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Summary 

Accurate knowledge of normal cardiac development is essential for properly understanding the 

morphogenesis of congenital cardiac malformations that represent the most common congenital 

anomaly in newborns. The heart is the first organ to function during embryonic development and 

is fully formed at 8 weeks of gestation. Recent studies stemming from molecular genetics have 

allowed specification of the role of cellular precursors in the field of heart development. In this 

article we review the different steps of heart development, focusing on the processes of 

alignment and septation. We also show, as often as possible, the links between abnormalities of 

cardiac development and the main congenital heart defects. The development of animal models 

has permitted the unravelling of many mechanisms that potentially lead to cardiac 

malformations. A next step towards a better knowledge of cardiac development could be 

multiscale cardiac modelling. 

 

Résumé 

La connaissance du développement normal du cœur est essentielle pour la compréhension de 

la genèse des malformations cardiaques congénitales, lesquelles représentent l’anomalie 

congénitale la plus fréquente chez le nouveau-né. Le cœur est le premier organe à se former 

durant le développement de l’embryon et sa formation se termine vers la huitième semaine de 

grossesse. Les études récentes provenant de la génétique moléculaire ont permis de spécifier 

le rôle des précurseurs cellulaires dans le champ du développement cardiaque. Dans cet 

article, nous décrivons les différentes étapes du développement cardiaque en insistant sur les 

processus d’alignement et de septation. Nous montrons aussi souvent que possible les liens 

entre les anomalies du développement cardiaque et les principales malformations cardiaques 

congénitales. Le développement des modèles animaux a permis de révéler de nombreux 

mécanismes à l’origine des malformations cardiaques. La prochaine étape pour une meilleure 

compréhension du développement cardiaque pourrait être la modélisation cardiaque multi 

niveaux. 
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Background 

The first functioning organ in the embryo is the heart. It begins to beat from 2 weeks of gestation 

(WG) onwards (4 weeks of amenorrhea) and is fully formed at 8 WG. The development of the 

heart is highly conserved through evolution and follows the same general pattern in all 

vertebrates. Fusion of the primary heart tubes is followed by a rightward looping of the newly 

formed linear heart tube, differentiation of the chambers and valves, and development of the 

conduction system and coronary circulation. 

 Congenital heart defects represent the most common congenital anomaly in newborns, 

with a prevalence of 8–10 per 1000 births [1]. Delineating the normal sequence of heart 

development is essential for understanding the morphogenesis of congenital cardiac 

malformations. However, studying cardiac embryology is no easy task because it involves 

intricate structures and functions that evolve in space and time, and are closely interrelated. 

Moreover, understanding the developing heart requires a three-dimensional conceptualization 

that remains very complex for a human mind. In this article, the major processes involved in all 

stages of normal heart development are reviewed. Particular focus is given to those processes 

essential to the correct alignment and septation of cardiac structures. This provides a narrative 

through which congenital heart defects may be investigated, as sequential disruption of normal 

development. 

 

The beginnings: formation of the primitive heart tube (days 15–21) 

The heart starts to form at the beginning of the third WG. By the end of the second WG (day 

15), the embryo is a flat disc made of two cell layers: the epiblast and the hypoblast. The 

primitive streak, which establishes the longitudinal axis of the embryo, appears at the median 

and caudal parts of the embryonic disc. At day 16, the epiblastic cells migrate towards the 

primitive streak and invaginate (gastrulation), leading to the differentiation of the embryo into 

three layers: ectoderm, mesoderm and endoderm. 

 The heart derives from the anterior mesoderm. At this stage, the mesodermal cells are still 

precardiac cells. However, the different axes of the embryo are already predetermined, 

particularly the left-right axis. Mesodermal cells differentiate into cardiac cells in response to 
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induction signals from the endoderm, such as bone morphogenetic protein [2]. In the 

mesoderm, there are five transcription factors that are considered to be the primordial genes 

involved in cardiac development and these are highly conserved through the evolution of animal 

species: NKX2.5, Mef2, GATA, Tbx and Hand [3]. This ancestral genetic network controls the 

fate of the cardiac cells, the expression of protein-coding genes and cardiac morphogenesis. 

These genes regulate themselves and control their expression [3]. Precardiac cells are 

multipotent and differentiate into myocardial, endothelial and smooth muscle cells by a 

phenomenon called progressive lineage restriction [4]. Myocardial cells thus differentiate into 

chamber-specific myocytes (atrial and ventricular) and conduction cells [5]. 

 Mesodermal precardiac cells migrate towards the cephalic pole of the embryo to form the 

cardiogenic crescent or first heart field (FHF). With cephalic then lateral inflexion of the embryo, 

the crescent migrates anteriorly and its two parts fuse on the midline to form the primitive linear 

heart tube (Fig. 1). This tube consists of an inner endothelial layer and an external myocardial 

layer, separated by cardiac jelly. 

 

Tissue origins: the cardiac fields 

The heart does not develop solely from cells of the primary linear heart tube. Very early in 

cardiac development, a second population of cardiac cells is present at the medial and ventral 

parts of the FHF [6]. This group of cells, called the second heart field (SHF), migrates medially 

and into the pharyngeal regions when the primary heart tube forms. SHF cells express the 

transcription factor islet-1 and differentiate into cardiac myocytes, smooth muscle cells and 

endothelial cells [7]. 

 After the loop, the SHF is located within the pharyngeal mesoderm, at the inner curvature, 

between the outflow and inflow tracts. The role of the SHF is of major importance for the 

development of the four-chamber heart: cells from the anterior part of the SHF (anterior heart 

field) contribute myocardial cells to the right ventricle and to the outflow tract (OT), and smooth 

muscle cells to the base of the aorta and the pulmonary artery [8]; cells from the posterior part 

of the SHF (dorsal mesocardium) contribute myocardial cells to the walls of the atria and to the 

atrial septum, and smooth muscle cells to the walls of the systemic and pulmonary veins [9]. 
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The FHF then serves as a scaffold for building most of the heart from the cells of the SHF [10] 

and gives rise only to the left ventricle and to the most primitive part of the atria, including the 

two appendages. 

 Two extracardiac cellular populations also contribute cells to the heart and vessels: the 

cardiac neural crest provides cells for the OT and the great arteries through migration to these 

areas; and the epicardium arises from the proepicardial organ, which is located at the posterior 

part of the heart, near the venous pole – proepicardial cells give rise to the epicardium, which 

covers the surface of the heart, and invade the myocardium to form fibroblasts and smooth 

muscle cells for the coronary arteries. 

 

Looping, convergence and wedging 

There are three steps that are fundamental to a proper alignment of cardiac structures, which is 

itself mandatory for normal cardiac septation. These three steps are looping, convergence and 

wedging [11]. The intricate link between these processes and the development of the internal 

structures of the heart is illustrated in Fig. 2. 

 

Cardiac looping 

Cardiac looping is the first manifestation of right-left lateralization in the embryo [12]. The 

primitive straight heart tube loops to the right at 23–24 days of intrauterine life (D-loop), folding 

to the right into a S-shape, after an initial displacement to the left of the caudal part of the heart, 

termed ‘jogging’ (Fig. 3). This step is crucial for the further morphology of the heart because it 

brings the future cardiac chambers into their relative spatial positions. The current theory about 

how the cardiac looping occurs is that the cilia within the primary node (or Hensen’s node) 

rotate, creating an extracellular flow current that determines the rightward bend of the tube [13]. 

The anomalies of cardiac looping affect the laterality of the heart. If there is complete reversal of 

the loop, the heart is in situs inversus totalis or a complete mirror-image. The reversal can be 

incomplete and random, leading to all types of unusual segmental arrangements, often 

associated with heterotaxy syndromes. 
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Convergence 

The loop creates two limbs in parallel, an inflow (proximal) limb and an outflow (distal) limb, 

separated by the inner curvature [14]. The process of convergence brings the two limbs 

together craniocaudally, permitting alignment of the OT with the ventricular, atrioventricular (AV) 

and atrial septa [14]. Immediately after cardiac looping (early looping stage), the inlet segment 

(atria and AV canal) is located entirely above the future left ventricle and the outlet segment (the 

conotruncus or OT) is located entirely above the future right ventricle, leading to both double-

inlet left ventricle and double-outlet right ventricle types of AV and ventriculoarterial connection. 

From this stage on, the heart continues to grow by addition of myocardial cells from the SHF, 

both at its arterial pole (anterior heart field) and at its venous pole (posterior heart field or dorsal 

mesocardium).  

 The atria and the ventricles develop and differentiate along the anteroposterior and right-

left axis.  

 Four transitional zones can be described in the developing heart [15]. The endocardial 

cushions of the AV canal and the OT constitute two transitional zones, delimiting, respectively, 

the inlet segment and the outlet segment of the heart. The zone of junction between these two 

segments is the inner curvature, which is the pivot around which the remodelling of the AV and 

ventriculoarterial junctions will take place, including convergence and wedging (Fig. 4). The 

cushions contribute to septation and to the formation of the cardiac valves.  

 The sinus venosus contributes to atrial septation and to the atrial conduction pathways. 

 The primary fold joins together the inner and the outer curvature (Fig. 4), at the site of the 

future primitive ventricular septum; it contributes to ventricular septation and to the formation of 

the AV node and ventricular conduction pathways. The primary fold is also the starting point of 

the establishment of the right AV connection, which is initially absent. 

 The right ventricle and the ventricular OT grow rapidly by addition of myocardial cells from 

the SHF. At the same time, the right AV connection develops, along with the muscular bands of 

the right ventricle. This series of ‘morphogenetic shifts’ leads to alignment in the same sagittal 

plane of the AV canal, the future atrial and ventricular septa, and the developing OT [11]. This 

alignment, or convergence, is absolutely necessary to further normal septation. During this 
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process, the inner curvature (further ventriculoinfundibular fold) deepens and the endocardial 

cushions in the AV region grow and fuse to form the AV septum.  

 Cardiac malformations resulting from a defect occurring at the convergence stage are often 

severe, as they concern both the ventricles and the AV valves. They can be caused either by a 

lack of ventricular growth or by an absent or anomalous development of the right AV junction. 

These anomalies result in a malalignment between the atrial and ventricular septa, resulting 

itself in various congenital heart defects, including double inlet ventricle, tricuspid atresia and 

ventricular hypoplasia. 

 

Wedging 

The anterior heart field, part of the SHF, facilitates the elongation of the OT by addition of 

myocardial cells, in response to the migration of cardiac neural crest cells towards the OT [16]. 

Elongation of the OT is necessary for proper alignment (convergence) and wedging. 

 During wedging, the myocardial wall of the OT undergoes a counterclockwise rotation, 

viewed from the ventricular side, so that the aortic valve rotates behind the pulmonary trunk, 

going down and to the left to settle between the two AV valves, establishing mitral-aortic 

continuity [8, 14, 17] (Fig. 2). At the same time, the conal septum develops by fusion and 

muscularization of the endocardial cushions of the OT [18] and is taken along leftwards by the 

rotation of the developing aortic valve, to join the upper primitive ventricular septum at the level 

of the upper division (the ‘Y’) of the septal band or septomarginal trabeculation, itself derived 

from the primary fold [15]. The left part of the ventriculoinfundibular fold (‘subaortic conus’) then 

disappears, corresponding to the so called ‘absorption of the subaortic conus’, establishing the 

mitroaortic fibrous continuity.  

 A malalignment between the OT and the ventricles inevitably results in a failure of fusion of 

the outlet septum with the primitive ventricular septum and in a ventricular septal defect (VSD) 

located between the two limbs of the Y of the septal band. This type of VSD is common to all 

so-called ‘conotruncal’ (or neural crest) defects. Tetralogy of Fallot can then be considered as a 

failure within the last step of cardiac looping – wedging – leading to a malalignment between the 
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OT and the ventricles [19, 20]. In other words, tetralogy of Fallot may result from an arrest of 

rotation of the OT at the base of the great arteries [21]. 

 Failure of myocardialization, leading to incomplete or abnormal convergence and wedging, 

is a major cause of many congenital heart defects, especially double outlet right ventricle [22]. 

Anomalies of both convergence and wedging produce malalignment of both inlet and outlet 

segments, while anomalies of wedging produce malalignment of the OT only. 

 

The venous pole: atrial septation and development of the pulmonary veins 

The venous pole consists of two parts: the sinus venosus and the primitive atrium, separated by 

the sinoatrial fold. The sinus venosus connects to the right atrium because of the asymmetric 

growth of the right part of the primitive atrium [9]. Ultimately, the right atrium has two parts: the 

trabeculated part (right atrial appendage); and the sinus venosus, with its two valves (right 

[Eustachian and Thebesian valves] and left [atrial septum]). The sinus venosus receives the 

caval veins and the coronary sinus. 

 

Development of the pulmonary veins 

The common pulmonary vein takes its origin within the dorsal mesocardium (itself part of the 

posterior SHF), in the form of a mediopharyngeal cellular strand. In the beginning, the common 

pulmonary vein is connected to the sinus venosus, itself separated from the primitive atrium (the 

atrial appendages) by the sinoatrial fold [9]. At this stage, connections between the pulmonary 

venous plexus and the vitelline and cardinal veins persist. Progressively, the common 

pulmonary vein incorporates within the left part of the primitive atrium, being pushed to the left 

by the growth of the vestibular spine, a structure also derived from the posterior part of the SHF. 

The incorporation of the pulmonary vein into the left atrium contributes to its identity: the left 

atrial wall consists of an inner vascular part, derived from pulmonary venous tissue, and an 

outer myocardial part [9]. If there is a defect of incorporation of the common pulmonary vein into 

the left atrium, the primitive connections persist, leading to the various types of abnormal 

pulmonary venous return: either with the derivatives of the cardinal veins (right [innominate vein, 
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superior vena cava, azygos vein]; left [coronary sinus]); or with the derivatives of the 

umbilicovitelline veins (portal vein, ductus venosus; inferior vena cava). 

 Direct drainage of all or part of the pulmonary veins within the morphologically right atrium 

is observed in heterotaxy syndromes; its mechanism is still unclear – possibly malposition of the 

septum primum or defect of the vestibular spine? 

 

Atrial septation 

At the beginning of the fifth week of intrauterine life, the septum primum (or primitive atrial 

septum) develops from the roof of the common atrium. Its inferior part is crescent-shaped with 

two extremities, anterior and posterior. At the posterior part of the common atrium, immediately 

underneath the septum primum and above the AV endocardial cushions, appears the vestibular 

spine (dorsal mesenchymatous protrusion, dorsal mesocardium), which derives from the 

posterior SHF and expresses Isl1 (Fig. 5a) [23]. The inferior free edge of the septum primum is 

covered by a mesenchymal cap, which is considered as the anteroposterior extension of the 

vestibular spine [24]. At its anterior extremity, the mesenchymal cap is continuous with the 

anterosuperior AV endocardial cushion. The space between these three mesenchymatous 

structures constitutes the primitive interatrial foramen or ostium primum. 

 Progressively, these structures converge and fuse together to close the ostium primum, at 

7 WG . The mesenchyme is then invaded by surrounding myocardial cells (muscularization) to 

form the anteroinferior rim of the oval fossa [25].  

 Before the closure of the ostium primum, fenestrations appear at the superior part of the 

septum primum and grow to form the ‘ostium secundum’ or oval foramen, or secondary 

interatrial foramen (Fig. 5b). This ostium preserves an opening, allowing blood to flow from the 

right to the left atrium during foetal life. 

 The last component of the atrial septum to appear is the septum secundum, which 

invaginates from the superior part of the common atrium to the right of the septum primum (Fig. 

5c). Subsequent to birth, this fold provides the buttress against which the flap valve, 

representing the primitive atrial septum, abuts to close the oval foramen.  
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Atrioventricular septation 

The AV junction consists of the AV valves, the lowest part of the interatrial septum (vestibular 

septum) and the inferior part of the ventricular septum (inlet septum). The remodelling of this 

junction takes place around the mesenchyme of the endocardial cushions of the AV canal. 

At the early looping stage, the endocardial cushions of the AV canal connect the common 

atrium to the developing left ventricle. At this stage, there is still no connection between the right 

component of the common atrium and the developing right ventricle. While the right ventricle 

grows by addition of myocardial cells of the anterior SHF, the right AV junction develops from 

the dorsal part of the primary fold, between the inner curvature and the right part of the AV 

canal.  

 The inlet septum is formed by the fusion and expansion of the endocardial cushions of the 

AV canal and later muscularizes (Fig. 5c).  

 

Ventricular growth and septation 

With cardiac looping, the ventral surface of the straight heart tube swivels around to become the 

outer curvature of the heart and the dorsal surface becomes the inner curvature of the heart. 

The outer curvature takes part in the active growth of the ventricles, while the remodelling of the 

inner curvature controls the alignment between the inlet and outlet segments of the heart [10]. 

The right ventricle develops later than the left ventricle [26], by addition of cardiomyocytes from 

the anterior SHF [6]. This differential growth contributes to convergence. 

 Because the two ventricles develop from two different cell lineages, the genetic sequence 

necessary to their morphogenesis is also different, which explains, in part, the morphogenesis 

of the univentricular types of congenital heart defects [6]. Among the various genes involved, 

Hand2 (d-Hand) is necessary for growth of the right ventricle by addition of cardiomyocytes by 

the SHF and Hand1 (e-Hand) is specific to the left ventricle [10]. These genes are expressed in 

the ventricular trabeculations but not within the interventricular septum [27]. 

 From day 35 to day 39, the ventricles grow considerably, with expansion of the myocardial 

wall on the outer curvature, by a phenomenon called ballooning [28]. The myocardium 

proliferates and forms increasingly numerous trabeculations, which are the first manifestation of 
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the differentiation of the future left and right ventricles [29]. These trabeculations give the 

ventricular wall a spongy appearance and allow oxygenation of the myocardium before 

formation of the coronary arteries; then, the migration of cells from the epicardium allows 

maturation of the myocardium [15]. 

 The interventricular septum has three anatomical parts: the trabecular or apical 

component, of muscular origin; the inlet component, of mesenchymal origin, formed by fusion 

then myocardialization of the endocardial cushions of the AV canal; and the outlet component, 

also of mesenchymal origin, formed by fusion then myocardialization of the endocardial 

cushions of the OT.  

 A recent study in mice using two complementary transgenes expressed in the embryonic 

right (Mlc1v) and left (Mlc3f) ventricles provides new insights into the formation of the 

interventricular septum [27]. During the early stages of development, the contributions of left 

and right ventricular lineages are symmetrical in the developing interventricular septum. Then 

the left ventricular cardiomyocytes dominate the septum, particularly in its dorsal part. A third 

population of cardiomyocytes could be added by the inner curvature of the heart. The formation 

of the interventricular septum would thus be first passive then active, reconciling the two 

previous hypotheses of Van Mierop and Kutsche (active growth from the apex to the base of the 

heart) and Patten (passive growth due to ballooning of the ventricular cavities) [27, 29, 30]. 

 

The arterial pole: development of the outflow tract 

Until the wedging stage, characterized by rotation of the right part of the OT enabling the future 

aortic valve to reach the mitral valve [16], the OT remains entirely above the developing right 

ventricle. 

 Rotation of the OT has several consequences: establishment of the aortic-mitral fibrous 

continuity, with the disappearance (or absorption) of the subaortic conus, which represents the 

left portion of the ventriculoinfundibular fold; development of the ventriculoinfundibular fold itself 

from the inner curvature of the heart; and formation of the outlet septum from the endocardial 

cushions of the conus and its leftwards displacement until it reaches the upper part of the 

primitive ventricular septum and fuses with it, between the two limbs of the septal band. The 
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outlet septum in the normal heart is then a very small structure inserted between the two limbs 

of the septal band, in continuity with the ventriculoinfundibular fold. 

 

Origins of the outflow tract 

Two structures contribute cells to the developing OT: the cardiac neural crest; and the anterior 

part of the SHF (anterior heart field). 

 Cardiac neural crest cells migrate through the developing aortic arches to the aortic sac 

and the developing OT [31]. The role of the cardiac neural crest in the development of the 

arterial pole of the heart was demonstrated in the early 1970s by ablation experiments in chick 

embryos: total ablation resulted in common arterial trunk, partial ablation resulted in various 

heart defects, such as tetralogy of Fallot with or without pulmonary atresia, double-outlet right 

ventricle and malalignment VSDs, always associated with anomalies of the aortic arches [32]. 

These cardiac anomalies taken as a whole have since been named ‘conotruncal defects’. A link 

was later established between this phenotype and the human DiGeorge syndrome, caused by 

22q1.1 microdeletion. The major candidate gene for this chromosomal anomaly is Tbx1 [31].  

 Cardiac neural crest cells contribute smooth muscle cells to the walls of the two great 

vessels. However, the major role of the cardiac neural crest is to give the signal to the SHF to 

add cardiac myocytes, and later smooth muscle cells, to the developing OT [17]. These cells 

permit the growth and elongation of the OT, which is necessary for wedging to occur properly. 

Experimental ablation of the anterior heart field in mice embryos leads to defects of alignment of 

the OT, elongation and thus wedging, leading to so-called conotruncal defects [8]. If ablation is 

performed later in development, the anterior heart field also fails to add smooth muscle cells to 

the proximal portion of the great vessels, which could be responsible for anomalies of the 

position of the coronary orifices [8]. 

 The OT develops then from two cellular origins: the cardiac neural crest cells for the distal 

portion of the great vessels; and the anterior heart field for the proximal portion of the great 

vessels (smooth muscle cells) and the conus (cardiomyocytes). 
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 These two structures exhibit close interdependency: if the cardiac neural crest cells fail to 

migrate, there is a lack of addition of cells from the anterior heart field to the developing OT, 

which leads to a lack of wedging and thus a conotruncal defect [33]. 

 

Septation of the outflow tract 

The aorta and the pulmonary artery both arise from the aortic sac [34]. In the dorsal part of the 

aortic sac, a mesenchymatous protrusion called ‘arterial spine’ goes towards the distal part of 

the endocardial cushions of the conus, giving the primitive aortopulmonary septum. Fusion 

between the distal parts of the endocardial cushions gives rise to the aorta on the right and the 

pulmonary artery on the left, which connect with the fourth and sixth aortic arches, respectively. 

 The embryonic aortopulmonary foramen closes by fusion of the distal endocardial cushions 

with the arterial spine. Failure of this foramen to close leads to an aortopulmonary window [34]. 

 Cardiac defects resulting from abnormal development of the OT include: the so-called 

conotruncal defects, resulting from abnormal wedging (tetralogy of Fallot and variants, including 

tetralogy of Fallot with pulmonary atresia; common arterial trunk; some types of double-outlet 

right ventricle; some types of interrupted aortic arch; and malalignment VSD); and transposition 

of the great arteries, which, although involving the OT, is now considered primarily as a laterality 

defect, as it affects the laterality of wedging – it shares the same genes with double discordance 

(or physiologically corrected transposition of the great arteries) and heterotaxy syndromes [35]. 

 

The endocardial cushions: formation of the cardiac valves 

The four cardiac valves all share a common origin: the mesenchyme of the endocardial 

cushions. Their formation involves four steps: epithelial-to-mesenchymal transformation; growth; 

remodelling; and apoptosis [36]. Their development is intimately related with cardiac septation 

and with the development of inflow and outflow segments. 

 

The main steps of valve development 

Epithelial-to-mesenchymal transformation 
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In the primitive linear heart tube, the two cellular layers (myocardium and endocardium) are 

separated by the extracellular matrix or cardiac jelly. During the loop, the cardiac jelly 

disappears from the cardiac chambers, persisting only at the segments of junction: the AV canal 

and the OT. The position of the future valves relative to the cardiac chambers is determined by 

bone morphogenetic protein 2 and TBx2 expression in the myocardium, and Notch1 expression 

in the endocardium. The loss of endocardial adhesion and adoption of an invasive phenotype 

induced by Notch and transforming growth factor-beta signalling constitute an epithelial-to-

mesenchymal transformation. Invasion of the extracellular matrix by the newly formed 

mesenchymal cells leads to the formation of the endocardial cushions, as shown in Fig. 4 [37]. 

 

Growth 

The endocardial cushions grow by cell proliferation and extracellular matrix synthesis, mediated 

by bone morphogenetic protein and vascular endothelial growth factor. 

 

Remodelling 

The remodelling stage includes delamination of the valvar leaflets from the myocardium and 

transformation of the mesenchymal tissue into fibrous tissue and collagen, mediated by FGF, 

PTPN11, Wnt and periostin. The transition between growth and remodelling is mediated by 

NAFTC1. Periostin null mice exhibit hypertrophic and shortened valvular leaflets, leading to 

prolapsed mitral valve and bicuspid aortic valves [36]. 

 

Apoptosis 

The phenomenon of apoptosis sculpts and thins the valvar leaflets during foetal life. 

 

Formation of the tricuspid valve 

The tricuspid valve develops from the thirty-fifth day of intrauterine life, from an excavation 

within the posteroinferior part of the primary fold, to the right of the inferior AV cushion, called 

the ‘tricuspid gully’ [38] (Fig. 6). This funnel expands to form the inlet part of the developing right 

ventricle, including the moderator band and the tricuspid valve. The myocardial funnel drives 
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blood from the right atrium, under the myocardium of the inner curvature (parietal band or 

supraventricular crest), to the middle part of the developing right ventricle, through a primary 

orifice pointed towards the OT [39]. At the convergence stage, fenestrations appear at the distal 

part of the funnel, creating the inferior orifice of the tricuspid valve. The primitive anterosuperior 

orifice becomes the anteroseptal commissure. The tricuspid valve is then initially an entirely 

muscular structure, with three walls: a septal wall, made up of the ventricular septum itself; an 

inferior wall, made up of the inferior wall of the developing right ventricle; and an anterior wall, 

made up of the anterior wall of the tricuspid gully. 

 These three myocardial walls are covered internally by the mesenchymal tissue of the 

endocardial AV cushions. The three leaflets of the tricuspid valve delaminate from these three 

muscular walls. The anterior leaflet delaminates – or rather ‘demyocardializes’ – first, during the 

eighth WG, by apoptosis, leading to gradual disappearance of its myocardial external part. Then 

the inferior leaflet and, lastly, the septal leaflet delaminate from the respectively inferior and 

septal myocardial walls of the right ventricle, from the inferior part of the tricuspid gully towards 

the annulus (right AV junction). 

 The tricuspid valve and its tendinous chordae are derived almost entirely from the 

mesenchyme of the AV cushions and, to a lesser extent, from the adjacent AV myocardium, via 

the delamination process. The tendinous cords are formed by fragmentation of the distal part of 

the ventricular side of the leaflets. They are, like the valvular leaflets, of mesenchymal origin 

and later undergo a fibrous transformation. The papillary muscles are of myocardial origin, 

formed by compaction within the trabecular layer of the myocardium [40].  

 Ebstein’s malformation can be considered as a failure of delamination of the inferior and 

septal leaflets from the walls of the muscular inlet component. In contrast to the inferior and 

septal leaflets, the anterior leaflet always retains its normal junctional hinge from the AV junction 

along the parietal band and often undergoes complete ‘demyocardialization’. In the most severe 

cases of Ebstein’s malformation, the leading edge of the anterior leaflet is attached in a linear 

fashion onto the distal margin of the right ventricle inlet funnel, forming a partition between the 

inlet and the muscular component, due to failure of formation of the definitive inferior orifice of 

the tricuspid valve [41]. Ebstein’s anomaly can then be considered as an arrest in normal 



17 
!

cardiac development and its anatomical severity depends on the developmental stage at which 

the arrest occurs.  

 

Formation of the mitral valve 

The two leaflets of the mitral valve share a common origin – the endocardial cushions of the AV 

canal – but their development is totally different. The formation of the mitral valve is intimately 

related with the septation process. During wedging, the aortic valve rotates to nestle between 

the developing tricuspid and mitral valve, as shown in Fig. 2. The aortic valve thus separates 

the future anterior leaflet of the mitral valve, which develops from the fusion of the superior and 

inferior cushions, from the ventricular septal surface [39]. Because of this, the anterior leaflet of 

the mitral valve does not have an initial muscular component and is entirely of mesenchymal 

origin. This process also explains why the normal mitral valve has no septal attachments, the 

papillary muscles developing only from the free lateral wall of the left ventricle [38]. The mural 

leaflet delaminates from the inferior wall of the left ventricle, according to the same mechanism 

as that for the inferior and septal tricuspid leaflets.  

 The chords derive from the leaflets themselves, while the papillary muscles develop by 

compaction within the trabecular layer of the myocardium of the left ventricular free wall [40]. 

 

Formation of the aortic and pulmonary valves 

The arterial valves develop from the mesenchyme of the OT endocardial cushions, concomitant 

with the formation of the conal septum and the process of wedging. The fusion of the right and 

left lateral cushions on the midline determines two symmetrical valve primordia, separated by a 

protrusion of the posterior wall of the aortic sac (‘arterial spine’), which represents a transient 

aortopulmonary septum [42]. The two intercalated cushions form the anterior leaflet of the 

pulmonary valve and the posterior non-coronary leaflet of the aortic valve. The sinuses of 

Valsalva then form as an excavation between the cushions and the arterial wall, by an 

apoptosis phenomenon [43]. The two semilunar valves, aortic and pulmonary, are thus 

morphologically identical, but separate, structures [44]. 
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 Abnormal fusion, or an excess of normal fusion, of the endocardial cushions can lead to 

bicuspid arterial valves. Excessive fusion of the right and left aortic leaflets is most common, 

and could be associated with aortic coarctation, VSD and dilatation of the ascending aorta. 

Abnormal fusion of the right and non-coronary leaflets of the aortic valve would evolve towards 

aortic stenosis and regurgitation [45]. 

 After the end of the twelfth WG until birth, the valvar leaflets continue to develop and 

become thinner, by apoptosis. 

 

The coronary arteries 

The connection of the coronary arteries to the aorta is the last step in the formation of the heart 

and occurs within the seventh WG, after completion of septation. Epicardium, originating from 

the proepicardial organ, is necessary for the formation of the first coronary vessels [46], but a 

recent study has suggested that another source of the coronary plexus may be the venous 

endothelial cells of the sinus venosus [47]. The epithelial cells of the proepicardial organ 

undergo epithelial-to-mesenchyme transformation and migrate within the subepicardial space, 

then into newly formed spaces within the developing myocardium [48]. The subepicardial and 

myocardial spaces are continuous, but there is no communication with the ventricular lumen, 

unlike what happens in birds: in mammals, no myocardial sinusoids are found at any stage of 

normal development. However, sinusoids can develop in pathological situations: high ventricular 

pressure (pulmonary atresia with intact ventricular septum); defect of maturation of the 

ventricular myocardium (non-compaction); and abnormal development (coronaroventricular 

fistulae). 

 A primitive endothelial network forms within the myocardium by vasculogenesis. Then, by 

angiogenesis and remodelling, the first arterial coronary vessels appear in the posterior AV 

sulcus, on the inferior surface of the heart, and spread towards the apex (interventricular sulcus) 

and the origin of the great vessels, forming the periarterial circle [49]. 

 Bogers et al. demonstrated in 1989 that the coronary arteries enter the aorta rather than 

emerge from it [50]. In the normal heart, the coronary arteries always connect to the base of the 

aorta within the left and right anterior sinuses of Valsalva, while the posterior part of the aortic 
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valve is devoid of coronary arteries. What determines these ‘coronary’ and ‘non-coronary’ zones 

is still a subject of controversy. Several hypotheses have been advanced concerning the pattern 

of penetration of the coronary arteries within the aorta. A recent study has revealed a major role 

for Tbx1 in coronary artery patterning in mice, suggesting a subaortic ‘coronary-permissive’ and 

a subpulmonary ‘coronary-refractory’ domain [51]. Deletion of Tbx1 induces a shortened OT 

with a pulmonary component defect, as shown by diminished expression of the 96-16 

transgene. Théveniau-Ruissy et al. hypothesized that the abnormal coronary artery pattern 

observed in the Tbx1–/– mouse mutant was the consequence of a severely reduced 

‘subpulmonary’ coronary-refractory myocardial domain malpositioned in the dorsal/left side of 

the OT [51].  

 

The aortic arches 

The aortic arches originate from the mesoderm of the pharyngeal arches; they connect the 

aortic sac ventrally (itself created by fusion of the initially paired ventral aortas) to the initially 

bilateral dorsal aortas [52]. Initially paired and symmetrical, some of them (the third, fourth and 

sixth) undergo remodelling into the asymmetric great arteries, under the guidance of cardiac 

neural crest cells. The six aortic arches appear sequentially, not simultaneously, in a 

craniocaudal order. The first and second aortic arches are populated by non-cardiac neural 

crest cells and develop mainly into skeletal elements. The third aortic arch becomes the 

common carotid arteries and the proximal portion of the internal carotid arteries. The fourth 

aortic arch forms the horizontal aorta. The fifth aortic arch is inconstant and its persistence is 

exceptional. The sixth arch forms the arterial duct and the initial part of the central pulmonary 

arteries.  

 Several parts of the aortic arches system undergo regression, the first one being the right 

sixth aortic arch. Pitx2c mutant mice have aortic arch anomalies due to impaired remodelling, 

with abnormal laterality of the patent sixth aortic arch. These experiments suggest that the situs 

of the descending aorta (and thus of the aortic arch) is determined by the laterality of the sixth 

aortic arch [53].  
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 Cardiac neural crest cells migrate through the developing aortic arches to reach the OT of 

the heart. Thus, they play a major role in the remodelling of the initially bilateral aortic arches 

into the definitive great vessels and also in the separation of the initially common arterial trunk 

into the ascending aorta and the pulmonary trunk [42]. Indeed, a 22q1.1 microdeletion was 

found in 24% of isolated anomalies of the aortic arches and in 67% when associated with 

stenosis or atresia of proximal pulmonary arteries [54]. Migrating cardiac neural crest cells send 

positional information to the aortic arches via the Hox genes, which have a different expression 

in the sixth arch versus the third and fourth arches: HoxB5 expression is specific for the distal 

sixth aortic arch, which becomes the arterial duct [53]. Tbx1, the major candidate gene for 

microdeletion 22q1.1, is involved in the formation, growth and remodelling of the aortic arches. 

Laterality genes like Pitx2c are also involved, but seem to act through the anterior SHF, which 

determines the rotation of the OT necessary for the final position of the two great vessels. This 

rotation would determine a differential distribution of blood flow in the sixth aortic arch, a 

decreased blood flow within the sixth aortic arch resulting in its regression and the 

establishment of the normal left aortic arch [55]. These findings would explain, in part, the 

haemodynamic theory of Rudolph et al. that a diminutive blood flow through the pulmonary 

valve favours abnormal development of the right sixth aortic arch [56]. 

 

The conduction system 

The heart is among the very few organs that are functional as soon as they begin to form. The 

straight heart tube has peristaltic contractions, well before the sinoatrial node (the pacemaker of 

the heart) appears. The substrate for this peristalsis is the alternation in the straight heart tube 

of segments with slow and fast conduction. In mammalian and avian embryonic ventricles, the 

contraction wave starts in the inflow part of the heart tube and propagates to the ventricles and 

then to the OT (base-to-apex), as in lower vertebrates [57]. Lower vertebrates have a spongy 

myocardium, without coronary vasculature, and have no insulating fibrous plane between the 

atrial and ventricular myocardium. Higher vertebrates develop a compact myocardium, which is 

necessary to answer the increase in heart beat and pressure. This compact myocardium allows 

maturation of the conduction system, with a base-to-apex activation in the trabecular part of the 
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ventricles and an apex-to-base activation in the subepicardial compact myocardium, related to 

the development of the His-Purkinje system [57]. This developmental change in the activation 

pattern of the heart is thus intimately related with the development of compact myocardium.  

 The primary heart tube contains only slow-conducting and poorly differentiated 
cardiomyocytes [58]. With the growth of the heart by addition of cardiomyocytes to the two 
extremities of the tube, the developing ventricular and atrial chambers acquire a working 
myocardial phenotype, made of fast-conducting and contractile myocardial cells [59]. Connexin 
43 can be detected in the working myocardium, reflecting the formation of an increasing number 
of gap junctions between the cells, at the origin of the fast-conducting properties. "#$%&!'(!
)*+,-(&!'.!/!The atrial and ventricular myocardial become separated by insulating fibrous 
tissue which is derived from the epicardium and is termed the AV ring [58,60]. Within the AV 
ring, the AV node is developed at the posterior part of the AV canal by specification of 
myocardial cells that retain their initial phenotype and thus do not differentiate into functional 
myocardium [59].The atrial and ventricular myocardial become separated by insulating fibrous 
tissue which is derived from the epicardium and is termed the AV ring [58,60]. Within the AV 
ring, the AV node is developed at the posterior part of the AV canal by specification of 
myocardial cells that retain their initial phenotype and thus do not differentiate into functional 
myocardium [59]. 

 

 The transcription factors responsible for the development of conduction tissues are now 

well known and appear to be similar in humans and mice [60]. HCN4 is first expressed through 

the entire primitive heart tube, with a gradual decrease of expression from the venous to the 

arterial pole. Later, HCN4 expression is confined to the sinus node primordium (at the junction 

of the superior vena cava and the right atrium), in the myocardium surrounding the AV junction 

and the coronary sinus. Abnormal persistence of HCN4 activity in various myocardial structures, 

such as the pulmonary venous sleeves, the coronary sinus, the lower atrial rims, the right OT 

and the atrial appendages, could explain the occurrence of certain arrhythmias [60].  

 Nkx2.5 is present in both the sinoatrial and AV nodes. The transcription factor Tbx3 is 

involved in early specification of the myocytes of the systemic venous sinus, the AV canal, the 

AV node and the AV bundle, and is responsible for repression of the working myocardial gene 

programme [61]. In a recent study, Tbx3 was proven to be able to reprogramme differentiated 

working cardiomyocytes into pacemaker cells in mice, raising hopes for future therapy for 

conduction disorders [61]. 

 The laterality gene Pitx2 plays a crucial role in the establishment of the pacemaker of the 

heart, preventing the formation of a left-sided sinoatrial node by restricting the slow-conducting 
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myocardium to the right sinus venosus region [62]. Mice knocked out for Pitx2 exhibit right atrial 

isomerism with bilateral sinoatrial nodes [63]. 

 The AV node develops from the AV canal myocardium and is made of slow-conducting 

tissue. The main function of the AV node is to slow down the impulses coming from the atria to 

the ventricles. However, the impulses coming from the atria can reach the ventricles only 

through a fast-conducting myocardium: the bundle of His and the two bundle branches permit 

contraction of the apex before the base of the ventricles, simultaneous contraction of both 

ventricles and ejection of blood through their OT. 

 Thus, the sinoatrial node and the AV node develop from the slow-conducting myocardium 

of the inflow tract and the AV canal, and the bundle of His and branch bundles develop from the 

fast-conducting ventricular myocardium [52]. 

 

Conclusion 

Progress in molecular biology and genetics, with the development of animal models, has 

permitted the unravelling of many mechanisms that potentially lead to cardiac malformations. 

However, one must keep in mind that the cardiac phenotypes found in animal models should be 

carefully interpreted when compared with those found in humans. A next step towards a better 

knowledge of cardiac development could be multiscale cardiac modelling [37], which considers 

structure, function and behaviour at different levels of spatial (and time) scales simultaneously. 

In cardiac morphogenesis much can be gained by integrating models from the genetic, cellular, 

and tissue levels of granularity..  
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Figure legends 

 

Figure 1. The primitive linear heart tube (in red) at the ventral part of the embryo. 

 

Figure 2. The three main steps of cardiac development: early looping, convergence and 

wedging. Red circles: initial and final position of the future aortic valve. A: atria; AVC: 

atrioventricular canal; LV: left ventricle; OT: outflow tract; RV: right ventricle.  

 

Figure 3. Normal cardiac looping. At day 23 of intrauterine life, the linear heart tube folds 

rightwards. 

 

Figure 4. The four transitional zones: sinus venosus; primary fold; AV canal; and outflow tract 

endocardial cushions. Red star: inner curvature of the heart. 

 

Figure 5. Atrial septation. (A) The septum primum (in yellow) with its mesenchymal cap (in 

white) and the vestibular spine (in blue) leaving a space corresponding to the ostium primum. 

(B) The ostium secundum appears by apoptosis at the upper part of the septum primum. (C) 

The septum secundum (in brown) develops by invagination of the roof of the right atrium, to the 

right of the septum primum; closure of the ostium primum and the inlet septum by 

mesenchymatous structures (in white) coming from the septum primum, vestibular spine and 

anterosuperior AV endocardial cushion. 

 

Figure 6. Formation of the right atrioventricular junction. Red arrow: tricuspid gully. A: atria; 

AVC: atrioventricular canal; LV: left ventricle; OT: outflow tract; RV: right ventricle.  
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Figure 3 
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Figure 4 
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Figure 5A 
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Figure 5B 
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Figure 5C 
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