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Abstract 

Surgery is continuously subject to technological and medical innovations that are transforming daily surgical 

routines. In order to gain a better understanding and description of surgeries the field of Surgical Process 

Modelling (SPM) has recently emerged. The challenge is to support surgery through the quantitative analysis and 

understanding of Operating Room (OR) activities. Related surgical process models can then be introduced into a 

new generation of Computer-Assisted Surgery (CAS) systems and have a large impact in future surgical 

innovations, whether for planning, intra-operative or post-operative purposes. For instance they can improve 

surgical education and planning, situation awareness and management of complex multimodal information in the 

OR, surgical workflows, or increase surgical efficiency and quality of care. In this paper, we present a review of 

the literature dealing with SPM. This methodological review was obtained from a search using Google Scholar 

on the specific keywords: “surgical process analysis”, “surgical process model”, and “surgical workflow 

analysis”. This paper gives an overview of current approaches in the field that study the procedural aspects of 

surgery. We propose a classification of the domain that helps to summarise and describe the most important 

components of each paper we have reviewed, i.e. acquisition, modelling, analysis, application, and 

validation/evaluation. These 5 aspects are presented independently along with an exhaustive list of their possible 

instantiations taken from the studied publications. This review allows a greater understanding of the SPM field to 

be gained and introduces future related prospects. 



1. Introduction 

 
1.1 Context 

 

In recent years, due to progress in Information Technology fields, computer assistance have been developed in 

healthcare systems, from hospital management through to medical imaging solutions. The Operating Room 

(OR), in particular, has undergone significant transformations evolving into a highly complex and 

technologically rich environment. Computer technologies are now essential and increasingly used throughout the 

intervention, from pre-operative planning to post-operative assessment. Computer-Assisted Surgery (CAS) (or 

Computer-assisted Intervention-CAI) systems have now a vital role to play in current surgical performance. For 

instance, during surgical planning, CAS and Image Guided Surgical systems provide access to multi-modal 

imaging technologies, relevant information about the patient and the possibility of simulating some parts of the 

surgical procedure. During surgery, they provide visualisation to pre- and intra-operative information about the 

patient with respect to the operative field, and also provide passive or active robotic support. New issues and 

technological challenges related to this complex OR and CAS systems have been discussed by Cleary et al. 

(2005), Rattner and Park (2003) or Xiao et al. (2008).  

 

This first generation of CAS systems mainly focused on providing the surgeon with access to medical 

information of the patient before and during surgery, and active or semi-active robotic assistance. It was however 

outlined that such assistance would be different according to the surgical task, due to different needs and levels 

of importance. There was also an increasing need for new tools providing better resources management in the 

OR. For instance, surgeons need to be freed from technical problems through the automatic handling of software 

and hardware tools. These requirements illustrate the main motivation for surgical procedures models. The need 

for dedicated model-based systems for surgical procedures was first outlined for creating surgical simulation 

systems (Satava and Carrico, 1996; Taylor et al., 1999). The idea of describing the surgical procedure as a 

sequence of tasks was first introduced for analysis purposes in Minimally Invasive Surgeries (MIS) by 

MacKenzie et al. (2001), as well as for surgical planning and intra operative image management (Jannin et al., 

2001) and for robotics systems (Munchenberg et al., 2000).  

 

Following progress in model-based surgical intervention systems, understanding of the surgical scenario was 

proposed to improve the management of CAS systems. Jannin et al. (2003) defined the term surgical model as 

“generic or patient-specific surgical procedures that workflows aim to automate”. In their work, they stated that 

model-based systems of surgical interventions must address behavioural, anatomical and pathological aspects as 

well as integrate information about surgical instruments that can be used with a priori knowledge for the 

development of the OR of the future. The term surgical workflow has been defined as “the automation of a 

business process in the surgical management of patients, in whole or part, during which documents, information, 

images or tasks are passed from one participant to another for action, according to a set of procedural rules”  

(Jannin and Morandi, 2007). The term Surgical Process (SP) has been defined as “a set of one or more linked 

procedures or activities that collectively realise a surgical objective within the context of an organisational 

structure” (Neumuth et al., 2007). This term is generally used to describe the steps involved in a surgical 

procedure. A Surgical Process Model (SPM) has been defined as “a simplified pattern of an SP that reflects a 

predefined subset of interest of the SP in a formal or semi-formal representation” (Neumuth et al., 2007). It 

relates to the performance of an SP with support from a workflow management system. SPMs were first 

introduced for supporting surgical intervention using a model of surgical progress. Indeed, the precondition for 

computer-supported surgical intervention is the specification of the course model describing the operation to be 

performed. Typically, even if every surgery is different, a procedure of a same type shares common sequences of 



states that can be identified. Such an assumption also makes it possible to detect abnormal activities within the 

procedure. Being able to identify information such as activities, steps or adverse events within a surgical 

intervention and having the possibility of relying on a surgical model is therefore a powerful tool in helping 

surgeons. The use of SPMs may prove effective in facilitating the surgical decision-making process as well as 

surgical teaching and assessment thereby having a direct impact on patient safety. It could help in anticipating 

patient positioning, optimising operating time, analysing technical requirements and improving the pre-operative 

human-computer interface. It could also help in evaluating surgeons or tools. In light of the growing interest in 

this field, and for the first time, we propose in this paper to undertake a methodological review of the literature 

focusing on the creation and the analysis of SPMs. 

1.2 Search methodology 

The review was carried out using Google Scholar to search on the specific keywords: “surgical process model”, 

“surgical process analysis”, and “surgical workflow analysis”. In addition to the Google Scholar results, we 

added another list of possible citations that were taken from the references of the first set of selected 

publications. We included articles published in peer-reviewed journals as well as full papers published in major 

international conference proceedings that dealt with the use of SPMs. International conference proceedings were 

included since the field is very recent, resulting in more conference publications than peer-reviewed journals. 

Only English language publications were selected. The research included was published between 2002 and end 

of 2012. In order to achieve an overview of the publications related to the creation and analysis of SPMs, we 

focused on publications which aimed to study the procedural dimension of surgery. The first inclusion criteria 

used during the selection process was therefore the fact that works have to take into account the sequential aspect 

of the surgical procedure, i.e. study the duration and sequencing of tasks performed during the surgery. 

Moreover, we were interested in pieces of work that focused at least one part of their analysis on the act of 

surgery, beginning when the surgeon performs the first task on the patient and ending when the surgeon makes 

the suture. It was defined as the second inclusion criteria. When a project has been published several times with 

no change in the dedicated elements of the diagram, the journal publication and if none, the most recent 

conference paper has been used. The entire selection process is shown on Fig 1. From an initial selection of 

N=272 publications, a total of N=46 publications were finally selected for full-text review. 

 



 
 

Fig 1 - Process used in the selection of publications for full-text review. 

 

Fig 2 shows the results of the Google scholar results before the selection process only. We can see that the SPM 

creation and analysis field is very recent. It has evolved in particular from 2007, evidence of the recent evolution 

of the field. 

 

 
 



 
 

Fig 2 - Evolution of the number of papers in the field from 2002 to December 2012. 

 

 

2. SPM taxonomy 

In order to clarify the review and the discussions, we propose a model for describing and classifying the methods 

using five components and their corresponding elements (Fig 3). Each of the five components addresses one 

major aspect of the SPM methodology, and every element that results can be instantiated with its set of possible 

values. The first component is the modelling, i.e. what is studied and is modelled, where the goal is to describe 

and formalize the work domain. The second component is the data acquisition performed by human observations 

or by sensor systems. The third is the analysis that tries to make the link between the acquired data and the 

information that we want to model. Another component specifies the different applications of the systems based 

on SPMs and finally the last component describes the different kind of validation and evaluation studies that 

were conducted for assessing these systems. The whole review is organised according to diagram of Fig 3. In the 

following subsections, each part of the diagram is explained in detail.



 

 

 

 

 
 
 

Fig 3 - General overview of the field. 
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2.1 Granularity level 

The whole SPM methodology, and especially the acquisition and modelling components, is organised around the 

concept of granularity level. A granularity level is defined as the level of abstraction at which the surgical procedure is 

described. New terms describing the different levels have been introduced and adapted to SPMs for improved 

standardisation of surgical descriptions. MacKenzie's group (Cao et al., 1996; Ibbitson et al., 1999; MacKenzie et al., 

2001) proposed a model of the surgical procedure that consists of different levels of granularity: the procedure, the step, 

the substep, the task, the subtask, and the motion. Each (sub)task can for instance be broken down into various motions 

and forces primitives. They then used a hierarchical decomposition to structure the complex environment and the 

interaction between the surgical team and new technologies. Because of the marked differences in the terminology used 

in the papers studied, in this paper, we will use the following terminology for describing the different granularity levels 

of surgical procedures (Fig 4). The highest level is the procedure itself. The procedure is composed of a list of phases. 

A phase is similar to the notion of Lo et al.'s (2003) surgical episode, defined as the major types of events occurring 

during surgery. Each phase is composed of several steps. A step is considered to be a sequence of activities used to 

achieve a surgical objective. A step has been often called “task” in the literature. An activity is defined as a physical 

task. This level appears to be identical to a surgeme, previously defined as a well-defined surgical motion unit (Lin et 

al., 2006). Each activity is composed of a list of motions. The motion can be considered to be a surgical task involving 

only one hand trajectory but with no semantics. One assumption is that each granularity level describes the surgical 

procedure as a sequential list of events, except for the surgical procedure itself and for lower-levels where information 

may be continuous.  

 

 

 
 

Fig 4 - Different levels of granularity of a surgical procedure. 

2.2 Modelling 

This first component describes and explains the work-domain of the modelling, i.e. what is studied and what is 

modelled. Two elements are crucial for identifying the work-domain: 1) the granularity level at which the surgical 

procedure is studied and 2) the operator(s) involved in the surgical procedure on whom the study will focus. A third 

element can be added 3) formalisation. In many cases, a formalisation phase is required for representing the knowledge 

collected before the analysis process can take place. Knowledge acquisition is part of the underlying methodology of 

this component. It is the process of extracting, structuring and organising knowledge from human experts. 

Granularity level 

Information that is studied (i.e. information that is modelled) is laid out on the granularity level axis defined in Fig 4. 

Investigations have concentrated on the activity level, but all granularity levels have been studied. At the highest level, 

the global procedure has been studied (Bhatia et al., 2007; Hu et al., 2006; Sandberg et al., 2005; Xiao et al., 2005), as 

well as the phases (Ahmadi et al., 2006; James et al., 2007; Katic et al., 2010; Klank et al., 2008; Lalys et al., 2012a; Lo 

et al., 2003; Nara et al., 2011; Padoy et al., 2007, 2008, 2010; Qi et al., 2006; Suzuki et al., 2012, Thiemjarus et al., 

2012), the steps (Blum et al., 2008; Bouarfa et al., 2010; Fischer et al., 2005; Jannin et al., 2003, 2007; Ko et al., 2007; 

Lemke et al., 2004; Malarme et al., 2010), and the motions (Ahmadi et al., 2009; Lin et al., 2006; Nomm et al., 2008). 

Some studies integrated two or more of these granularity levels in their modelling (Burgert et al., 2006; Ibbotson et al., 

1999; MacKenzie et al., 2001; Münchenberg et al., 2000; Xiao et al., 2005; Yoshimitsu et al. 2010). No low-level 

information has been considered here. 
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Operator 

The information that is studied involves one or more of the actors of the surgery: the operator studied may be the 

surgeon, the nurse, the anaesthetist, the patient or several of these operators. 

Formalisation 

Formalisation is necessary for allowing automated handling and processing by computers. It is also necessary for 

bottom-up approaches to have a representation of the sequence of surgery through ontologies or a simple list of 

phases/steps/activities. At the highest level, we find the heavyweight ontologies, which have been used to represent the 

detailed context of a SPM study (Burgert et al., 2006; Fischer et al., 2005; Katic et al., 2010; Malarme et al., 2010; 

Speidel et al., 2008; Sudra et al., 2007).  A heavyweight ontology is a lightweight ontology, i.e. an ontology based on a 

hierarchy of concepts and relations, enriched with axioms used to fix the semantic interpretation of conepts and 

relations. Then, in the category of lightweight ontologies, we find UML class diagrams and/or XML schemas (Jannin et 

al., 2003; Jannin et al., 2007; Meng et al., 2004; Neumuth et al., 2006b). Both approaches define entities and the relation 

between these entities. We then find all 2D graph representations, which have been used mostly, with hierarchical 

decompositions, state-transition diagrams and non-oriented graphs. Lastly, at the lower level, simple sequential 

(Agarwal et al., 2007; Ahmadi et al., 2006; Houliston et al., 2011; Hu et al., 2006; James et al., 2007; Klank et al., 2008; 

Nara et al., 2011; Padoy et al., 2007; Sandberg et al., 2005; Suzuki et al., 2012; Xiao et al., 2005) or non-sequential lists 

(Ahmadi et al., 2009; Lin et al., 2006; Nomm et al., 2008) were also used, suggesting a list of words for representing 

one or many levels of the surgery's granularity (Fig 5). 

 

 

Fig 5 - Different levels of formalisation of the surgery. 

2.3 Data Acquisition 

The second component of the diagram, which is also the first step towards the creation of an SPM, is data acquisition, 

i.e. the collection of data on which the models are built. Four main elements may be distinguished in the acquisition 

process: 1) the level of granularity of the surgical information that is extracted, 2) the operator(s) on which the 

information is extracted, 3) the time when the acquisition is performed, and 4) the recording method. This section is 

divided according to these four elements. 

Granularity level 

Like the Modelling component, the level of granularity of the surgical information that is extracted allows the 

acquisition to be characterised, as it determines in how much detail the SP is recorded. Studies have focused on the 

recording of the entire procedure (Sandberg et al., 2005), of the phases (Qi et al., 2006), of the steps (Burgert et al., 

2006; Fischer et al., 2005; Lemke et al., 2004), of the activities (Forestier et al., 2012; Meng et al., 2004; Neumuth et 

al., 2006, 2009, 2012a, 2012b; Riffaud et al., 2011) and of the motions (Kragic and Hager, 2003). But efforts have been 

made in particular on extracting low-level information from the OR: videos (Bhatia et al., 2007; Blum et al., 2008; Haro 

et al., 2012; Klank et al., 2008; Lalys et al., 2012a, 2012b; Lo et al., 2003; Speidel et al., 2008), audio, position data 

(Houliston et al., 2011; Katic et al., 2010; Ko et al., 2007; Sudra et al., 2007), hand/tool/surgical staff trajectories 

(Ahmadi et al., 2009; Ibbotson et al., 1999; Lin et al., 2006; Miyawaki et al., 2005; Nara et al., 2011; Nomm et al., 

2008; Yoshimitsu et al., 2010), information about the presence/absence of surgical tools (Ahmadi et al., 2006; Bouarfa 

et al., 2010; Padoy et al., 2007) or vital signs (Xiao et al., 2005). Several elements of this low-level information can also 

be combined (Agarwal et al., 2007; Hu et al., 2006; James et al., 2007; Malarme et al., 2010; Padoy et al., 2008, 2010; 
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Suzuki et al., 2012; Thiemjarus et al., 2012). 

Operator 

Surgery always directly involves several operators. All staff members can have an impact on surgery and their roles and 

actions can be studied. The most important operator is of course the surgeon who is performing the surgery, but other 

operators can be involved: the nurse (Miyawaki et al., 2005; Yoshimitsu et al., 2010) for trajectory data extraction, the 

patient (Agarwal et al., 2007; Hu et al., 2006; Jannin et al., 2003, 2007; Münchenberg et al., 2000; Sandberg et al., 

2005; Suzuki et al., 2012; Xiao et al., 2005) for images or vital signs extraction, or the anaesthetist (Houliston et al., 

2011). Overall studies of the entire surgical staff have also been proposed (Agarwal et al., 2007; Bhatia et al., 2007; 

Fischer et al., 2005; Hu et al., 2006; Lemke et al., 2004; Nara et al., 2011; Qi et al., 2006; Sandberg et al., 2005; Suzuki 

et al., 2012), where the surgeon, the nurses and possibly the anaesthetist were included. For tracking systems, this 

notion can be specified by defining, in addition to the operator, parts of the human body involved such as the hand, eye, 

forehead, wrist, elbow and shoulder. 

Time of acquisition 

The precise time of the data acquisition is also a vital piece of information for discriminating acquisition techniques. In 

most of the studies, data are extracted from intra-operative recordings. In some studies, this was done post-operatively 

(retrospective), for instance when recordings are performed by an observer from video, or in the case of certain tracking 

systems.  In the case of the manual collection of information, this is done pre-operatively (prospective). Additionally, 

the term peri-operative generally refers to the three phases of surgery. Some acquisitions include all of these three 

phases to obtain information about the entire patient hospitalisation process (Agarwal et al., 2007; Sandberg et al., 

2005). 

Recording methods 

Two main approaches have been proposed: observer-based and sensor-based approaches (Tab 1). Observer-based 

approaches are performed by a human observer. For off-line recording, the observer uses one or multiple videos from 

the OR to record retrospectively the surgical procedure (Ahmadi et al., 2006, 2009; Bouarfa et al., 2010; Fischer et al., 

2005; Ibbotson et al., 1999; Lemke et al., 2004; MacKenzie et al., 2001; Malarme et al., 2010; Padoy et al., 2007). For 

on-line recording, the observer is directly in the OR during the intervention (Forestier et al., 2012; Neumuth et al., 

2006a, 2006b, 2009, 2012b; Rifaud et al., 2011). Lemke et al. (2004) first highlighted the importance of studying OR 

processes using on-line observer-based approaches to study both ergonomic and health economic aspects.  

Sensor-based approaches have been developed for automating the data acquisition process and/or for finer granularity 

descriptions. The principle is to extract information from the OR using one or multiple sensors in an automatic way, and 

to recognise activities or events based on these signals. Sensors can be of different types, ranging from electrical to 

optical systems. In the beginning, studies used sensors based on Radio Frequency IDentification (RFID) technologies, 

directly positioned on instruments or on the surgical staff during the intervention, to detect the presence/absence of the 

tools or actors (Agarwal et al., 2007; Houliston et al., 2009, Neumuth and Weissner, 2012c). Then, efforts were made to 

use robot-supported recording (Ko et al., 2007; Kragic and Hager, 2003; Lin et al., 2006; Münchenberg et al., 2000), 

including surgeon's movements and the use of instruments. Robots have been used as a tool for automatic low-level 

information recording. Tracking systems (Ahmadi et al., 2009; James et al., 2007; Katic et al., 2010; Miyawaki et al., 

2005; Nara et al., 2011; Nomm et al., 2008; Sudra et al., 2008; Thiemjarus et al., 2012; Yoshimitsu et al., 2010) have 

also been used in various studies; mainly through eye-gaze tracking systems positioned on surgeons or  through staff-

member tracking devices. Other types of methods have also been tested for recording information: patient monitoring 

systems (Agarwal et al., 2007; Hu et al., 2006; Sandberg et al., 2005; Xiao et al., 2005), and audio recording systems 

(Agarwal et al., 2007; Suzuki et al., 2012). Finally, the use of on-line video-based recording, sometimes combined with 

other data acquisition techniques, has especially received increased attention recently (Bhatia et al., 2007; Blum et al., 

2008; Hu et al. 2006; James et al., 2007; Klank et al., 2008; Lalys et al., 2012a, 2012b; Lo et al., 2003; Padoy et al., 

2008, 2010; Speidel et al., 2008; Suzuki et al., 2012), with either wide-angle video camera recording the entire OR or 

surgical video camera such as endoscopic or surgical microscope videos. 
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Observer-based approaches Sensor-based approaches 

Observer-

based 

recording 

from video 

(off-line) 

Observer-

based 

recording 

(on-line) 

Manual 

collection of 

information 

(off-line) 

Robot-

supported 

recording 

(on-line) 

Video-based 

recording 

(on-line) 

Patient 

monitoring 

systems 

(on-line) 

RFID 

technologies 

(on-line) 

Tracking 

systems 

(on-line) 

Audio 

recording 

systems 

(on-line) 

 

Tab 1- List of possible data acquisition methods. 

2.4 Analysis 

Analysis methods can be divided into three types: methods that go from data to final model, methods that aggregate or 

fuse information and methods that classify or compare data to extract a specific parameter. The three approaches are 

presented in the following subsections. Additionally, methods for displaying the analysis results have been studied to 

obtain a visual representation after the analysis process. 

From data to model 

The challenge here is to use the data collected during the acquisition process to create an individual model (i.e. iSPM) 

and to make the link between the acquisition process and the modelling. The type of approach used can be determined 

by comparing the level of granularity of the acquisition information and of the modelling. Top-down approaches are 

defined as analyses that start from a global overview of the intervention using patient-specific information and a 

description of high-level tasks (such as phases or steps) to fine-coarse details (such as activities or motions). 

Conversely, bottom-up approaches use as their input low-level information from sensor devices and try to extract high-

level semantic information. The methodology employed for either bridging the semantic gap in the case of bottom-up 

approaches or to generalise and formalise individual recordings in the case of top-down approaches, is based on 

statistical or data-mining concepts. The level of automation during the creation of the model has to be defined. The 

issue is to determine whether or not the model needs a training step. This step is needed for assigning classes to the 

training set. In such cases, the creation of the model is not fully automatic and may be entirely manual or a mix between 

human intervention and automatic computation. 

As part of supervised approaches, simple Bayes classifier with Linear Discriminant Analysis (Lin et al., 2003) and 

neural networks (Houliston et al., 2011; Nomm et al., 2008) have been tested in the case of activity/step/phase 

recognition. Signal processing tools have been used for analysing patient vital signs (Hu et al., 2006; Xiao et al., 2005) 

or audio recordings (Suzuki et al., 2012). In the case of top-down analysis, description logic has been tested (Burgert et 

al., 2006; Fischer et al., 2005; Katic et al., 2010; Lemke et al., 2004; Sudra et al., 2007), as well as model instantiation 

(Jannin et al., 2003), decision tree (Jannin et al., 2007), inference engine (Malarme et al., 2005) or workflow engine (Qi 

et al., 2008). In the case of bottom-up analysis, graphical probabilistic models have often been used to describe 

dependencies between observations. Bayesian Networks (BN) have recently proven to be of great interest for such 

applications, with an extension in the temporal domain using Dynamic BNs (DBN). Temporal modelling allows the 

duration of each step and of the entire process during its execution to be evaluated. Many time-series models, such as 

Hidden Markov Models (HMM) (Rabiner, 1989) or Kalman filter models, are particular examples of DBNs. Indeed, 

HMM, which are statistical models used for modelling non-stationary vector times-series, have been widely used in 

SPM analysis (Bhatia et al., 2007; Blum et al., 2008; Bouarfa et al., 2010). The Dynamic Time Warping (DTW) 

algorithm has also been often tested with success because of its ability precisely wrap time-series (Ahmadi et al., 2006; 

Padoy et al., 2008). Computer vision techniques, that allow a progression from a low-level description of images and 

videos to high-level semantic meaning, have also been used for extracting high-level information before using 

supervised approaches such as neural networks (James et al., 2007), Support Vector Machines (Support Vector 

Machines) (Klank et al., 2008), Bayesian networks (Lo et al., 2003), HMMs/DTW (Lalys et al., 2012a, 2012b; Padoy et 

al., 2008, 2010) or Linear Dynamical System, spatio-temporal features and multiple kernel learning (Haro et al., 2012). 

Computer vision techniques have also been mixed with description logic (Speidel et al., 2007). SVMs have been 

employed before the use of time-series analysis (Bhatia et al., 2007). Statistical analysis (Agarwal et al., 2007), 

sequential analysis (Ko et al., 2007; Kragic and Hager, 2003; Münchenberg et al., 2000), trajectories data mining (Nara 
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et al., 2011), times automata (Yoshimitsu et al., 2010) or model checking (Miyawaki et al., 2005) have also been used. 

Dealing with heterogeneous sources, a multi-objective Bayesian framework has finally been implemented for feature 

selection, and supervised classifiers were then launched (Thiemjarus et al., 2012).  

As part of unsupervised approaches,  no extensive work has been undertaken. Only a motif discovery approach has 

been used (Ahmadi et al., 2009) that does not need any a priori model. 

Finally, an SPM whose data acquisition and modelling stay at the same level of granularity is also possible. In such 

cases, the goal of the analysis is not to create a real model, but to perform either aggregation/fusion or 

comparison/classification. 

Aggregation-Fusion 

The goal here is to create a global (i.e. generic) model (gSPM) of a specific procedure representing a population of 

surgical procedures by merging a set of SPMs. One possibility is to merge similar sequences as well as filter infrequent 

ones to create average SPs in order to obtain a global overview of the surgery. Another is to create gSPMs that represent 

all possible transitions within SPs. A synchronisation stage may be necessary for both approaches in order to be able to 

merge all SPs. Generally, probabilistic or statistical analyses have been used for the fusion (MacKenzie et al., 2001; 

Neumuth et al., 2006b), but Multiple Sequence Alignment has also been tested (Meng et al., 2004) within text-mining 

approaches for automatically analyse post-operative procedure reports as well as patient files. 

Comparison-Classification 

The principle is to use an SPM methodology to highlight a specific parameter (i.e. meta-information) that explains 

differences between populations of patients, surgeons, or systems. Simple statistical comparisons (such as average, 

number of occurrence or standard deviation) have been used (Ibbotson et al., 1999; Riffaud et al., 2010; Sandberg et al., 

2005) to compare populations. Similarity metrics have also been proposed by Neumuth et al. (2012a) to compare 

different SPs. DTW along with the K-Nearest Neighbour (KNN) algorithm have been tested within unsupervised 

approaches (Forestier et al., 2012).  

Display 

Once data is acquired and the model is designed, it is generally useful to have a visual representation of the data to 

explore them qualitatively and to illustrate the results. However, complex data structures sometimes prevent 

straightforward visualisation. High-level task recordings of SPMs can be displayed according to two types of 

visualisations: temporal and sequential aspects (Neumuth et al., 2006a). Temporal display focuses on the duration of 

each action, whereas sequential display focuses on the relation between work steps. Moreover, in the sequential display, 

one possibility is to create an exhaustive tree of each possible sequence of work steps. Sensor-based recordings are 

easier to visualise. As it is represented by time-series data, an index-plot can be used (e.g. in Forestier et al., 2012). The 

idea of an index-plot is to display the sequence by representing an activity as a rectangle of a specific colour for each 

value, and a width proportional to its duration. An information sequence can be easily visualised and a quick visual 

comparison can be performed (Fig 6). 
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Fig 6 – Index-plot used in Forestier et al. (2012) representing the activities of the right (R) and left (L) hand for a population 

of 24 lumbar disk herniation surgeries performed by junior (a) and senior (b) surgeons. 

2.5 Clinical applications 

The analysis and modelling of surgical procedures cover multiple surgical specialities, issues, and challenges. Five 

major applications in particular have been the focus of increased attention: 1) evaluation of surgical 

tools/systems/approaches, 2) training and assessment of surgeons 3) optimisation of OR management 4) context-aware 

systems, and 5) robotic assistance. We first present the surgical specialities that have been covered by these systems, 

and then the five main applications are detailed. A final subsection presents other potential applications. 

Surgical speciality 

SPMs have been applied to many surgical specialities, but Minimally Invasive Surgery (MIS), including endoscopic and 

laparoscopic procedures and neurosurgical procedures have been preferred. Within laparoscopic and endoscopic 

procedures, Cholecystectomy and Functional Endoscopic Sinus Surgery (FESS) surgeries have been widely studied. 

Works can also be found in eye surgery (Lalys et al., 2012a, 2012b; Neumuth et al., 2006b, 2012a, 2012b), 

maxillofacial surgery (Münchenberg et al., 2000), trauma surgery (Agarwal et al., 2007; Bhatia et al., 2007; Xiao et al., 

2005), dental implant surgery (Katic et al., 2010), urological surgery (Meng et al., 2004), and otorhinolaryngology 

(ORL) surgery (Neumuth et al., 2006b). In general, systems have been specific to a surgical speciality or even a 

particular surgical intervention, but a few papers have described more generic surgical systems. 

Applications 

Evaluation of tools/surgical approach/systems: The evaluation of surgical tools or systems was the first application 

targeted by research laboratories, at the request of surgeons (Ibbotson et al., 1999; Lemke et al., 2004; MacKenzie et al., 

2001; Meng et al., 2004; Neumuth et al., 2006b, 2009; 2012b; Weinger et al., 1994). The analysis methods used in such 

cases were the comparison and classification methods. 

 

Training and assessment of surgeons: All junior surgeons currently train with the teaching help of senior surgeons. This 

is a very time-consuming, interactive and subjective task. Moreover, there is growing pressure on surgeons to 

demonstrate their competences. The need for new automatic training systems using tools for the evaluation of surgeons 
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has motivated extensive research into the objective assessment of surgical skills (Hager et al., 2006, Rosen et al., 2001). 

It would allow surgeons to benefit from constructive feedback, and to learn from their mistakes. Surgical expertise has 

been widely studied in the literature. It is usual to distinguish technical from non-technical skills (Yule et al., 2006). 

Technical skills include motor skills as well as procedural and conceptual knowledge (Patel et al., 2001). Non-technical 

skills include cognitive skills and interpersonal skills (Yule et al., 2006). Surgical process modelling is a methodology 

which allows some aspects of motor skills (timing or trial-error loops, for instance) and some aspects of procedural 

knowledge to be assessed. The ability to recognise simple movements, activities, steps, or phases precisely is a very 

powerful tool in automating surgical assessment. Similar methods can also be used for training and assessing other 

members of the surgical team. Surgical training may also benefit from SPM methodology since it allows access to a 

formal description of the entire procedure, or a possible surgical scenario inside a population of cases (as represented by 

gSPM). For a complete discussion on the motivations of objective skill evaluation, one can refer to Reiley et al. (2011). 

 

Optimisation of OR management: The need for perioperative surgical workflow optimisation has recently emerged 

(Dexter et al., 2004; Hu et al., 2006), especially regarding the specifications of the OR of the future (Cleary et al., 

2005). With the increased number of CAS systems and new technologies, being able to manage and coordinate all these 

systems correctly is becoming vital. The optimisation of the use of physical and human resources required in an OR 

suite can reduce efforts and therefore improve patient outcomes, reduce hospital's costs and increase efficiency. 

Moreover, being able to identify different phases within the OR could be useful to know how to assign staff, prepare 

patients or prioritise OR clean-ups. Additionally, there are some adverse events that need to be taken into account. 

These may be long surgical interventions or emergencies that require the use of the OR without prior planning.  

 

Context-aware systems: Many CAS systems, such as Augmented Reality (AR) systems or new imaging protocols, have 

been developed recently and integrated in the OR. Some limitations have been outlined. They are mainly used for a 

short period of time only, and the visualisation of additional information strongly depends on the current state of the 

intervention. Moreover, surgeons have to deal with adverse events during operations, arising from the patient 

him/herself but also from the management of the operation. The idea is to be aware of the current surgical situation in 

order to adapt assistance accordingly (e.g. in Sudra et al., 2007). Additionally, difficulties can be detected and risk 

situations better handled. For instance, variations of live signals can be used to warn surgical staff in the detection of 

anomalies. 

 

Robotic assistance: Many pieces of research have demonstrated the importance of robots in assisting surgery, and 

particularly using SPMs (Ko et al., 2007; Kragic and Hager, 2003; Münchenberg et al., 2000; Miyawaki et al., 2005). 

Surgical robots play a vital role in improving accuracy in surgical procedures. Two families of robots have been 

introduced for intra-operative assistance: semi-active and active robots. Semi-active robots make the link between 

surgeon and patient. Surgeons perform their tasks outside the OR using the robot which reproduces the surgeon’s hand 

movement on the patient. These types of robots are used for specific tasks only such as biopsies or endoscopies for 

MIS. Active robots are used directly in the OR to replace the surgeon for certain tasks. Both types of robots could 

benefit from SPMs in supporting these tasks using pre-defined models. The use of robotic assistance also aims to 

compensate for the lack of human resources in many hospitals, and in particular the lack of nurses (Miyawaki et al., 

2005; Yoshimitsu et al., 2010). The new generation of robots that are currently being tested are able to pinpoint the 

progress of the intervention by automatically acquiring data from the surgical environment and creating SPMs. 

 

Two other applications that have often been implicit in multiple publications are the automatic generation of post-

operative reports and the help in pre-operative planning.  

Post-operative reports are paper or electronic files that are generated post-operatively by the surgeon for 

documenting surgical procedures. Procedures are described as a succession of actions and steps that are manually 

included in a “log-file” for further filing. This step of the procedure is very tedious and time-consuming. The idea 

behind automating this process is to automatically extract as much information as possible from the surgery with the 

help of multiple sensors and to create pre-filled reports (Coles and Slavin, 1976; Lalys et al., 2012a). All studies that 

retrieve information from the OR, regardless of their level of granularity have potentially the possibility of 

automatically creating pre-filled reports. 
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For helping pre-operative planning, the goal is to better anticipate adverse events and possible problems during 

surgery by using formalised knowledge acquired by previous interventions and also by having an idea of all the 

possibilities offered by SPs. Aggregation and fusion techniques may be helpful in such cases for creating gSPMs.  

2.6 Validation - Evaluation 

We distinguish validation, defined as studying whether the system or method is actually doing what it is intended to do, 

from evaluation, defined as the study of the added value of a system or a method. Each aspect of the SPM methodology 

is subject to validation. The design of a validation study includes 1) the specification of a validation goal, 2) the 

definition of input parameters, 3) the computation or estimation of a reference (validation data sets) against which the 

results of the method to be validated will be compared, 4) the definition of validation metrics that will quantify the 

comparison, and 5) the operator using the system (Jannin et al., 2006). 

Two main aspects have been validated by the selected publications: the data acquisition process and the modelling 

phase. Validation data sets consist of fully simulated data from computers, data provided by simulated ORs, from 

phantoms, or real data directly from surgical interventions and patients. Computer simulations are one way of validating 

data that are easy to create, process, analyse and control, but are usually far from clinical reality. Similarly, virtual 

environments (simulated ORs) are also quite far from reality. While both approaches allow real flexibility for validating 

systems, it remains very difficult to model realistically a surgical environment, such as haptic feedbacks, 

anaesthesiological constraints, or surgeon/patient interaction. Moreover, even if the simulation is close to reality, the 

human factor is missing and could be an issue for applications that are intended to be used in real OR environments. 

The third possibility is to use real surgical devices on phantoms instead of humans. Even if the environment is closer to 

reality than complete virtual environments, it remains a part of the procedure that is not realistic. The validation 

strategies generally consist of, leave-one-out or k-fold cross-validation approaches. The comparison metrics are the 

recognition rate (accuracy), reproducibility, specificity and sensitivity.  

Few evaluation studies have been conducted and reported in the literature (Katic et al., 2010; Ko et al., 2007; 

Yoshimitsu et al., 2010). Some papers indirectly showed the added value of the SPM approach through its use in 

comparing populations of surgical cases performed with different systems or by surgeons with different surgical 

expertise. For these few papers that evaluate their systems, the same possible limitations as the validation part can be 

expressed. 

3. Similar works not included in the corpus 

From the beginning of the 90s, many clinical studies were published which used the principle of time-motion 

analysis. Time was the first information chosen by teams to evaluate surgical systems, tools, approaches or to assess 

surgeons. Publications covering time-motion analysis are very close to the papers that are cited here from the data 

acquisition aspect. Indeed, they used off-line observer-based recording from videos (installed in the OR, on the surgeon, 

or in the operating field) for acquiring sequences of phases/steps/activities that are then processed through statistical 

analysis. The corresponding studies, mainly published in clinical journals, restricted their analysis to statistical 

computations of time or number of occurrences. They were not included in our corpus. Some major examples of 

publications are listed here: Weinger et al., 1994; den Boer et al., 2001; Sjoerdsma et al., 2000; Darzi and Mackay, 

2002; Bann et al., 2003; Dosis et al., 2004; Mehta et al., 2002; Malik et al., 2003; Cao et al., 1999; Claus et al., 1995; 

Payandeh et al., 2002. A classification of their data acquisition techniques and modelling is proposed here in Tab 2. 

 

 
Data acquisition Modelling 

 

Granularity 

level 

Operator +/- 

body part 

Time of 

acquisition 

Method for 

recording 
Granularity level 

Operator +/- 

body part 
Formalisation 

Time-Motion 

analysis 

Steps/Activities/ 

Motions 
Surgeon Intra 

Observer-based 

recording from 

video (off-line) 

Steps/Activities/ 

Motions 
Surgeon 

Hierarchical 

decomposition 

 

Tab 2 - Classification of time-motion analysis publications, for the data acquisition and the modelling component. 



 

16 

 

 

Some recent papers used robot-supported recording, such as the paper of Hager et al. (2006) or Rosen et al. (2006). 

Fully connected HMMs were used for classifying hand trajectories to assess the level of surgeons' expertise. They were 

not included in our corpus since they did not incorporate any sequential aspect of the surgical processes. The models 

incorporated sequences of activities but these were not constrained. An existing recent review has already been 

published on the methods for objective surgical skills evaluation (Reiley et al., 2011), which includes all papers using 

trajectories analysis for surgical skills assessment. A non-exhaustive list of these papers is given here: Hager et al. 

(2006), Rosen et al. (2001, 2002, and 2006), Voros and Hager (2008), Lin et al. (2006). A classification of their data 

acquisition techniques and modelling is also proposed in Tab 3. 

 

 

 
Data acquisition Modelling 

 
Granularity level 

Operator +/- 

body part 

Time of 

acquisition 

Method for 

recording 

Granularity 

level 

Operator 

+/- body 

part 

Formalisation 

Surgical skill 

evaluation 
Motions Surgeon 

Intra-

operative 

Robot-supported 

recording (on-line) 
Motions Surgeon 

Sequential list 

of words 

 

Tab 3 - Classification of surgical skills evaluation using robot-supported recording publications, for the data 

acquisition and the modelling component. 

 

Others studies focused on the pre-processing steps before an SPM analysis. Radrich et al. (2008, 2009) presented a 

system for synchronising multi-modal information using various signals for surgical workflow analysis. Sielhorst et al. 

(2005) synchronised 3D movements before the comparison of surgeons' activities. Speidel et al. (2008, 2009) focused 

on the identification of instruments in MIS, with the goal of improving current intra-operative assistance systems. 

With a methodology similar to SPM, some other studies focused on the modelling of the peri operative process, 

based on hospital systems (Wendt et al., 2003; Winter et al., 2003), hospital data (Maruster et al., 2001; Rosenbloom et 

al., 2006), or on surgical staff activities (Favela et al., 2007; Sanchez et al., 2008). Other research focused on the 

modelling of the OR environment (inside and outside) but without looking at the surgery itself (Riley and Manias, 2005; 

Sandberg et al., 2005; Archer and Macario, 2006).  Their main objective is the improvement of the quality of patient 

care along with greater medical safety by studying flows or activities. Also, from an anaesthetist's point of view, work 

has been undertaken which looked at the ergonomics and organisation inside the OR (Seim et al., 2005; Schleppers and 

Bender, 2003; Decker and Bauer, 2003; Gehbard and Brinkmann, 2006). None of these studies focused on the surgical 

process and were therefore not included in our corpus.  

4. Discussion 

4.1 Modelling 
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Fig 7 - Repartition (percentage of publications) of granularity levels of the modelling. 

 

 

As we can see from Fig 7, all granularity levels have been studied, with a particular focus on steps and activities. 

Moreover, a consequent number of these studies use multiple granularity levels in their modelling. This type of 

approach seems to be required for creating global SPMs which integrate all aspects of the surgical procedure.   

 

From the methods used for formalisation, XML schema, which is a lightweight ontology, defines a grammar that 

characterises the structure of a document or the type of data used. XML schemas can be a solution for describing SPMs 

at a high level of granularity, to structure data using a well-defined grammar, but they do not include important concepts 

such as classes or organisation into a hierarchy. In addition, they do not provide a relevant solution for representing the 

dynamic aspect of the process. As XML schema, the UML class diagram does not allow unique and uniform entities to 

be defined. Both approaches seem to be less suited to the formalisation of a surgical context than heavyweight 

ontologies. These allow two elements corresponding to the same unit to be specified. Unlike taxonomies that define 

classes and the relations between these classes, ontologies allow inference rules to be defined. Jannin et al. (2003) 

proposed a model based on the pre and post-operative acquisition of data, including interviews with surgeons. The types 

of surgical procedure, steps and actions were extracted and allowed the model to be created. Additionally, information 

related to images was linked to classes. Lemke et al. (2004) first defined a surgical ontology as a formal terminology for 

a hierarchy of concepts and their relationship in the specialised clinical context of surgical procedures and actions. 

Later, Burgert et al. (2006) proposed an explicit and formal description of an upper-level-ontology based on General 

Ontological Language (GOL) for representing surgical interventions. These pieces of work were the first to introduce 

heavyweight ontologies in the context of surgery. 

Formalisation is crucial to be able to compare and share studies between different centres. Even though two centres 

acquire data about the same surgical procedure using the exact same terminology, a heavyweight ontology is still 

needed to be able to use both sets of data in a shared study, since this is the only way to ensure that a term has a single 

meaning in both studies. The more formalisation is used in the modelling, the more semantics will be considered and 

the more sharable the SPM will be. A heavy and rich formalisation is therefore the key for the future analysis of SPMs 

to tackle all these issues. 

4.2 Data acquisition 

Both observer-based and sensor-based data acquisition approaches present advantages and drawbacks. Within observer-

based approaches, the data acquisition process can be supported by two levels of knowledge: the description relies on a 

priori knowledge available thanks to common standards of surgical procedures or to fixed-protocol created by local 

experts. In the first case, standard surgical terms are reported for describing surgery whereas in the second case, the first 
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step consists of building up its own vocabulary. A new terminology is employed and permits a representation of 

knowledge that is particular to the surgeon's own experience and to the specific surgical environment. The related 

models are in most cases not based on an ontology and they are thus not an efficient formal representation of the 

knowledge and are also not easily sharable between centres. Moreover, the major concern of the on-line observer-based 

approach is the need for manual labelling that means that the system is not automatic, is time-consuming and prone to 

intra and inter observer variability. The necessity of having one person in the OR for recording, who is often an expert 

surgeon for reliable information labelling, is a strong inherent limitation to this approach. At the same time, it is the best 

way for recording finer details and capturing a high semantic level, which makes this technique advantageous compared 

to sensor-based approaches that do not acquire data at this level of semantics.  

 

Sensor-based approaches are now increasingly adopted. For motion detection using tracking systems, the main 

drawback is that it relies on tools only and rare movements may not be efficiently detected due to the lack of dedicated 

training. Compared to other data acquisition techniques, analyses of videos would permit not only the installation of 

additional materials in the OR to be avoided, but also to have a source of information that does not have to be controlled 

by a human. For instance, acquiring information from the endoscopic view is very promising for high level information 

recognition. Videos are a very rich source of information, as demonstrated in laparoscopy by Speidel et al. (2008). 

Using image-based analysis, it is possible to acquire relevant information about surgery without disturbing the flow of 

the intervention. Unfortunately, current image-based algorithms, even with progress in computer vision, do not allow 

the well-known semantic gap to be captured in full, in which low-level visual features cannot correctly represent the 

high-level semantic content of images. For instrument use models, in spite of high detection accuracies, the major 

concern is that the recording of signals is not automatic when RFID tags are not used. The entire annotation is 

performed manually, which makes the system unusable in clinical routines. In practice, RFID tags are too intrusive, and 

some vital information that could improve the detection rates is missing, such as the anatomical structures treated. 

Generally speaking, all type of sensors additionally installed in the OR show promising results for the challenge of 

workflow recovery, but the main drawback is the modification of the OR set-up and the need to manage such new 

devices. In particular, eye-gaze tracking systems are interesting because they take into account the perceptual behaviour 

of the surgeon, but it would require large modifications during the intervention course not to alter the clinical routine as 

it stands. 

In conclusion, observer-based approaches have the capacity to cover high granularity levels for describing surgery, 

from the lower level (time) to the highest, allowing the observer to take on the responsibility of acquiring semantic 

information from pre-defined terminologies and ontologies. On the other hand, it is a very time consuming and costly 

approach, with the need for a surgeon with a certain clinical background in the OR during the whole procedure. Sensor-

based approaches do not have this ability to capture information with semantic meanings, but have the advantage of 

recording live signals automatically or semi-automatically, which is less time-consuming and allows the design of 

context aware systems. 

 

Currently, no papers cover multiple levels of granularity, which shows the difficulty of combining different data 

acquisition methods at different granularity levels. Multiple sensors can be used for instance for both capturing videos 

and the positions of instruments, but the combination of observer-based and sensor-based approaches turns out to be 

very difficult to set up. We see from Fig 8 that no predominant techniques have been used.  
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Fig 8 – Repartition (% of publications) of data acquisition techniques 

4.3 Analysis 

The choice of analysis methods that allow one to go from data to model is vital in SPM methodology. Bottom-up 

approaches are the most current (Fig 9). They allow a bridging of the semantic gap between numeric and symbolic data. 

Based on a preliminary formalisation, these methods all use supervised techniques based on a training stage, except for 

the work of Ahmadi et al. (2007). People report recognition rates of from 70% up to 99% but these values are very 

difficult to compare due to the differences of validation strategies as well as the differences in surgical specialities or the 

number and type of data used. The two others approaches (approaches that stay at the same granularity level and top-

down approaches), even if they have still not completely demonstrated their interest for the field, are now more and 

more used.  

 

 
 

Fig 9 - Repartition (% of publications) of the type of approaches used for “data to model” approaches. 

 

The category of aggregation/fusion analysis method is important because it is a smart way of creating gSPMs that 

can be used as a supplementary tool for assisting surgeons. It allows creating procedural knowledge models based on an 

automated SPM analysis and not on traditional knowledge acquisition methods. The problem of this kind of approach is 

that it only represents the SPMs that are studied and may not cover all SP possibilities. Even if clearly it seems to be a 

vital aspect for improving surgical performance, no extensive work has been performed while this type of approach 

suggests good prospects in the future. Efforts must therefore be made here for integrating and automating average 

models of surgical processes in clinical routines. 
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Similar to the previous category of the analysis approach, comparison and classification using surgical processes 

has not yet motivated many studies, but it may be a direction that needs to be considered. Comparisons of tool uses, 

surgeons or surgery performance using these kinds of methods allow a quantitative validation and assessment of the 

impacts on the surgical procedure. 

4.4 Applications 

We have restricted in the diagram potential applications to the 5 most common ones cited in the papers. Additionally, 

when multiple applications were cited in the papers, we only used the main, clearly identified one. Fig 10 shows the 

repartition of applications as well as the surgical specialities. 

 

   
 

a) 

 

 
 

b) 

 

Fig 10 - Repartition (% of publications) of surgical specialities (a) and clinical applications (b). 

 

Most of the SPM studies were performed in the context of neurosurgery or endoscopy/laparoscopy. This is not 

surprising, as neurosurgery and MIS have been the most common applications used for computer-assisted surgery 

research. In the case of endoscopic and laparoscopic procedures, surgical procedures are often highly standardised, with 

a well-defined protocol, they are widely documented, and have inter-patient variability which remains very low. Data 

are also easily available for engineers for this surgical speciality. In neurosurgical procedures, data can also be easily 

acquired. In the case of eye surgery, new studies are using this surgical speciality because of the very short and 
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standardised procedures.   

The distribution of applications is more uniform than the distribution of surgical specialties. Even if systems aiming 

at improving intra-operative assistance predominate, the four other applications have been seriously and similarly 

considered. Ahead of the large number of applications cited in publications, we see that SPMs can be useful along the 

entire surgery timeline, from pre-operative use to post-operative analysis. They can be used in every medical process 

and adapted to every surgical speciality, which shows the potential importance of SPMs. 

4.5 Validation-Evaluation 

Most of the papers include validation studies (Fig 11, left) of the analysis part (69%), while only 4% of the papers 

validated the acquisition step. 27% of the papers do not validate their systems at all. When used, validations studies 

were performed (Fig 11, right) using clinical data in most cases (78%). Few studies use phantoms, simulated OR or 

computer simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 11 - Repartition (% of publications) of the types of validation (left) and types of validation data (right). 

 

Of the 46 publications that were peer-reviewed, only three of them performed evaluation studies. Tab 4 shows the 

different elements of their evaluation studies.  

 

 

 

Evaluation  

 
 

System evaluated 

Validation objective 

(Medical context) 
Dataset Metric Operator 

Katic et al. (2010) 

Context-aware 

augmented reality 

system 

Drilling planned implant Phantom 
Medical usability (questionnaire)) 

Implant position comparison 
Surgeon 

Ko et al. (2007) 

System for intelligent 

interaction scheme with 

a robot 

Porcine 

Cholecystectomy 
Clinical data Number of voice commands Surgeon 

Yoshimitsu et al. (2010) Scrub nurse robot Endoscopic surgery Clinical data Instrument targeting time Nurse 

 

Tab 4 - Classification of the 3 publications performing evaluation studies 

 

However, no validation combined to evaluation has been conducted at the same time. This shows that research in 

the field, while being under considerable development, has not yet been introduced into the clinical routine.  

4.6 Correlations with other information 

The correlation of SPMs with other information, such as patient-specific models, is an important prospect in the 

field. Patient-specific models are constructed from pre and post-operative patient data such as clinical data or images 

(Edwards et al., 1995; Biagioli et al., 2006; Verduijn et al., 2007; Kuhan et al., 2002). Being able to correlate patient 
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outcomes and pre-operative data with SPM would allow predictions to be made of the best possible surgical processes.  

 

One other possibility would be to correlate SPMs with surgeons' decision-making processes during the intervention. 

The decision-making process in surgery can be conceptualised by two steps, the assessment and the diagnosis of the 

situation that must be used to select a specific action. The major aspect of the decision-making is that the decision 

depends on the level of expertise and tasks demanded. Dedicated models can be designed for surgical decision-making 

support by including this aspect. Moreover, correlation between pre and post-operative interviews of surgeons with the 

intra-operative intervention strategy would allow an analysis of surgeons' decision-making process to be made, 

especially under the pressure of time and a better understanding and anticipation of further adverse events (Flin et al., 

2007; Jalote-Parmar et al., 2008; Morineau et al., 2009). 

4.7 Future of SPM 

Despite the potential impacts of SPM on computer assisted surgery outlined by the scientific and clinical communities, 

such methodology still needs to be deployed in clinical environments and applications and to demonstrate its added 

value. Some deadlocks remain. The first concerns the automatic acquisition and real time and robust monitoring of SPs. 

It seems clear that multi sensor approaches will be needed to reach high recognition rates at different granularity levels. 

Different points of view need to be used from closed sensors attached to operator’s body, views of the operative field, 

signals from OR devices, patient’s intraoperative data to large angle views of the whole operating room. Another issue 

relies on the computation of generic SPMs as the collection and gathering of possible SPs, as followed within an 

homogeneous population of surgical cases. Such generic SPMs constitute real procedural knowledge models (ref) and 

are needed to provide systems with a list of possible scenarios. However, they are limited by the data itself. Being sure 

that generic SPMs fully cover inter patient, inter surgeon, inter OR variability requires large worldwide data repositories 

with standardized terminologies and corresponding ontologies. The computation of generic SPMs also faces strong 

methodological issues in the aggregation/registration aspects, as a complex multi level sequence alignment problem. 

SPM methodology has the potential of allowing development of relevant comparison/classification approaches and 

metrics that could help understanding of surgical expertise. Where as the current developed metrics emphasize 

differences in practice, there is a need for methods explaining reasons of such differences. Finally, SPM methodology 

also needs to be seen by the clinicians as a skill augmentation support, a powerful teaching tool, rather than a “big 

brother” style-watching eye. Without a clear understanding of potential added value of the methodology by the 

clinicians, as well as a strong ethical awareness and control of the use of such data, such methodology will hardly be 

accepted by clinicians, increasing time from bench to bedside. 

5. Conclusion  

Following the growing need for a new generation of CAS systems, new techniques have emerged based on the 

modelling of surgical processes. Research studies have been performed towards the development of sophisticated 

techniques for optimising, understanding and better managing surgeries and the OR environment based on SPMs. In 

this paper, we have presented a methodological review of the creation and the analysis of SPMs, focusing on works that 

modelled the procedural dimension. To organize the review, we have introduced a classification based on 5 major 

aspects of the SPM methodology: acquisition, modelling, analysis, application, and validation/evaluation. Using this 

classification, we have presented the existing literature and discussed the different existing methods and approaches. On 

the methodological side, we have shown that efforts still remain to be made in integrating the different granularity 

levels into a global framework. Both bottom-up and top-down approaches need to be combined. Methods are still 

needed to combine SPM into average generic SPMs. This methodological review has emphasised the possible large 

impact that SPM methodology may have in future surgical innovations as well as in surgical education, planning or 

intra-operative purposes. However, the technology is recent and there is still a lot of work to be done to demonstrate 

quantitatively its ethical added value within concrete clinical applications.  

 



 

23 

 

References 

 

 Agarwal S, Joshi A, Finin T, Yesha Y, Ganous T. A pervasive computing system for the operating room of the 

future. Mobile Networks and Applications. 2007; 12(2,3): 215-28. 

 Ahmadi A, Sielhorst T, Stauder R, Horn M, Feussner H, Navab N. Recovery of surgical workflow without explicit 

models. Med Image Comput Comput Assist Interv. 2006; 9(1): 420-8. 

 Ahmadi A, Padoy N, Rybachuk K, Feussner H, Heining SM, Navab, N. Motif discovery in OR sensor data with 

application to surgical workflow analysis and activity detection. M2CAI workshop, Med Image Comput Comput 

Assist Interv. 2009. 

 Archer T and Macario A. The drive for operating room efficiency will increase quality of patient care. Curr Opin 

Anaesthesiol. 2006; 19: 171-6. 

 Bann MS, Khan, Darzi A. Measurement of surgical dexterity using motion analysis of simple bench skills. World J 

Surg. 2003; 27: 390-4. 

 Biagioli B, Scolletta S, Cevenini G, Barbini E, Giomarelli P, Barbini P. A multivariate Bayesian model for 

assessing morbidity after coronary artery surgery. Crit Care. 2006; 10(3): R94. 

 Blum T, Padoy N, Feussner H, Navab N. Workflow mining for visualization and analysis of surgeries. Int J 

Comput Assisted Radiol Surg. 2008; 3(5): 379-86. 

 Bouarfa L, Jonker PP, Dankelman J. Discovery of high-level tasks in the operating room. J Biomed Inform. 2011; 

44(3): 455-62. 

 Bhatia B, Oates T, Xiao Y, Hu P. Real-time identification of operating room state from video. AAAI. 2007; 1761-6. 

 Burgert O, Neumuth T, Lempp F, Mudunuri R, Meixensberger J, Strauß G, Dietz A, Jannin P, Lemke HU. Linking 

top-level ontologies and surgical workflows. Int J Comput Assisted Radiol Surg. 2006; 1(1): 437-8. 

 Cao CGL, MacKenzie CL, Payandeh S. Task and Motion Analysis in Endoscopic Surgery. ASME Dynamic 

Systems, 5th Annual Symposium on Haptic Interface for Virtual Environment and Teleoperation. 1996. 

 Claus GP, Sjoerdsma W, Jansen A, Grimbergen CA. Quantitative standardised analysis of advanced laparoscopic 

surgical procedures. Endosc Surg Allied Technol. 1995; 3: 210-3. 

 Cleary K, Chung HY, Mun SK. OR 2020: The operating room of the future. Laparoendoscopic and Advanced 

Surgical Techniques. 2005; 15(5): 495-500. 

 Coles EC and Slavin G. An evaluation of automatic coding of surgical pathology reports. J Clin Pathol. 1976; 

29(7): 621-6. 

 Darzi A, Mackay S. Skills assessment of surgeons. Surgery. 2002; 131(2): 121-4.  

 Decker K and Bauer M. Ergonomics in the Operating Room. Minim Invasive Ther Allied Technol. 2003; 12(6): 

268-77. 

 Den Boer KT, de Wit LT, Davids PHP, Dankelman J, Gouma DJ. Analysis of the quality and efficiency of learning 

laparoscopic skills. Surg Endosc. 2001; 15: 497-503. 

 Dexter F, Epstein RH, Traub RD, Xiao Y.Making management decisions on the day of surgery based on operating 

room efficiency and patient waiting times. Anesthesiology. 2004; 101(6): 1444-53.  

 Dosis A, Bello F, Moorthy K, Munz Y, Gillies D, Darzi A. Real-time synchronization of kinematic and video data 

for the comprehensive assessment of surgical skills. Stud Health Technol Inform. 2004; 98:82-8  

 Edwards FH, Peterson RF, Bridges C, Ceithaml EL. 1988: Use of a Bayesian statistical model for risk assessment 

in coronary artery surgery. Updated in 1995. Ann Thorac Surg. 1995; 59(6): 1611-2.  

 Favela J, Tentori M, Castro LA, Gonzalez VM, Moran EB, Martinez-Garcia AI. Activity recognition for context-

aware hospital applications: issues and opportunities for the deployment of pervasive networks. Mobile Networks 

Applications. 2007; 12(2,3): 155-71. 

 Fischer M, Strauss G, Burgert O, Dietz A, Trantakis C, Meixensberger J, Lemke HU. ENT-surgical workflow as an 

instrument to assess the efficiency of technological developments in medicine. Comput Assisted Radiol Surg. 

2005; 851-5. 

 Flin R, Youngson G, Yule S. How do surgeons make intraoperative decisions. Qual Saf Health Care. 2007; 16: 

235-9. 

 Forestier G, Lalys F, Riffaud L, Trelhu B, Jannin P. Classification of surgical processes using dynamic time 

warping. J Biomed Inform. 2012; 45: 255-64. 

 Gehbard F and Brinkmann, A. Management of an operating room in a university hospital. Zentralbl Chir. 2006; 

131(4): 341-6. 

 Hager G, Vagvolgyi B, Yuh D. Stereoscopic video overlay with deformable registration. Medicine Meets Virtual 

Reality. 2007. 

 Haro BB, Zapella L, Vidal R. Surgical gesture classification from video data. Med Image Comput Comput Assist 

Interv. 2012; 7510: 34-41. 

 Houliston BR, Parry DT, Merry AF. TADAA: Towards automated detection of anaesthetic activity. Methods of 

Information in Medicine. 2011; 50(5): 464-71. 

 Hu P, Ho D, MacKenzie CF, Hu H, Martz D, Jacobs J, Voit R, Xiao Y. Advanced Visualization platform for 

surgical operating room coordination. Distributed video board system. Surg innovation. 2006; 13(2): 129-35.  



 

24 

 

 Ibbotson JA, MacKenzie CL, Cao CG, Lomax AJ. Gaze patterns in laparoscopic surgery. Stud Health Technol 

Inform. 1999; 7: 154-60. 

 Jalote-Parmar A, van Alfen M, Hermans JJ. Workflow Driven User Interface for Radiological System: A Human 

Factors Approach. Comput Assisted Radiol Surg. 2008. 

 James A, Vieira D, Lo BPL, Darzi A, Yang GZ. Eye-gaze driven surgical workflow segmentation. Med Image 

Comput Comput Assist Interv. 2007; 10(2):110-7. 

 Jannin P, Raimbault M, Morandi X, Seigneuret E, Gibaud B. Design of a neurosurgical gestures model for 

multimodal image guided surgery. Comput Assisted Radiol Surg. 2001; 102-107. 

 Jannin P, Raimbault M, Morandi X, Riffaud L, Gibaud B. Model of surgical procedures for multimodal image-

guided neurosurgery. Computer Aided Surgery. 2003; 8(2): 98-106. 

 Jannin P, Grova C, Maurer CR. Model for defining and reporting reference-based validation protocols in medical 

image processing. Int J Comput Assist Interv. 2006; 1(2): 1001-115. 

 Jannin P Morandi X. Surgical models for computer-assisted neurosurgery. Neuroimage. 2007; 37(3): 783-91.Katic 

D, Sudra G, Speidel S, Castrillon-Oberndorfer G, Eggers G, Dillman R. Knowledge-based situation interpretation 

for context-aware augmented reality in dental implant surgery. Med Imaging Augmented Reality. 2010; 531-40. 

 Klank U, Padoy N, Feussner H, Navab N. Automatic feature generation in endoscopic images. Int J Comput 

Assisted Radiol Surg. 2008; 3(3,4): 331-9. 

 Ko SY, Kim J, Lee WJ, Kwon DS. Surgery task model for intelligent interaction between surgeon and laparoscopic 

assistant robot. J Robotics Mechatronics. 2007; 8(1): 38-46. 

 Kuhan G, Marshall EC, Abidia AF, Chetter IC, McCollum PT. A Bayesian hierarchical approach to comparative 

audit for carotid surgery. Eur J Vasc Endovasc Surg. 2002; 24(6): 505-15.  

 Kuhnapfel U, Cakmak HK, Maab H. Endoscopic Surgery Training using Virtual Reality and Deformable Tissue 

Simulation. Computer and Graphics. 2000; 24: 671-82. 

 Lalys F, Riffaud L, Bouget D, Jannin P. A framework for the recognition of high-level surgical tasks from video 

images for cataract surgeries. IEEE Trans Biomed Eng. 2012a; 59(4): 966-76. 

 Lalys F, Bouget D, Riffaud L, Jannin P. Automatic knowledge-based recognition of low-level tasks in 

opthalmological procedures. Int J Comput Assist Radiol Surg. 2012b; 8(1): 39-49. 

 Lemke HU, Trantakis C, Köchy K, Müller A, Strauss G, Meixensberger J. Workflow analysis for mechatronic and 

imaging assistance in head surgery. Int Congress Series. 2004; 1268: 830-5. 

 Lin HC, Shafran I, Yuh D, Hager GD. Towards automatic skill evaluation: Detection and segmentation of robot-

assisted surgical motions. Computer Aided Surgery. 2006; 11(5): 220-30. 

 Lo B, Darzi A, Yang G. Episode Classification for the Analysis of Tissue-Instrument Interaction with Multiple 

Visual Cues. Med Image Comput Comput Assist Interv. 2003; 1: 231-7. 

 MacKenzie CL, Ibbotson AJ, Cao CGL, Lomax A. Hierarchical decomposition of laparoscopic surgery: a human 

factors approach to investigating the operating room environment. Minim Invasive Ther Allied Technol. 2001; 

10(3): 121-8. 

 Malik R, White P, Macewen C. Using human reliability analysis to detect surgical error in endoscopic DCR 

surgery. Clin Otolaryngol Allied Sci. 2003; 28: 456-60. 

 Maruster L, van der Aalst W, Weijters T, van den Bosch A, Daelemans W. Automatic discovery of workflows 

models from hospital data. BNAIC. 2001; 183-90. 

 Marvik R, Lango T, Yavuz Y. An experimental operating room project for advanced laparoscopic surgery. Semin 

Laparosc Surg. 2004; 11: 211-6. 

 Mehta NY, Haluck RS, Frecker MI, Snyder AJ. Sequence and task analysis of instrument use in common 

laparoscopic procedures. Surgical Endoscopy. 2002; 16(2): 280-5. 

 Meng F, D'Avolio LW, Chen AA, Taira RK, Kangarloo H. Generating models of surgical procedures using UMLS 

concepts and multiple sequence alignment. Am Med Inform Assoc Annu Symp Proc. 2005; 520-4. 

 Meyer MA, Levine WC, Egan MT, Cohen BJ, Spitz G, Garcia P, Chueh H, Sandberg WS. A computerized 

perioperative data integration and display system. Int J Comput Assisted Radiol Surg. 2007; 2(3,4): 191-202. 

 Miyawaki F, Masamune K, Suzuki S, Yoshimitsu K, Vain J. Scrub nurse and timed-automata-based model for 

surgery. IEEE Industrial Electronics Trans. 2005; 5(52): 1227-35. 

 Morineau T, Morandi X, Le Moëllic N, Diabira S, Haegelen C, Hénaux PL, Jannin P. Decision making during 

preoperative surgical planning. Human factors. 2009; 51(1): 66-77. 

 Münchenberg J, Brief J, Raczkowsky J, Wörn H, Hassfeld S, Mühling J. Operation Planning of Robot Supported 

Surgical Interventions. Int Conf Intelligent Robots Systems. 2000; 547-52. 

 Nara A, Izumi K, Iseki H, Suzuki T, Nambu K, Sakurai Y. Surgical workflow monitoring based on trajectory data 

mining. New frontiers in Artificial Intelligence. 2011; 6797: 283-91. 

 Neumuth T, Schumann S, Strauss G, Jannin P, Meixensberger J, Dietz A, Lemke HU, Burgert O. Visualization 

options for surgical workflows. Int J Comput Assisted Radiol Surg. 2006a; 1(1): 438-40. 

 Neumuth T, Durstewitz N, Fischer M, Strauss G, Dietz A, Meixensberger J, Jannin P, Cleary K, Lemke HU, 

Burgert O. Structured recording of intraoperative surgical workflows. SPIE medical imaging - PACS in Surgery. 

2006b: 6145; 61450A. 



 

25 

 

 Neumuth T, Trantakis C, Eckhardt F, Dengl M, Meixensberger J, Burgert O. Supporting the analysis of inter-

vention courses with surgical process models on the example of fourteen microsurgical lumbar discectomies. Int J 

Comput Assisted Radiol Surg. 2007; 2(1): 436-8. 

 Neumuth T, Jannin P, Strauss G, Meixensberger J, Burgert O. Validation of Knowledge Acquisition for Surgical 

Process Models. J Am Med Inform Assoc. 2008; 16(1): 72-82. 

 Neumuth T, Loebe F, Jannin P. Similarity metrics for surgical process models. Artif Intell Med. 2012a; 54(1): 15-

27. 

 Neumuth T, Liebmann P, Wiedemann P, Meixensberger J. Surgical workflow management schemata for cataract 

procedures. Process Model-based design and validation of workflow schemata. Methods Inf Med. 2012b; 51(4). 

 Neumuth T and Meissner C. Online recognition of surgical instruments by information fusion. Int J Comput 

Assisted Radiol Surg. 2012c (In press) 

 Nomm S, Petlenkov E, Vain J, Belikov J, Miyawaki F, Yoshimitsu K. Recognition of the surgeon's motions during 

endoscopic operation by statistics based algorithm and neural networks based ANARX models. Proc Int Fed 

Automatic Control. 2008. 

 Padoy N, Horn M, Feussner H, Berger M, Navab N. Recovery of surgical workflow: a model-based approach. Int 

J Comput Assisted Radiol Surg. 2007; 2(1): 481-2. 

 Padoy N, Blum T, Feuner H, Berger MO, Navab N. On-line recognition of surgical activity for monitoring in the 

operating room. Conf Inno App Art Intell. 2008. 

 Padoy N, Blum T, Ahmadi SA, Feussner H, Berger MO, Navab N. Statistical modeling and recognition of surgical 

workflow. Med Image Anal. 2010; 16(3): 632-41. 

 Payandeh S, Lomax AJ, Dill J, Mackenzie CL, Cao CGL. On Defining Metrics for Assessing Laparoscopic 

Surgical Skills in a Virtual Training Environment. Stud Health Technol Inform. 2002; 85:334-40. 

 Patel, V. L., J. F. Arocha, et al. A primer on aspects of cognition for medical informatics. J Am Med Inform Assoc. 

2001; 8(4): 324-43. 

 Payne PRO, Mendonca EA, Johnson SB, Starren JB. Conceptual knowledge acquisition in biomedicine: a 

methodological review. J Biomed Inform. 2007; 40(5): 582-602. 

 Qi J, Jiang Z, Zhang G, Miao R, Su Q. A surgical management information system driven by workflow. IEEE 

Conf Service Operat Logist Inf. 2006; 1014-8. 

 Radrich H. Vision-based motion monitoring trough data fusion from a chirurgical multi-camera recording system. 

Diploma thesis. TUM, Munich. 2008. 

 Radrich H, Padoy N, Ahmadi A, Feussner H, Hager G, Burschka D, Knoll A. Synchronized multimodal recording 

system for laparoscopic minimally invasive surgeries. M2CAI workshop, Med Image Comput Comput Interv. 

2009. 

 Rattner WD, Park A. Advanced devices for the operating room of the future. Seminars in laparoscopic surgery. 

2003; 10(2): 85-8. 

 Reiley CE, Lin HC, Yuh DD, Hager GD. Review of methods for objective surgical skill evaluation. Surg Endosc. 

2011. 25(2), 356-66.  

 Riedl S. Modern operating room mangement in the workflow of surgery. Spectrum of tasks and challenges of the 

future. Der Chirurg. 2002; 73: 105-10.  

 Riley R and Manias E. Governing Time in Operating Rooms. J Clin Nurs; 2005:15(5); 546-53. 

 Rosen J, Hannaford B, Sinanan M, Solazzo M. Objective Evaluation Of Laparoscopic Surgical Skills Using 

Hidden Markov Models Based On Haptic Information And Tool/tissue Interactions. Stud Health Technol Inform. 

2001; 81: 417-23. 

 Rosen J, Solazzo M, Hannaford B, Sinanan M. Task decomposition of laparoscopic surgery for objective 

evaluation of surgical residents’ learning curve using hidden markov model. Comput Aided Surg. 2002; 7(1): 49-

61. 

 Rosen J, Brown JD, Chang L, Sinanan M, Hannaford B. Generalized Approach for Modeling Minimally Invasive 

Surgery as a Stochastic Process Using a Discrete Markov Model. IEEE Trans Biomed Eng. 2006; 53(1): 399-413. 

 Rosenbloom ST, Miller RA, Johnson KB, Elkin PL, Brown SH. Facilitating direct entry of clinical data into 

electronic health record systems. J Am Med Inform Assoc. 2006; 13(3): 277-88. 

 Sanchez D., Tentori, M., Favela, J. Activity recognition for the smart hospital. IEEE intelligent systems. 2008; 

23(2): 50-7. 

 Sandberg WS, Daily B, Egan MT, Stahl JE, Goldman JM, Wiklund RA, Rattner D. Deliberate perioperative 

systems design improves operating room throughput. Anesthesiology. 2005; 103: 406-18. 

 Satava RM and Carrico CJ. Advanced Simulation Technologies for Surgical Education. Bulletin of the American 

College of Surgeon. 1996; 81(7): 71-7. 

 Satava R, Cuschieri A, Hamdorf J. Metrics for objective assessment. Surg Endosc. 2003; 17(2):220-6.  

 Schleppers A and Bender H. Optimised workflow and organisation – from the point of view of an anaesthesiolo-g 

department. Minim Invasive Ther Allied Technol. 2003; 12(6): 278-83. 

 Seim AR, Meyer M, Sandberg WS. Does parallel workflow impact anaesthesia quality. Am Med Inform Assoc 

Annu Symp Proc. 2005; 1053.  

http://www.ncbi.nlm.nih.gov/pubmed?term=On%20Defining%20Metrics%20for%20Assessing%20Laparoscopic%20Surgical%20Skills%20in%20a%20Virtual%20Training%20Environmen


 

26 

 

 Sielhorst, T., Blum, T., Navab, N. Synchronizing 3d movements for quantitative comparison and simultaneous 

visualization of actions. Int Symp Mix Augm Real. 2005; 38-47. 

 Sjoerdsma W, Meijer D, Jansen A, den Boer KT, Grimbergen CA. Comparison of efficiencies of three techniques 

for colon surgery. J Laparoendosc Adv Surg Tech. 2000; 10(1): 47-53. 

 Speidel S, Sudra G, Senemaud J, Drentschew M, Müller-Stich BP, Gun C, Dillmann R. Recognition of risk 

situations based on endoscopic instrument tracking and knowledge based situation modeling. Progress Biomed 

Optics Imaging. 2008; 9(1): 35. 

 Speidel S, Benzko J, Krappe S, Sudra G, Azad P, Müller-Stich BP, Gutt C, Dillmann R. Automatic classification of 

minimally invasive instruments based on endoscopic image sequences. Progress Biomed Optics Imaging. 2009; 

10(1): 37. 

 Sudra G, Speidel S, Fritz D, Möller-Stich BP, Gutt C, Dillmann R. MEDIASSIST: MEDIcal ASSITance for 

intraoperative skill transfer in minimally invasive surgery using augmented reality. Progress Biomed Optics 

Imaging. 2007; 8(2). 

 Suzuki T, Yoshimitsu K, Tamura M, Muragaki Y, Iseki H. Video information management system for information 

guided neurosurgery. Comp Aided Surg. 2012; 3(3), 75-82. 

 Taylor C, Draney MT, Ku JP, Parker D, Steele BN, Wang K, Zarins CK. Predictive medicine: computational 

techniques in therapeutic decision making. Comp Aid Surg. 1999; 4: 231-47. 

 Thiemjarus S, James A, Yang GZ. An eye-hand data fusion framework for pervasive sensing of surgical activities. 

Pattern Recognition. 2012; 45(8): 2855-67. 

 Verduijn M, Rosseel PM, Peek N, de Jonge E, de Mol BA. Prognostic Bayesian networks II: an application in the 

domain of cardiac surgery. J Biomed Inform. 2007; 40(6): 619-49. 

 Voros S and Hager GD. Towards “real-time” tool-tissue interaction detection in robotically assisted laparoscopy. 

Int Conf IEEE Biomed Robot Biomechat. 2008: 562-7. 

 Weinger MB, Herndon OW, Zornow MH, Paulus MP, Gaba DM, Dallen LT. An objective methodology for task 

analysis and workload assessment in anesthesia providers. Anesthesiology. 1994: 80(1); 77-92. 

 Wendt T, Häber A, Brigl B, Winter A. Modeling hospital information systems (Part 2): using the 3LMG2 tool for 

modelling patient, record management. Methods Inf Med; 2003: 43(3); 256-67. 

 WFMC – Workflow management coalition. Terminology & glossary. Doc number WFMC-T-1011, Issue 3.0. 

Winchester, UK.1999. 

 Winter A, Brigl B, Wendt T. Modeling Hospital information systems (Part 1): The revised three-layer graph-based 

meta model 3LGM2. Method Inf Med. 2003; 42(5): 544-51. 

 Xiao, Y., Hu, P., Hu, H., Ho, D., Dexter, F., Mackenzie, CF., Seagull, FJ. An algorithm for processing vital sign 

monitoring data to remotely identify operating room occupancy in real-time. Anesth Analg, 2005; 101(3): 823-32. 

 Yoshimitsu K, Masamune K, Iseki H, Fukui Y, Hashimoto D, Miyawaki F. Development of scrub nurse robot 

(SNR) systems for endoscopic and laparoscopic surgery. Micro-NanoMechatronics Human Science. 2010; 83-88.  

 Yule S, Flin R, Paterson-Brown S, Maran N.  Non-technical skills for surgeons in the operating room: a review of 

the literature. Surgery. 2006; 193(2): 140-9.    

 

 

 


