as the inward normal and one can consider that it is a crude

approximation of normal direction for closed shapes. This leads to consider the following one-parameter model:

(4)

This partial differential equation is non-linear and we can also propose a linear version by taking the laplacian  on the original

surface  instead of . The following proposition will simplify optimization in the next part:

Proposition 1

For each   , Eq. (4) and the equivalent with  have an unique solution given by:a ∈ ℝ

(5)

Proof

Given the formula it is easy to compute ( , ) and to check that ( , ) is solution of both PDE (4). We give in appendix a more∂ x t P x t

constructive proof of this result in the linear case which involves Manifold Harmonics.

Parameter estimation

We consider a collection of surfaces    , ,  that represents a reversed developmental sequence from a final surface  . Each= {S 1 … S} S 1 

surface  correspond to a gestational age (G.A.)  and      . We have to define a criterion that measures the error between a realS t t ≤ … ≤ t 1 

developmental sequence and a simulated one starting from a surface  with G.A.  through one of our two models. In the case of brainS t
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development, we only consider global quantities that are the volume (Vol( )) inside the surface and the total area (Area( )), respectivelyS S

normalized by max Vol( ) and max Area( ). We can therefore define an error attached to a sequence , a starting surface  and aS S S

parameter :a

(6)

where ( , )  Area( )  Area( ( , ))  Vol( )  Vol( ( , )) . This error can be easily interpreted as the sum of distances betweend a t = [ S – P · t ]2 + [ S – P · t ]2 

each data and the simulations ( , ) obtained from  in a Volume-Area plot such as on Fig. 1. Our criterion to be minimized is defined inP · t S

the Volume-Area space to avoid a direct identification of a simulation time - that depends also on  - and a developmental time .a t

Proposition 1 yields a trick to avoid a systematic computation of simulated surfaces for each value of . Namely volumes and areas a P

are given by:

(7)

since Eq. (5) can be simply understood as an homothety. To simplify notations we will denote them as Vol( ) and Area( ) in thet t

following. Optimization of parameter  can then be done by using a classical low-dimensional approach such as Nelder-Mead Simplexa

Method.

When   0, we have classical formulas 7  that we will use at initial timea = [ ]

(8)

Thus we can choose , discretization step of the mean curvature flow such asdt

(9)

for any starting surface . The hat denotes an average of the mean curvature on the surface. For   10 it guarantees to have a goodS α =
sampling of the simulations in the Volume-Area domain. All the previous results can be summarized in:
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Algorithm 1
Optimize Trajectory

 , , ,   1, , Require: {S 1 … S} k ∈ { … d}

1:  :   , i 0, Bool TRUE= S 0 = =

2: Compute biggest dt satisfying ( )9 

3: Bool while do
4:  Compute A i : Area( ) and Compute V i : Vol( ) with [ ] = [ ] = Eq. (3) 

5:  Bool A i  > min Area( ) OR V i  > min Vol( )= [ ] S [ ] S

6:  Compute  at (i 1)dt with discretized + Eq. (4) 

7:  i++
8: end while
9: Define objective function f( ) ( , , ) through and · =E t · Eq. (6) (7) 

10: a Nelder Mead Simplex Method (f) * =
11: areturn *
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Validation
Quantitative tools

Global geometric indices

In a first attempt to validate our retrospective model we compared visual aspects of simulations to real data by using geometric

measurements that can be done on the cortical surface. Rather than using directly principal curvatures we transformed these quantities in a

more interpretable way thanks to  and  (see 1  for a recent application in neuroimaging):curvedness shape index [ ]

(10)

Curvedness encodes the degree of folding whereas Shape Index that varies between 1 and 1 is scale invariant and only represents− +
changes in local configurations at from cusp ( 1) to casp (1) through saddle (0) or cylinder (0.5). We compute three global indices ( , x − C ̄

) from these two quantities by taking a) the median of ( ), b) the median of ( ) for such as ( ) > 0, c) the same for ( )C x SI x x SI x SI x 

< 0.

Sulcus-based validation

A second validation of our model was done by considering very early developing sulci such as the central one. Lines of central sulcus

(CS) fundi were delineated semi-automatically 12 . Then evolution of these lines were followed through the developmental sequence and[ ]
the simulations, provided that a matching process exists to register the surfaces. For a given surface  we defined the following mapping

based on the three first manifold harmonics:

(11)

By construction it transforms each point of  to a point of the sphere of . Empirical properties of the 3 harmonics guarantee theℝ3 

transformation to be an homeomorphism, in particular the fact that ( ) have always 2 nodal domains on the studied surfaces. IfΦ 1,2,3 =
necessary we ip the sign of  by considering coordinates of their extremal points in a common 3D referential.Φ

Results

Data

We considered 40 T2-weighted images of preterm newborns with no apparent anatomical abnormalities and whose gestational age

ranges from 26.7 to 35.7 weeks. They were segmented according to the method exposed in 6 .[ ]

Sensibility analysis

Our method allows a fast bootstrap estimation of the mean and confidence intervals of  (for the 35 largest brains to keep at least 5

points to estimate ) by applying algorithm (1) to different resampled sets   taken from  (45 s for 1000 bootstrapped samples).a { } S

Comparison of  through direct optimization and through resampling is shown on Fig. 2 with respect to G.A. It seems that one cana

distinguish three different temporal periods (28 31, 31 34, 34 36) where the values of  are different as well as the sensibility.– – – a

Geometric measurements

We compared the three global geometric indices between premature newborns, simulations with optimal parameter  and   0a  * a =
starting from the largest brain  (see Fig. 2). For each subject  we obtain a time  from Eq. (6) that can be located on the x-axis. TheS 1 i

behavior of the different curves is reproducible with different initial brains  (not shown): one can observe that the median curvedness isS

decreasing from larger to smaller brains, whereas  and  are relatively more stable. It is quite remarkable to note the good fit of the

optimal model and the divergence of mean curvature flow for the three different measurements that are not surrogates of volume and areas.

Trajectory of central sulcus

On Fig. 3 we have a direct comparison of the evolution of CS fundi on original surfaces and on corresponding smoothed surfaces with

our model starting from the largest brain. The spherical mapping allows to see clearly a translation of CS lines when we start from older

brains (yellow in the middle) to younger ones (black) and similarly from initial (yellow) to final (black) ones in the simulation.

Discussion

Our results demonstrate the feasibility of simulating the reversed cortical folding process observed on a cross-sectional study of

premature newborns through a one parameter model derived from the mean curvature flow. Our model is only constrained by two global
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quantities, volume and area but it is able to predict evolution of geometrical quantities related to the shape of the cortical surfaces. Even if

global, these quantities are not surrogates of those to optimize. More locally our model reproduces also a translation of central sulcus

observed in the data that suggests a faster growth in frontal area than in parietal one that may be consistent with results in 15  for fetal[ ]
brains from 24 to 28 G.A. Sensibility analysis on the parameter  reveals 3 different periods where its values and confidence intervals area

fluctuating. Since  can be interpreted as the amplitude of an anti-shrinking  force, this result suggests possible different scenarios in thea “ ”
cortical folding process with different kinetics. However larger confidence intervals in the interval 31 34 G.A. may also come from a bias–
resulting from less time points to estimate the parameter.

In future works we intend to apply our method on fetal brains and compare their developmental trajectories to those of premature

newborns such as in 4 . Longitudinal studies would also be an ideal application of our framework to compare more accurately in space the[ ]
relevance of our model.

Appendix. proof of Proposition 1

We decompose ( , ) in the basis of eigenfunctions of the operator P x t

where ( , )  is given by  ( , ) ( )  . Then since  satisfies Eq. (4) (with  instead of p ̂ a t ∈ ℝ3 P x t Φ x d x P

So ( , )  ( , 0)   . Last we have to notice that ( , 0) is independent of  since they correspond to the coefficients of the initialp ̂ a t = p ̂ a e   −λ  i t e  −at p ̂ a a

surface  and that ( , 0)  are the coefficients of  for   0. We conclude that ( , )   ( , ).p ̂ a e   −λ  i t a = P x t = e 0 x t
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Fig. 1
Left: Trajectories in a Volume-Area plot with different techniques: mean curvature flow with two different discretization, manifold harmonics

and our optimization method. Circles in blue correspond to Volume-Area measurements on Premature newborns. Right: Surfaces of

premature newborns with largest (1) and smallest (2) volume. Mean-curvature flow (3) and our method (4) applied on surface (1) till reaching

surface (2). Scales are not preserved for visualization. Only left hemispheres were considered.

Fig. 2
1: Sensibility analysis of parameter  for 35 largest brains: bootstrap estimation of mean and confidence intervals (blue) vs direct optimizationa

(red). 2 4: Comparison of the three global indices ( , ) between data (blue), our model (green) and mean curvature flow (red).– C ̄

Fig. 3
Lines of CS fundi on real data (left) and on our simulations (right). See text for color code. North pole corresponds to frontal lobe.


