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Abstract

The introduction of Arterial Spin Labelling (ASL) techniques in Magnetic
Resonance Imaging (MRI) has made feasible a non-invasive measurement of
the Cerebral Blood Flow (CBF). However, to date, the low signal-to-noise
ratio of ASL gives us no option but to repeat the acquisition to accumulate
enough data in order to get a reliable signal. The perfusion signal is then
usually extracted by averaging across the repetitions. But the sample mean
is very sensitive to outliers. A single incorrect observation can therefore
be the source of strong detrimental effects on the perfusion-weighted image
estimated with the sample mean.

We propose to estimate robust ASL CBF maps with M-estimators to
overcome the deleterious effects of outliers. The behaviour of this method
is compared to z-score thresholding as recommended in [1]. Validation on
simulated and real data is provided. Quantitative validation is undertaken
by measuring the correlation with the most widespread technique to measure
perfusion with MRI: Dynamic Susceptibility weighted Contrast imaging.
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1. Introduction

Arterial Spin Labelling (ASL) allows a non-invasive quantification of the
Cerebral Blood Flow (CBF) [2]. Due to the low Signal-to-Noise Ratio (SNR)
of the ASL sequence, a single pair of control and label image is not sufficient
to measure perfusion. The acquisition is therefore repeated several times,
leading to r pairs of images (usually r ≥ 30). Perfusion information is then
usually extracted by pair-wise subtracting the control and label images (or
using surround subtraction in functional ASL) [3] and averaging across the
repetitions [4, 5].

Though sample mean, as an unbiased estimate of mean, ensures conver-
gence as r grows, it has a breakdown point of 0% (i.e. a single arbitrary large
value can induce an arbitrary large estimate) and is thus very sensitive to
outliers as illustrated in fig. 1. And yet it is well-known that instabilities
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Figure 1: Sensitivity of the sample mean to outliers. A single corrupted volume can induce
strong artefact in the final CBF maps computed with the sample mean (red arrow).

during the acquisition and improperly corrected patient motion can cause
artefactual values [6]. In particular, sudden subject motion often induces
strong corolla-shaped artefacts [7].

To avoid the detrimental effects that a few abnormal repetitions could
have in the final perfusion map, it is often suggested to ignore the volumes
corresponding to the motion peaks using an appropriate threshold [7]. Vol-
umes with (estimated) motion parameters greater than [1−3]◦ or [1−3] mm
are thus discarded before averaging. However the choice of these thresh-
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Figure 2: Volume exclusion via z-score thresholding as proposed in [1].

olds is empirical and there is no common rule across studies or automatic
methods to tune these ad-hoc parameters. In [1], the authors proposed an
automatic algorithm for outlier rejection in ASL perfusion series based on z-
score thresholding at the volume (or slice) level as illustrated in fig. 2. Their
method produced satisfactory results on a qualitative validation based on
ratings made by medical experts. However, their approach is based on z-
scores, while more robust statistical measures are known to be better suited
to deal with outliers. Also, they rely on empirically tuned parameters that
might limit the generalisation of their procedure to new datasets.

How to appropriately deal with outliers has been widely studied in the
statistical literature and a large range of methods has emerged. Z-score is
known to be sensitive to sample size and is suffering from masking effects
when more than one outliers is present in the series [8]. Indeed, in a dataset
containing more than one outlier, the standard deviation estimate will be
artificially inflated which may prevent z-score based outlier detection. On
the other hand, M-estimators are robust techniques to estimate location and
scale in the presence of outliers [9]. We focus on Huber’s M-estimator [10],
as it is the most widely used. An example of estimate computed with this
method is provided in fig. 3.
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Figure 3: Robust ASL CBF map via Huber’s M-estimator.

In this paper, we propose to estimate robust ASL CBF maps with Hu-
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ber’s M-estimator. This method is compared to z-thresholding as proposed
in [1]. Validation is undertaken by measuring the voxel-to-voxel correlation
between ASL CBF maps and CBF maps computed from Dynamic Suscepti-
bility weighted Contrast (DSC) imaging as an affine relationship is expected
between these estimates of CBF [11].

Part of this work was published in the Multimodal Brain Image Analysis
workshop in 2012 [12]. In this paper, the methods is presented in greater
details and a new validation on real clinical datasets is provided.

Section 2 presents the theory underlying the statistical methods. Sec-
tion 3 describes the validation procedure and the datasets under study. Sec-
tion 4 presents the results on simulated data and on real datasets from pa-
tients diagnosed with brain tumours.

2. Theory

Starting from a perfusion-weighted series, namely a 4D volume made of
the r repetitions obtained after pair-wise subtracting the control and label
scans, the objective is to compute a single perfusion-weighted volume. This
section presents z-score thresholding in 2.1 and M-estimators in 2.2 as sta-
tistical methods to compute robust CBF maps.

2.1. Z-score thresholding

In [1], an outlier rejection algorithm based on z-scores was proposed in
order to remove outliers from the perfusion-weighted series. The outlier rejec-
tion is performed both on a volume-by-volume and a slice-by-slice basis. For
each volume (respectively slices) v, the mean mv and standard deviation sv
of in-brain voxel intensities is computed. Assuming a Gaussian distribution
of mv and sv, a volume is then rejected if:

|mv| > µ̂m + 2.5 σ̂m, or sv > µ̂s + 1.5 σ̂s (1)

where µ̂m =
1

r

r
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2
m
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r
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The parameters 1.5 and 2.5 were determined empirically. To avoid over-
filtering, a heuristic is added saying that series verifying:

ln(max
i

(si)−min
i

(si)) < 1 (2)
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are not searched for outliers. Once the outliers are identified, the perfusion
map is then computed by averaging the remaining repetitions voxel-by-voxel.

2.2. M-estimators

A theoretically more efficient approach to deal with outliers is to employ
robust statistics, such as M-estimators. In [10], M-estimators are defined,
given a function ρ, as solutions θ̂ of:

θ̂ = argmin
θ

(

r
∑

i=1

ρ(xi − θ)
)

. (3)

If ρ is differentiable, and ψ is its derivative then eq. (3) can be solved by
finding the root of:

r
∑

i=1

ψ(xi − θ) = 0. (4)

The sample mean can be seen as an M-estimator with ρ(xi−θ) = (xi−θ)
2

and ψ(xi − θ) = 2(xi − θ) leading to θ̂ =
1

r

r
∑

i=1

xi.

The M-estimator of location proposed by Huber in [10] is defined by:

ψ(xi − θ) = γ
(xi − θ

σ

)

where γ(x) =











−k, x < −k,

x, −k < x < k,

k, x > k.

(5)

k will be set to 1.345 throughout this paper corresponding to 95% efficiency
in Gaussian data [13]. Likewise, σ is estimated by a robust estimator: the
median absolute deviation divided by 0.6745 [9]. Huber’s M-estimator is
applied voxel by voxel on the perfusion-weighted series to obtain the robust
perfusion-weighted map. Fig. 4 illustrates the ψ(x) functions for the three
estimators of interest. The ψ function for z-score thresholding is equivalent to
the ψ function of the sample mean applied to the data after outlier removal.

3. Material and Methods

3.1. Data

3.1.1. Acquisition protocol

26 patients diagnosed with brain tumours were involved in this study.
Two patients were excluded because of strong borderzone signs [14]. The
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Figure 4: ψ functions for the three estimators: sample mean, z-score thresholding (equiv-
alent to a sample mean applied after outlier rejection) and Huber’s M estimator.

final dataset therefore included 24 patients (15 males, 9 females, age: 55.3
± 16.2 years). Data acquisition was performed on a 3T Siemens Verio Mag-
netic Resonance (MR) scanner with a 32-channel head-coil in the context of
clinical practice. The imaging protocol included a 3D T1-weighted anatomi-
cal sequence (TR: 1900 ms, TE: 2.27 ms, FOV: 256 mm x 256 mm x 176 mm,
flip angle: 9◦, resolution: 1 mm x 1 mm x 1 mm), a PICORE Q2TIPS se-
quence with crusher gradients (TR: 3000 ms, TE: 18 ms, FOV: 192 mm
x 192 mm, flip angle: 90◦, in plane resolution: 3 mm x 3 mm, slice thick-
ness: 7 mm, inter-slice gap: 0.7 mm, TI: 1700 ms, bolus width: 700 ms,
r = 60), a DSC sequence (GRE EPI, TR: 1500 ms, TE: 30 ms, FOV: 230 mm
x 230 mm, flip angle: 90◦, in plane resolution: 1.8 mm x 1.8 mm, slice thick-
ness: 4 mm, inter-slice gap: 1.2 mm) and 3D T1-weighted post gadolinium
sequence (TR: 1900 ms, TE: 2.27 ms, flip angle: 9◦, FOV: 250 mm x 250 mm
x 176 mm, resolution: 1 mm x 1 mm x 1 mm).

1 healthy subject was involved in this study. The imaging protocol in-
cluded a 3D T1-weighted anatomical sequence (same parameters as above)
and a PICORE Q2TIPS sequence with crusher gradients (TR: 2500 ms,
TE: 19 ms, flip angle: 90◦, in plane resolution: 3 mm x 3 mm, slice thick-
ness: 7 mm, inter-slice gap: 0.7 mm, TI: 1800 ms, bolus width: 700 ms,
r = 250).
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3.1.2. Pre-processing

Image pre-processing was performed using SPM81 (Statistical Paramet-
ric Mapping 8, Wellcome Department of Imaging Neuroscience, University
College, London) Matlab toolbox. A six-parameter rigid-body registration
of the ASL volumes was carried out in order to reduce undesired effects due
to subject motion. Coregistration on grey matter map was then performed
based on normalised mutual information.

The unlabelled and labelled ASL volumes were pair-wise subtracted in
order to obtain a perfusion-weighted series per subject. Estimation of robust
ASL perfusion-weighted maps was then carried out as described in section 3.
A standard kinetic model [15] was then applied in order to obtain quantitative
ASL CBF maps.

The DSC images were processed using MR manufacturer software by
manually choosing an arterial input function to calculate CBF and mean
transit time maps based on a deconvolution algorithm [16]. Similarly to
ASL, DSC CBF maps were coregistered on grey matter maps.

3.2. Validation

In order to compare the three approaches, the sample mean, z-score
thresholding and Huber’s M-estimator, we performed a validation on data
with simulated corruption, as described in 3.2.1 and on real clinical datasets
as presented in 3.2.2.

3.2.1. Simulated corruption

In order to assess the efficiency of each technique, we generated simulated
data with a known quantity of outliers based on two real datasets. Outliers
were drawn from a uniform distribution with extrema (-100;100). These
values were determined empirically. Indeed, in an uncorrupted perfusion-
weighted map, we observed values ranging between -10 and +10 with stan-
dard deviations up to 50. Also, by looking at the values of identified outliers
in a real dataset, we found values as big as 300 in absolute value.

As data corruption usually affects multiple voxels per volume [7, 1], outlier
simulation was undertaken by corrupting from 0% (not corrupted) to 50%
of the volumes. We will lately refer to these corrupted volumes as outlier
volumes. Then, 2%, 20% or 50% of the voxels in each outlier volume were

1http://www.fil.ion.ucl.ac.uk/spm/
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replaced by random outliers leading to low, medium and high level of volume
corruption respectively. A brief overview of the simulated data corruption
process is provided in fig. 5. Each simulation was repeated 30 times in order
to get estimates of the standard error. Simulated data were based on two
real datasets as described hereafter.

+ =

Repeat i with 
simulated corruption

Repeat i Simulated outliers
      (-100, 100)

Repeat 1 Repeat r

...

Original series

Repeat 1 Repeat r

...

Series with simulated corruption

For each corrupted volume

Figure 5: Simulation: corruption of a given percentage of ASL volumes (from 0% (not
corrupted) to 50%) by adding samples drawn from a uniform distribution to a given
percentage of the voxels (2%, 20% or 50%) per volume.

The first dataset was a perfusion-weighted series with a large number of
repetitions, r = 250, from a healthy subject. The 60 first volumes of the
series (obtained after pair-wise subtraction) were extracted, corrupted by
simulation and then used as dataset for robust CBF map estimation. The
perfusion-weighted map obtained by averaging the 250 repetitions was used
as the ground truth. The quality of the maps produced by each method was
measured in term of sum of squared differences with the ground truth.

The second dataset was a perfusion-weighted series of one of the patients
diagnosed with a brain tumour. The original ASL CBF map of this subject
presented few artefacts identified by visual inspection and a very low level
of motion (< 0.5 mm and < 0.2◦ in all directions). The 60 volumes of
the series were corrupted by simulation and then used as dataset for robust
CBF map estimation. As DSC is currently the reference method to estimate
perfusion with Magnetic Resonance Imaging (MRI), the quality of the maps
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produced by each method was measured by computing the Pearson linear
correlation coefficient with the DSC CBF map. The choice of a correlation
metric is supported by the fact that an affine relationship can usually be
assumed between CBF maps produced by ASL and DSC [11].

3.2.2. Experiments on real clinical data sets

The performances of the sample mean, z-score thresholding and Huber’s
M-estimator were also compared on real clinical datasets.

Full dataset comparison. For each of the 26 patients involved in this study,
an ASL CBF map was estimated based on the full perfusion-weighted series.
This is the procedure that would be applied as a pre-processing step in a
standard ASL study. For validation purposes, DSC was used to estimate a
ground truth CBF map. The quality of the maps produced by each method
based on ASL data, was then measured by computing the Pearson linear
correlation coefficient with the DSC CBF map.

Comparison based on subsets of the available data. To investigate the be-
haviour of the different CBF estimators on datasets of various sizes, we fur-
ther decimated the data (to get from 5 to 50 volumes) by randomly selecting
a subset of the volumes in the perfusion-weighted series of each subject. The
experiment was repeated 20 times. Again, the performances were assessed
by computing the Pearson linear correlation coefficient with the DSC CBF
maps.

4. Results

In this section, we present the results of the validation on data corrupted
by simulation in 4.1 and on real clinical datasets in 4.2

4.1. Validation on simulated data

4.1.1. Dataset with 250 repetitions:

Fig. 6 presents the simulation study based on the first dataset, obtained
from a healthy subject. The performances of sample mean, z-score thresh-
olding [1], and Huber’s M-estimator are assessed by measuring the sum of
squared differences of the ASL CBF map with the ground truth estimated
by averaging a large number of repetitions.

As described in fig. 6, with a medium or a high level of corruption, z-
score thresholding and Huber’s M-estimator perform equally and better than
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Figure 6: Healthy subject dataset with simulated outliers: sum of squared differ-
ences (SSD) of ASL CBF map, computed by M-estimator, z-score thresholding [1] and
sample mean, with the estimated ground truth. High, medium and low level of volume cor-
ruption, from 0% to 50% of corrupted volumes. In all configuration Huber’s M-estimators
is either better or as good as z-thresholding to estimate robust CBF maps. In the presence
of outliers, Huber’s M-estimator is always more accurate than the sample mean.

averaging until 20% of volumes are corrupted. If more than 20% of the
volumes are affected by outliers, then M-estimators provide better estimates
than both z-score thresholding and averaging. The robust M-estimator CBF
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map is closer to the ground truth and less sensitive to an increase in the
number of outliers. The same behaviour is observed with a low number of
corrupted voxels per volume except that Huber’s M-estimator outperforms z-
thresholding as soon as more than 5% of the volumes are corrupted (instead of
20% for medium or high levels of volume corruption). The lower performance
of z-thresholding when the number of corrupted volumes exceeds 20% (or 5%
with low corruption) is a consequence of the masking effect which penalize
this estimator when several outliers are present in the series. Moreover, the
performance of Huber’s M-estimator always depicts a smaller standard error
than z-thresholding.

Both Huber’s M-estimator and z-score thresholding provide better esti-
mates than the sample mean. As expected from the theory, Huber’s M-
estimator outperforms z-score thresholding when the number of corrupted
volume is large, due to masking effect, or in the presence of a low level of
corruption per volume. This latter effect is easily explained by the fact that
the method proposed in [1] is based on a global mean and standard deviation
estimate per volume (or slice) and is therefore less suited to detect sparsely
corrupted volumes.

4.1.2. Simulation based on pathological data:

Fig. 7 presents the simulation study based on the second dataset, obtained
from a subject diagnosed with a brain tumour. The performances of sample
mean, z-score thresholding [1], and Huber’s M-estimator are now assessed by
measuring the correlation coefficient of ASL CBF with DSC CBF.

The simulation involving a high level of volume corruption leads to very
similar results than the one obtained in the previous section on healthy sub-
ject data. Both Huber’s M-estimator and z-thresholding perform better than
averaging until 20% of the volumes are corrupted. After this threshold, z-
thresholding performances drop until reaching the same correlation as the
sample mean for 30% of outlier volumes while Huber’s M-estimator outper-
form both alternative approaches. For a medium level of volume corruption,
the same tendency is observable. The coherency of these result with the one
obtained in the previous section also suggests that correlation with DSC is a
good measure of ASL CBF map quality.

With a low level of volume corruption, the trend is less clear. Overall
the correlation coefficient seems much less affected by the increasing number
of outliers. Z-score thresholding and Huber’s M-estimator are both better
estimator of the mean than the sample mean. Z-score thresholding however
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Figure 7: Patient dataset with simulated outliers: correlation of ASL CBF map, computed
by M-estimator, z-score thresholding [1] and sample mean, with the DSC CBF map. High,
medium and low level of volume corruption, from 0% to 50% of corrupted volumes. The
white arrow points the tumour site. A similar behaviour as for healthy subject simulation
(fig. 6) is observed outlining that correlation with DSC CBF is a valuable indicator to
measure the quality of the ASL CBF estimates.

displays a higher variance in its performance estimates. In comparison with
the previous simulation study, there is probably a higher level of noise in the
so-called “uncorrupted” pathological data than in the “uncorrupted” healthy
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subject data. The inherent higher level of noise in pathological data might
prevent the correct detection of low level of volume corruption.

4.2. Validation on real clinical data

Full dataset. For each subject, the performances of the sample mean, z-
score thresholding, and Huber’s M-estimator are assessed by measuring the
Pearson linear correlation coefficient of the estimated ASL CBF maps with
the DSC CBF map. Table 1 presents the average correlation coefficient
obtained across the group of 24 patients in the first column. The average
increase in correlation coefficient by comparison to the sample mean for both
Huber’s M-estimator and z-thresholding is displayed in the second column of
table 1.

Overall, the correlation is improved for both Huber’s M-estimator and
z-score thresholding. While this improvement is significant for Huber’s M-
estimator (paired t-test p=0.01), there is only a tendency for z-score thresh-
olding (paired t-test p=0.08). In this dataset, there was no significant differ-
ence between the two filtering methods (paired t-test p=0.36).

Table 1: Real clinical dataset: Correlation with DSC CBF map of ASL CBF map esti-
mated with the sample mean, z-score thresholding or Huber’s M-estimator in 24 patients
diagnosed with brain tumours. The average correlation coefficient (column 1) and increase
in correlation coefficient with respect to the sample mean (column 2) are reported.

Correlation Increase w.r.t. average

Sample mean 0.29 ± 0.09 –
z-score thresholding 0.30 ± 0.09 0.02 ± 0.05
Huber M-estimator 0.31 ± 0.10 0.02 ± 0.04

Fig. 8 presents an example of robust ASL CBF maps in which mo-
tion artefacts are significantly reduced by both Huber’s M-estimator and
z-thresholding.

Comparison based on subsets of the data. Fig. 9 reports the average cor-
relation coefficient (across the group of 24 patients) for datasets with var-
ious number or repetitions (r ∈ [5, 10, 20, 30, 40, 50]). Both z-thresholding
and Huber’s M-estimator outperform the sample mean for all the number
of repetitions studied. Huber’s M-estimator appears marginally better than
z-thresholding.
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Figure 8: Example of robust CBF map in one patient: six axial slices. White arrows
outlines large artefacts present in the averaged perfusion-weighted map and correctly cor-
rected by both z-score thresholding and M-estimator.

Fig. 10 presents an example in which we can clearly see the improved
quality of both robust ASL CBF maps.

5. Discussion and conclusion

We studied the ability of Huber’s M-estimator to compute robust CBF
maps in ASL. The behaviour of this estimator was studied in both simulated
and real clinical datasets and compared to an outlier removal technique based
on z-thresholding previously introduced in the ASL literature [1].

14



Figure 9: Real clinical dataset: correlation of ASL CBF map with DSC CBF for different
number of repetitions r .

Figure 10: DSC CBF estimate (a) and ASL CBF estimates based on 40 repetitions: sample
mean (b), z-thresholding (c), Huber’s M-estimator (d).

We demonstrated the superior versatility of Huber’s M-estimator by com-
parison to current practice in ASL, i.e. sample averaging, and state-of-the-
art, i.e. z-score thresholding from [1]. These results are in line with the
known statistical properties of such estimators and outline the shortcomings
of z-score thresholding, notably its sensitivity to masking effects.

Out of this study, it is confirmed that outlier filtering, either via outlier
removal or M-estimation, provides more robust CBF maps than the sample
mean. The simulation study clearly confirmed the superior robustness of
M-estimators over z-score thresholding in the presence of outliers. On the
tested clinical cases, the superiority was less pronounced but still present.
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The real dataset under study comes from clinical routine examinations and
was not especially selected for the purpose of this study. Among the 24
cases, only a subset might be affected by severe artefacts. A comparison of
the two robust methods (M-estimators, z-score) on a larger clinical sample
would be needed in order to further investigate their respective performances
on real data. Overall, both robust methods outperform the sample mean on
simulated and real data and Huber’s M-estimates are either as good as or
better than z-thresholding and are always less variable.

In the context of this paper, we estimated the perfusion maps based
on pair-wise subtracted ASL series. In functional ASL, other authors have
suggested to work on the complete ASL time-course before subtraction [3].
Likewise, the proposed Huber’s M-estimator could be applied on the un-
subtracted series. In this case care should be taken in order to deal with
temporally correlated noise [17] as opposed to working with the pair-wise
subtracted series. Further investigations are needed in order to find out
which of the alternative implementation is more appropriate for ASL data.

As M-estimators are able to deal with a broader range of outliers, we
recommend the use of M-estimators as robust method to compute ASL CBF
maps.
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