

Curli synthesis and biofilm formation in enteric bacteria are controlled by a dynamic small RNA module made up of a pseudoknot assisted by an RNA chaperone.

Valérie Bordeau, Brice Felden

► To cite this version:

Valérie Bordeau, Brice Felden. Curli synthesis and biofilm formation in enteric bacteria are controlled by a dynamic small RNA module made up of a pseudoknot assisted by an RNA chaperone. Nucleic Acids Research, 2014, 42 (7), pp.4682-96. 10.1093/nar/gku098. inserm-00941995

HAL Id: inserm-00941995 https://inserm.hal.science/inserm-00941995

Submitted on 4 Feb 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Curli synthesis and biofilm formation in enteric bacteria is controlled by a dynamic small RNA module made up of a pseudoknot assisted by an RNA chaperone.

Valérie Bordeau and Brice Felden*

Université de Rennes I, Inserm U835-UPRES EA2311, Biochimie Pharmaceutique, 2 avenue du Prof. Léon Bernard 35043 Rennes, France.

*Corresponding author: bfelden@univ-rennes1.fr

Supplemental Material

'RydC*-csgD mRNA₁₀₀°'

Figure S1. Complex formation between RydC and two *csgD* mRNA fragments of different lengths. *csgD* mRNA₁₀₀ and *csgD* mRNA₂₁₅ correspond to 100 and 215 nts from the *csgD* mRNA 5'-end, respectively. Native gel retardation assays of purified labelled RydC with increasing amounts of unlabelled *csgD* mRNA₂₁₅ and *csgD* mRNA₁₀₀ (10 to 1000-fold more than RydC) in the absence of the Hfq protein. This indicates that in the absence of the Hfq protein, the affinity between the two RNAs is weak.

Figure S2. Structural analysis of the conformational changes in *csgD* mRNA₂₁₅ induced by complex formation with RydC. Autoradiograms of the cleavage products of 5'- (A, B) or 3'-labelled (C) *csgD* mRNA₂₁₅ by RNases V₁ (5.10^{-5} unit) and nuclease S₁ (2 units) in the presence or absence of unlabelled RydC at a 1:100 molar ratio. Lanes G_L, RNase T₁ hydrolysis ladder; lanes A_L, RNase U₂ hydrolysis ladder. The RNA sequences are indexed on the right sides of each panel. The conformational changes of the *csgD* mRNA upon complex formation with RydC are indicated with vertical blue bars. The SD sequence and AUG initiation codon of the mRNA are also shown.

Figure S3.Structural analysis of the conformational changes of RydC and *csgD* mRNA₁₀₀ induced by complex formation with *csgD* mRNA₁₀₀ and RydC, respectively. A, B. Autoradiograms of cleavage products of 5'-labelled *csgD* mRNA₁₀₀ (100 nts-long) (A) or 5'-labelled RydC (B) by RNases V₁ (5.10^{-5} unit), nuclease S₁ (0.5 and 1 unit) and lead acetate (0.5 and 1 mM) in the presence or absence of either unlabelled RydC (A) or unlabelled *csgD* mRNA₁₀₀ (B) at 1:100 molar ratios. The *csgD* mRNA₁₀₀ or RydC structural domains are indicated on the left sides of each panel. Upon complex formation, the conformational changes of *csgD* mRNA₁₀₀ or RydC are highlighted by vertical blue bars. C. Secondary structure of the *csgD* mRNA₁₀₀ inferred from the probing results, which support the proposed model. Triangles are V₁ cuts; arrows capped by a circle are S₁ cuts; uncapped arrows are lead cuts. The cut and cleavage intensities are proportional to the darkness of the symbols. The structural domains are indicated and the AUG and SD sequences are outlined. The red nucleotides are those proposed to interact with RydC. Structural changes detected in the *csgD* mRNA₁₀₀ upon RydC complex formation are in blue.

Figure S4. Structural analysis of the conformational changes of csgD mRNA₂₁₅ induced by complex formation with Hfq. Autoradiograms of the cleavage products of 5'csgDmRNA₂₁₅ by RNases V₁ (15.10⁻⁵ unit), nuclease S₁ (0.5 units), and lead acetate (1 mM) in the presence or absence of Hfq at a 1:20 molar ratio. Lanes G_L, RNase T₁ hydrolysis ladder; lanes A_L, RNase U₂ hydrolysis ladder. The RNA sequences are indexed on the right sides of the panels. Upon complex formation with Hfq, the conformational changes in csgD mRNA are emphasized by the vertical blue bars. The SD sequence and AUG initiation codon of the mRNA are indicated

Table S1. Strains used and constructed in this study.

Strain	Description	Source,Reference
E. coli MG1655Z1	Z1(lacR tetR SpR)	(4)
<i>E. coli</i> MG1655Z1 Δ <i>rydC</i>	Z1(lacR tetR SpR) ΔRNA1114::Cm	(4)
<i>E. coli</i> MG1655Z1 pUC18	MG1655Z1 + pUC18	(4)
E. coli MG1655Z1 pUC18-rydC	MG1655Z1 + pUC18-RNA1114	(4)
S enterica subsp. bongori+pUC18	Salmonella enterica subsp. bongori + pUC18	This study
S. enterica subsp. bongori+pUC18- rydC	Salmonella enterica subsp. bongori + pUC18-RNA1114	This study
S. sonnei+pUC18	<i>Shigella sonnei</i> + pUC18	This study
S. sonnei+pUC18-rydC	Shigella sonnei + pUC18-RNA1114	This study

Table S2. DNA oligodeoxyribonucleotides used in this study.

Names	Sequences $(5' \rightarrow 3')$	Purposes
csgD215rev		csgD mRNA ₂₁₅
		transcription
	CGCCTGCAAAGAAGATTTAGT	toeprint
		csgD mRNA ₁₀₀
		transcription
		csgD mRNA ₁₁₅
		transcription
csgD215for	TAATACGACTCACTATAGGATGTAATCCATTAGTTTTATATTTT	csgD mRNA ₂₁₅
	ACCC	transcription
csgD100for	TAATACGACTCACTATAGGGTGCGATCAATAAAAAAGCGGGG	csgD mRNA ₁₀₀
	TTTCAT	transcription
csgD503	ТТССААСССТТААТТСАСААСАССТТСТТСАТ	<i>csgD</i> mRNA ₅₀₃
		transcription
csgD∆5'UTRfor	TAATACGACTCACTATAGGTTTAATGAAGTCCATAGTA	csgD mRNA
		$\Delta 5'$ UTR
csgD115rev	ACCTGACAGCTGCCTCTAAAA	<i>csgD</i> mRNA ₁₁₅
esgDTTStev		transcription
csgDnorth	CAATGTCGCGGTACGGGTAATCTTCAGGCGTATTTAGCAA	<i>csgD</i> mRNA
		northern
RvdCfor	<u>CGGGATCCTAATACGACTCACTATAG</u> GGCTTCCGATGTAGACCC	RydC
Rjueior	GTT	transcription
RydCrev	AAGAAAACGCCTGTACTAAAAC	RydC
		transcription
RydCnorth	ACCGACCCGTGGTACAGGCG	RydC northern
	TAATACGACTCACTATAGGCCTGTACCACGGGTCGGTTTTAGTA	RvdC
RydC $_{\Delta 5}$, for	CAGGCGTTTTCTT	transcription
$RydC_{\Delta 5}$, rev	AAGAAAACGCCTGTACTAAAACCGACCCGTGGTACAGGCCTAT	RydC _{A5'}
	AGTGAGTCGTATTA	transcription
tmRNAnorth		tmRNA
		northern
5Snorth	CTTCTCACTTCCCCATCCCC	5S rRNA
		northern
csgBAnorth	AACTGCAGCACCGTTGCCACCACCGAACTGTTTAACCGTCATTT	csgBA mRNA
	AAT	northern

RydC _{H1} for	<u>GAAATTAATACGACTCACTATAGG</u> CTTCCGATGTAGACCCGTATTCTT CGCCTGTACCTGCCCAGGGTTTTAGTACAGGCGTTTTCTT	RydC _{H1} transcription
RydC _{H1} rev	AAGAAAACGCCTGTACTAAAACCCTGGGCAGGTACAGGCGAAGAAT ACGGGTCTACATCGGAAGCCTATAGTGAGTCGTATTAATTTC	RydC _{H1} transcription
RydC _{H2} for	GAAATTAATACGACTCACTATAGGCTTCCGATGTACTGGGCAATTCTT CGCCTGTACCACGGGTCGGTTTTAGTACAGGCGTTTTCTT	RydC _{H2} transcription
RydC _{H2} rev	AAGAAAACGCCTGTACTAAAACCGACCCGTGGTACAGGCGAAGAATT GCCCAGTACATCGGAAGCCTATAGTGAGTCGTATTAATTTC	RydC _{H2} transcription
RydC _{H3} for	GAAATTAATACGACTCACTATAGGCTTCCGATGTACTGGGCAATTCTT CGCCTGTACCTGCCCAGGGTTTTAGTACAGGCGTTTTCTT	RydC _{H3} transcription
RydC _{H3} rev	AAGAAAACGCCTGTACCAAAACCCTGGGCAGGTACAGGCGAAGAATT GCCCAGTACATCGGAAGCCTATAGTGAGTCGTATTAATTTC	RydC _{H3} transcription
RydCPCRQ1	AAGAAAACGCCTGTACTAA	Real-Time PCR
RydCPCRQ2	CTTCCGATGTAGACCCGTA	Real-Time PCR
tmRNAPCRQ1	GGCAAGCGAATGTAAAGACTGA	Real-Time PCR
tmRNAPCRQ2	CCGCGTCCGAAATTCCTA	Real-Time PCR
csgDPCRQ1	CACGGAATCAGCCCTCCTTA	Real-Time PCR
csgDPCRQ2	GCCGATACGCAGCTTATTCAG	Real-Time PCR