
HAL Id: inserm-00944465
https://inserm.hal.science/inserm-00944465

Submitted on 10 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Increased stiffness and cell-matrix interactions of
abdominal aorta in two experimental nonhypertensive
models: long-term chemically sympathectomized and

sinoaortic denervated rats.
Camille Bouissou, Patrick Lacolley, Hubert Dabire, Michel E. Safar, Giorgio

Gabella, Véronique Duchatelle, Pascal Challande, Yvonnick Bezie

To cite this version:
Camille Bouissou, Patrick Lacolley, Hubert Dabire, Michel E. Safar, Giorgio Gabella, et al.. Increased
stiffness and cell-matrix interactions of abdominal aorta in two experimental nonhypertensive models:
long-term chemically sympathectomized and sinoaortic denervated rats.: Aorta structure and stiffness
in rats. Journal of Hypertension, 2014, 32 (3), pp.652-8. �10.1097/HJH.0000000000000073�. �inserm-
00944465�

https://inserm.hal.science/inserm-00944465
https://hal.archives-ouvertes.fr


Increased stiffness and cell-matrix interactions of abdominal aorta in 

two experimental non-hypertensive models: long-term chemical 

sympathectomized and sinoaortic-denervated rats  

 

 

Camille BOUISSOUa, Patrick LACOLLEYb , Hubert DABIREa,  

Michel E. SAFARc, Giorgio GABELLAd, Véronique DUCHATELLEe,  

Pascal CHALLANDEf$, Yvonnick BEZIEg$ 

 

Short title: Aorta structure and stiffness in rats 

 

aINSERM, U955, Equipe 03, Créteil, France ; bINSERM, U1116, Nancy, France; 

cHôtel-Dieu Hospital, Diagnosis center and Université René Descartes, UFR Médecine, 

Paris, France; dDepartment of Anatomy and Developmental Biology, University 

College London, London, United Kingdom; eDepartment of Pathology, Groupe 

hospitalier Paris Saint-Joseph, Paris,  France ; fUPMC Univ Paris 06 ; CNRS UMR 

7190, Paris, France ; gDepartment of Pharmacy, Groupe hospitalier Paris Saint-Joseph, 

Paris, France. 

$equal contribution 

Disclosure: No disclosure 

 

Conflict of interest: None 

 

Corresponding Authors:  



 2 

 
Dr. Yvonnick BEZIE, Groupe Hospitalier Paris Saint-Joseph,185 Rue Raymond Losserand 

F-75674 Paris Cedex 14, France. 

Tel : +33 1 44 12 36 16  

Fax : +33 1 44 12 34 61  

E-mail address: ybezie@hpsj.fr 

 

Dr. Patrick Lacolley, INSERM U1116, 9 avenue de la Forêt de Haye. BP 184, 54500 

Vandoeuvre-lés-Nancy Cedex. France 

Tel : +33 3 83 68 36 23  

Fax : +33 3 83 68 36 39  

E-mail address: Patrick.lacolley@inserm.fr 

 

Word count: 

 Total (including references, but not tables and legends): 4210 

Abstract: 243  

Number of tables: 1 

Number of figures: 4 

 



ABSTRACT  

RATIONALE: Sinoaortic denervated (SAD) and chemically sympathectomized (SNX) 

rats are characterized by a decrease in arterial distensibility without hypertension and 

would thus be relevant for analyzing arterial wall stiffening independently of blood 

pressure level. The fibronectin network, which plays a pivotal role in cell matrix 

interactions, is a major determinant of arterial stiffness. We hypothesized that in SAD 

and SNX rats, arterial stiffness is increased, due to alterations of cell-matrix anchoring 

leading to spatial reorganization of the extracellular matrix. 

METHODS: The intrinsic elastic properties of the arterial wall were evaluated in vivo 

by the relationship between incremental elastic modulus determined by echotracking 

and circumferential wall stress. The changes of cell-extracellular matrix links in the 

abdominal aorta were evaluated by studying fibronectin, vascular integrins receptors 

and ultrastructural features of the aorta by immunochemistry. 

RESULTS: In both experimental conditions wall stiffness increased, associated with 

different modifications of cell-extracellular matrix adhesion. In SAD rats, increased 

media-cross sectional area was coupled with an increase of muscle cell attachments to 

its extracellular matrix via fibronectin and its α5-β1 integrin. In SNX rats, reduced 

media-cross sectional area was associated with up-regulation of αv-β3 integrin and 

more extensive connections between dense bands and elastic fibers despite the 

disruption of the elastic lamellae.  

CONCLUSION: In aorta of SNX and SAD rats, a similar arterial stiffness is 

associated to different structural alterations. An increase in αvβ3 or α5β1 integrins 

together with the already reported increase in the proportion of less distensible 

(collagen) to more distensible (elastin) components in both models, contribute to 
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remodeling and stiffening of the abdominal aorta.  



CONDENSED ABSTRACT 

Sinoaortic denervated (SAD) and chemically sympathectomized (SNX) rats are models 

of decreased arterial distensibility without hypertension allowing analyzing arterial 

stiffening and structure independently of blood pressure level. Increase in arterial wall 

stiffness in both models was associated with structural alterations. In SAD, increased 

media cross sectional area was coupled with increased muscle cell attachments via 

fibronectin and α5-β1 integrin. In SNX, reduced media cross sectional area was 

associated with up-regulation of αv-β3 integrin and alteration of elastin fibers. In these 

rats, similar arterial stiffness in absence of hypertension is associated to differential 

structural alterations.  

 

 

Key words: Sino-aortic denervation; Sympathectomy; fibronectin; Arterial Stiffness, 

Integrins 

 



INTRODUCTION 

Increased stiffness of large arteries is a significant and independent predictor of 

cardiovascular (CV) diseases [1]. Arterial stiffness is evaluated by the elastic properties 

of the artery as a whole measured by arterial distensibility and by the elastic properties 

of the arterial wall material measured by the incremental elastic modulus (Einc) [2]. 

Arterial distensibility and Einc are then 2 complementary parameters used to describe 

arterial stiffness. Until now, it remains difficult to separate the causal effects of blood 

pressure elevation from that of the mechanical and functional properties of the arterial 

wall that lead to alterations of distensibility and stiffness. We have previously shown 

that the spontaneously hypertensive rat (SHR) is characterized by a decreased 

distensibility at its operational pressure compared to its normentensive control [3]. 

Nevertheless evaluation of the arterial wall stiffness, assessed by the elastic modulus 

measurement, shows that for a given level of stress, SHR and Wistar rats have similar 

mechanical properties. These results indicate that the decrease of distensibility observed 

in SHR is related to hypertension, rather than to increased stiffness of the arterial wall. 

Therefore, other experimental models must be used to analyze the intrinsic stiffness of 

the aortic tissue. Sinoaortic denervated (SAD) rats and chemically sympathectomized 

(SNX) rats should help to investigate this issue. Both models are characterized by a 

decrease in arterial distensibility without hypertension compared to their respective 

control [4, 5], suggesting that they would be relevant for analyzing arterial wall 

stiffening independently of blood pressure level.  

The fibronectin (Fn) network, which plays a pivotal role in cell matrix interactions, is a 

major determinant of arterial stiffness [3, 6]. Fibronectin controls deposition and 

organization of extra cellular matrix and modulates both cell proliferation and vascular 
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smooth muscle cell (SMC) phenotype. Thus, by increasing cell-matrix anchoring 

through a α5-ß1-integrin, aortic fibronectin accumulation may contribute to protect the 

arterial wall components from the increased mechanical loads associated with 

hypertension in young and old SHRs [3]. The accumulation of other integrins, such as 

αv-β3 integrin, has also been observed in the mesenteric artery of SHR [7]. These 

results suggest that cell-matrix interactions, which play a major role in SMC function, 

are also involved in the mechanical properties of the vascular wall. To our knowledge, 

cell-matrix interactions have never been described in non-hypertensive models related 

to arterial stiffness.  

We hypothesized that in SAD and SNX rats, arterial stiffness is increased, and this may 

be due to alterations of cell-matrix anchoring leading to spatial reorganization of the 

extracellular matrix. We aim to determine in SAD and SNX rats (i) the intrinsic elastic 

properties of the arterial wall by evaluating in vivo the relationship between Einc and 

circumferential wall stress, and (ii) the changes of cell-extracellular matrix links in the 

abdominal aorta, by studying fibronectin, vascular integrins receptors and ultrastructural 

features of the aorta. 

 

MATERIALS AND METHODS 

 

Animals 

Male Wistar rats (Iffa-Credo, Fresnes, France) were used. All procedures were in 

accordance with institutional guidelines for animal experimentation and conformed to the 

Guide for the Care and Use of Laboratory Animals, published by the National Institutes 

of Health. 
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Sino-aortic denervation and SNX were performed as previously described [4, 5]. In 

brief, SAD was performed at 10 weeks of age on anesthetized rats. Sham-operated rats 

were used as control of SAD rats. All the rats of these groups were examined and killed 

at 16 weeks of age. SNX rats were sympathectomized by subcutaneous injections of 50 

mg/kg guanethidine sulfate for 12 weeks, 5 times a week, from day 5 after birth. The 

control (CO) rats received saline injections according to the same schedule, and both 

sets of rats were investigated during their 13th week of age. A total of 27 rats were used 

for the in vivo experiments and 38 rats for immunohistochemistry and electron 

microscopy. 

 

Hemodynamic investigations 

Mechanical properties of the abdominal aorta were assessed by circumferential wall 

stress (σ) and Einc.  At the end of the treatment, under pentobarbital anesthesia (60 

mg/kg ip), a catheter was introduced in the lower abdominal aorta via the femoral artery 

for blood pressure recording. A midline laparotomy was then performed and the probe 

of the ultrasonic device (NIUS-01, Asulab SA) positioned 1 cm above the aortic 

bifurcation for recording of internal arterial diameter. Blood pressure and internal 

arterial diameter were then simultaneously recorded. The relationship between pressure 

and lumen cross-sectional area was calculated by means of an arctangent 

function. σ and Einc were calculated with the above-mentioned parameters and medial 

cross-sectional area of the aorta determined by histomorphometry as previously 

described [3, 6, 8]. 

 

Antibodies 
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The antibodies used were monoclonal mouse antibodies (mAbs) reactive with an 

alternatively spliced form of fibronectin, EIIIA-Fibronectin (clone IST-9, Valbiotech, 

France) and all FN isoforms (Total-Fn, Valbiotech, France) [3], a mouse anti-vimentin 

monoclonal antibody (1/400, clone V9, Dako, France), a mouse anti-actin monoclonal 

antibody (1/500, clone 1A4, Dako, France), a rabbit anti-integrin αv polyclonal 

antibody (1/250, chemicon) a rabbit anti-integrin α5 subunit polyclonal antibody 

(Valbiotech, France) [3].  

 

Immunohistochemical investigation 

Immunohistochemical staining was performed on fresh unfixed freeze-dried suprarenal 

abdominal aorta [3]. We used the indirect immunoperoxidase technique as previously 

described for the determination of fibronectin, the EIIIA-Fibronectin isoform and the α5 

integrin [3, 9]. The determination of actin, vimentin, αv integrin were performed on a 

Dako automate as described elsewhere [10]. No specific staining was observed when 

primary antibody was omitted from the protocol (negative control). The distribution and 

quantification of staining were determined by computer-directed color analysis 

performed with the Quant’Image software (Quancoul, Talence, France) [3]. 

 

Electron microscopy  

The thoracic aortas (2 SAD, 2 SNX and 5 controls) were fixed in situ by transcardiac 

perfusion of fixative (4% glutaraldehyde and 1% formaldehyde in 0.1M Na-cacodylate). 

Thin (0.5-3.0 µm) and ultrathin (100 nm) sections were cut on a plane transverse to the 

thickness of the media and parallel to the length of the vessel, an approach that 

produced approximately transverse sections of the muscle cells. The sections were 
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stained with uranyl acetate and lead citrate and viewed in a Philips 400 microscope. 

Photographic montages were made, covering the thickness of the media over a length of 

150-400 µm, at a magnification of 8000x. On these montages the size of nucleated 

muscle cell profiles was measured as well as the percentage of the cell membrane 

displaying dense bands and the percentage of cell membrane in contact with lamellae of 

elastin [8]. Ultrastructure characterization and quantification were evaluated by 

counting tissue points of randomly selected photographic fields and a minimum of 6 

nucleated cells per rat were quantified as previously reported [8]. Quantification of 

elastin and collagen have been presented elsewhere [4, 5]. 

 

Statistical Analysis 

All values were averaged and expressed as mean ± SEM. Unpaired Student’s t tests 

were performed to compare SNX and SAD rats with their respective controls for arterial 

and immunohistochemical parameters [3]. For statistical comparison of Einc-σ curves 

between groups, Einc was log transformed to generate linear relationships. Calculating 

the r2 of the linear regression obtained with the new parameters for each individual 

checked the quality of the transformation. After this transformation, we calculated the 

mean slopes of the curves. If the slopes were not significantly different, we compared 

the curves by calculating the mean wall stress at 800 kPa of Einc (σ800), a value 

common to all groups [11]. Differences were considered significant at values of P<0.05.  

 

RESULTS 

 

Hemodynamic and aortic mechanics 
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Body weight of SNX rats was significantly lower than that of control rats (303 ± 10 g 

vs. 353 ± 3 g, p<0.05). Likewise, SAD rats were significantly lighter than sham-

operated rats (428 ± 13 g vs. 464 ± 7 g, p<0.05). Compared to their respective controls, 

heart rate (data not shown) and mean arterial pressure (MAP) were significantly 

reduced in SNX rats but remained unchanged in SAD rats. Media cross sectional area 

was significantly reduced in SNX rats compared to their controls; but was significantly 

increased in SAD rats compared to sham-operated rats. Therefore, SAD rats had 

significantly higher MCSA than SNX rats. Einc at MAP remained unchanged in all 

groups of rats. The circumferential wall stress was similar in SNX and SAD rats both at 

MAP and at 800 kPa of Einc but was significantly reduced when compared to their 

respective controls (Table 1). The Einc-wall stress curves of SNX and SAD rats were 

similarly shifted leftwards compared with their controls, indicating increased stiffness 

of the wall in both models (Figure 1). 

 

Immunohistochemistry  

Total-fibronectin and α5 integrin subunit staining were diffuse in the media of all 

control rats (Figures 2 and 3). Staining for both components was markedly increased in 

SAD rats compared to Sham-operated rats (Figure 2) whereas no accumulation of 

fibronectin and its α5 integrin were found in SNX rats compared to their controls 

(Figure 3).  

In Sham-operated and CO rats, immunoreactivity for cellular fibronectin (EIIIA-

fibronectin), was observed in the inner part of the media. In SAD rats the EIIIA-

fibronectin staining was equally intense but it involved the entire thickness of the media 
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(Figure 2). A slight increased of EIII-A fibronectin was found in SNX rats compared to 

CO (Figure 3). 

The endothelium highly expressed αv staining and the media showed relatively low but 

extensive expression in all control rats. In contrast with α5 integrin, αv and vimentin 

staining were increased in SNX rats (Figure 3) but unchanged in SAD rats (Figure 2) 

compared to their respective controls. Immunostaining for actin was equally intense in 

all conditions. 

 

Electron Microscopy  

The intima of the rats’ aortic wall is composed of a thin endothelium, sub-endothelium 

connective tissue and an inner elastic lamina. The endothelium of the thoracic aorta 

appeared similar in all groups.  

The media, composed of elastic lamellae, with interposed layers of muscle cell and 

interconnected by elastic fibers and bundles of collagen fibrils, showed some alterations 

in the experimental conditions; however, the amount of elastic material in the wall 

appeared unchanged. In SNX rats some disruption of the elastic lamellae was observed, 

including the breaking up of some lamellae into large elastic bundles (Figure 4A).  

The muscle cells profiles, observed in transverse section, had an irregular contour, with 

large processes and invaginations, in all preparations. Numerous dense bands associated 

with actin bundles on the cytoplasmic side and with collagen and elastic fibers 

extracellularly, occupied the muscle cell membrane.  

Despite the restricted number of animals used per groups, results observed were quite 

reproducible as already validated [8] and allow pooling data from sham-operated rats 

and control of SNX rats. In control rats, dense bands occupied 42 ± 2 % of the cell 
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perimeter and half of it (20% ± 2 %) was connected to elastic fibers. The number of 

dense bands appeared obviously increased in SAD rats (57% ± 3 %; p<0.05) compared 

with controls but not in SNX rats (45% ± 2 %). In the latter there were more extensive 

connections between dense bands and elastic fibers than in controls (30 ± 2 %; p<0.05). 

The percentage of dense bands connected to elastic lamellae remained unchanged in 

SAD rats (Figure 4B). 

 

DISCUSSION 

In the present study, structural changes of the abdominal aorta were evaluated in SNX 

and SAD rats, two models of decreased arterial distensibility without hypertension. We 

observed an increase in wall stiffness in both experimental conditions, but different 

structural changes in the vessel wall. In SAD rats, aortic hypertrophy was coupled with 

an increase of muscle cell attachments to its extracellular matrix via fibronectin and its 

α5-β1 integrin. In SNX rats, aortic hypotrophy was associated with αv-β3 integrin up-

regulation and alteration of elastin fibers.  

In contrast to acute treatment, chronic treatment with guanethine significantly reduced 

blood pressure as already reported [5, 12]. This effect may be due to the succession of 

many hypotensive episodes, previously reported in this model [13]. A weight loss was 

also observed as previously reported in both models [12]. 

We have previously shown a similar reduction of carotid distensibility in SAD and SNX 

rats [4, 5].  While arterial distensibility is an indicator of the elastic properties of the 

artery as a hollow structure, the Einc expresses the elastic properties of the wall material 

that is independent of wall intima-media thickness [6]. Enhanced aortic stiffness is a 

significant and independent risk factor for all-cause and cardiovascular mortality [1], 
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primarily coronary heart disease [14] and stroke [15] in human. Thus, elaboration of 

Einc/stress curves addresses arterial wall stiffness, independently of the wall thickness 

and of the pressure level. To our knowledge, stiffness of the arterial wall material had 

never been evaluated and compared in SNX and SAD rats. Therefore, the first new 

finding of the present experiments is that SNX and SAD rats are characterized by a 

similar increase in arterial wall stiffness (leftwards shift of the Einc-stress curves).  

We have previously shown that in SHRs, the Einc of the aortic wall material, 

determined for a given level of circumferential wall stress, was not significantly 

different from that of Wistar rats. This indicates that arterial wall materials in SHR and 

its control strain have similar mechanical behavior [3]. In contrast, the increased 

stiffness of the arterial observed in the present study suggest that SNX and SAD rats 

seem pretty relevant models for analyzing arterial remodeling associated with stiffness. 

The second new finding of the present study derived from the characterization of 

extracellular matrix changes in both models. Extracellular matrix proteins determine the 

passive biomechanical properties, collagen providing tensile strength and elastin 

enabling vascular elasticity [16]. Indeed we and others have shown a strong relationship 

between decreased elastin/collagen ratio and arterial stiffness in both models indicating 

an alteration in the organization of the ECM [4, 5, 17].  However, because SNX is 

characterized by reduced MCSA (present results) with a predominant reduction in 

elastin [5], and SAD by an increased MCSA (present results) and a predominant 

increase in collagen [4], a different structure-function relationship is present in the two 

experimental conditions.  

The dense bands of muscle cells provide a link between contractile apparatus and 

extracellular matrix, mediated by integrin receptors on the cell membrane [8, 18, 19]. In 
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rat aorta, the major integrins ligands are fibronectin, a glycoprotein that plays an 

important role in the organization and assembly of the extracellular matrix, collagen and 

laminin. Accumulation of collagen in the aorta of SAD rats is associated with 

accumulation of total-fibronectin and its α5ß1-integrin receptor, indicating an increased 

mechanical linking/coupling between muscle cells and extracellular matrix [19-21]. 

Alteration of cell-matrix attachments might thus contribute to increase arterial stiffness, 

as already reported in SHRs [3]. This result is strengthened by the obvious 

ultrastructural changes of the aorta shown in the present study where the number of 

dense bands per muscle cell profile is enhanced. In SAD rats, extracellular matrix 

composition is also characterized by an accumulation of EIIIA-fibronectin, up regulated 

during hypertension and aging [3, 21, 22], and closely associated with arterial stiffness 

[3, 6, 8, 23].  

Despite the disruption of the elastic lamellae, we also observed an increase of cell-

elastin connections and accumulation of αvβ3 integrin and vimentin in SNX rats. It is 

now well established that many αvβ3 integrin-rich focal are associated with vimentin 

intermediate filament cytoskeletons in parallel [24, 25]. Therefore, the accumulation of 

vimentin observed in SNX rats is in good agreement with αvβ3 integrin up-regulation. 

We and others have already observed enhancement of ultrastructural connections of 

smooth muscle with elastin in rat vessels, as reported in the present study [8, 26]. We 

suggest that αvβ3 integrin accumulation is mirrored by increase in the spatial density of 

dense bands observed. It should contribute to add strength to the structure of the 

vascular wall through focal attachments of vascular SMC with extracellular matrix. 

Aside from acting as a physical joint, αvβ3 integrins may also promote vascular 

remodeling. The isolated increase of EIIIA-fibronectin associated with αvβ3 and 
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vimentin accumulation, already reported in hypertensive rats, is associated with 

eutrophic inward remodeling of small arteries [27]. It is well established that arterial 

total-fibronectin content increases with increased arterial pressure. Nevertheless, the 

small increase of EIII-A fibronectin observed is independent of the blood pressure level, 

as guanethine significantly reduced blood pressure in SNX rats compared to control. 

Our data support the concept that sympathectomy favors the expression of the immature 

phenotype of smooth muscle [28-30].  

Beside hypertension and vascular disease such as atherosclerosis, increase blood 

pressure variability might be a possible mechanism of increase arterial stiffness as 

recently reported in human [31-33] and rats [15]. Indeed, we and other have shown that 

both models are characterized by an increase in blood pressure variability [4, 5, 12, 34]. 

Blood pressure variability leads to the mechanical process of fatigue, which might be 

buffered by modification in cell to matrix interactions. This contributes to the 

maintenance of aortic structure through morphological changes that take place in the 

vessel wall. The activation of the renin-angiotensin system and the central 

noradrenergic neurons described after long-term sino-aortic denervation [35], lead to 

vascular hypertrophy through fibronectin-α5 integrin complex. In the opposite, SNX 

rats are characterized by aortic catecholamine depletion after chemical sympathectomy 

[36]. Arterial wall hypotrophy is associated with serious alterations of the vessel 

integrity and elastin alteration as widely observed with aging [37], despite the up-

regulation of αvβ3 integrin [38]. 

The presented data show the interplay between structure and mechanics of abdominal 

aorta in SNX and SAD rats. In the 2 models, increase in αvβ3 or α5β1 integrins 

together with the already reported increase in the proportion of less distensible 
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(collagen) to more distensible (elastin) components plays a key role in remodeling and 

stiffening of the abdominal aorta. 
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Table 1: Arterial properties of abdominal aorta in sinoaortic denervated (SAD) and in 

chemical sympathectomized (SNX) rats. 

 

 Sham SAD CO SNX 

Number 8 8 6 5 

MAP, mmHg 121 ± 2 116 ± 8 113 ± 3 70 ± 2*† 

Media thickness, µm 81 ± 1 79 ± 1 52 ± 2 $ 44 ± 2*† 

MCSA, mm2 0.31 ± 0.01 0.40 ± 0.03* 0.22 ± 0.01 $ 0.16 ± 0.01*† 

Einc at MAP, kPa 720 ± 80 760 ± 180 660 ± 40 570 ± 90 

σ at MAP, kPa 208 ± 13 152 ± 20* 203 ± 10 120 ± 12* 

σ at Einc=800, kPa 222 ± 8 172 ± 19* 224 ± 8 152 ± 12* 

Einc /σ 204 ± 9 176 ± 32 265±32 228 ± 37 

 

Values are mean ± SEM. CO, control of SNX rats; MAP, mean arterial pressure; 

MCSA, medial cross sectional area; Einc, incremental elastic modulus; σ, circumferential 

wall stress. *, P<0.05 compared to Sham-operated or CO rats; $, P<0.05 between Sham-

operated rats and CO; †, P<0.05 between SAD and SNX. 

 



Figure Legends 

 

Figure 1  

Mean aortic Einc-wall stress curves in chronic sinoaortic denervated (SAD) and chronic 

sympathectomized (SNX) rats and their respective control (Sham and CO). Each point 

is the mean ± SEM. 

Figure 2 

Aortic immunostaining of total fibronectin, EIIIA-fibronectin, α5 and α v integrins, 

smooth muscle alpha actin and vimentin of sinoaortic denervated (SAD) rats and their 

controls (Sham). Bottom panel presents the quantification of the immunostaning 

expressed in percent changes over Sham-operated rats. Each bar is the mean±SEM of 5-

9 rats. * P<0.05 vs. SHAM. 

Figure 3 

Aortic immunostaining of total fibronectin, EIIIA-fibronectin, α5 and α v integrins, 

smooth muscle alpha actin and vimentin of sympathectomized (SNX) rats and their 

controls. Bottom panel presents the quantification of the immunostaning expressed in 

percent changes from controls. Each bar is the mean±SEM of 5-9 rats. * P<0.05 vs. 

controls. 

Figure 4 

Electronic microscopy of elastic lamellae (A) and smooth muscle cell (B) of the aorta of 

sinoaortic denervated (SAD), control (data pooled from sham-operated and control of 

SNX rats) and sympathectomized (SNX) rats. 

A- The elastic lamellae are bridged by elastic fibers and are separated by muscle cells and 

bundles of collagen fibrils. The interlamellar space, defined as the space between 
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consecutive lamellae, is increased on average in SAD rats. The elastic lamellae are thinner 

and altered in SNX rats, in which some lamellae appear broken into large elastic bundles. 

B- Dense bands are a prominent feature in the media of the rat aorta. In SAD rats, the 

percentage of cell surface occupied by dense bands is increased compared with sham-

operated rats. Dense bands connected to elastic lamellae remain unchanged. In SNX rats, 

cell surface occupied by dense bands is well conserved. Nevertheless, the percentage of cell 

surface connected to the elastic lamellae is twice as high in SNX rats compared with their 

controls. 

C- Characterization of Dense bands 

Representative images of dense bands associated with collagen (full arrows) and elastic 

fibers (dashed arrows) 
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