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A unique in vivo experimental approach reveals
metabolic adaptation of the probiotic
Propionibacterium freudenreichii to the colon
environment
Taous Saraoui1,2,6, Sandrine Parayre1,2, Grégory Guernec3,7, Valentin Loux4, Jérôme Montfort3, Aurélie Le Cam3,

Gaëlle Boudry5, Gwenaël Jan1,2 and Hélène Falentin1,2*

Abstract

Background: Propionibacterium freudenreichii is a food grade bacterium consumed both in cheeses and in
probiotic preparations. Its promising probiotic potential, relying largely on the active release of beneficial
metabolites within the gut as well as the expression of key surface proteins involved in immunomodulation,
deserves to be explored more deeply. Adaptation to the colon environment is requisite for the active release of
propionibacterial beneficial metabolites and constitutes a bottleneck for metabolic activity in vivo. Mechanisms
allowing P. freudenreichii to adapt to digestive stresses have been only studied in vitro so far. Our aim was
therefore to study P. freudenreichii metabolic adaptation to intra-colonic conditions in situ.

Results: We maintained a pure culture of the type strain P. freudenreichii CIRM BIA 1, contained in a dialysis bag,
within the colon of vigilant piglets during 24 hours. A transcriptomic analysis compared gene expression to
identify the metabolic pathways induced by this environment, versus control cultures maintained in spent
culture medium.
We observed drastic changes in the catabolism of sugars and amino-acids. Glycolysis, the Wood-Werkman cycle
and the oxidative phosphorylation pathways were down-regulated but induction of specific carbohydrate
catabolisms and alternative pathways were induced to produce NADH, NADPH, ATP and precursors (utilizing of
propanediol, gluconate, lactate, purine and pyrimidine and amino-acids). Genes involved in stress response
were down-regulated and genes specifically expressed during cell division were induced, suggesting that
P. freudenreichii adapted its metabolism to the conditions encountered in the colon.

Conclusions: This study constitutes the first molecular demonstration of P. freudenreichii activity and
physiological adaptation in vivo within the colon. Our data are likely specific to our pig microbiota composition
but opens an avenue towards understanding probiotic action within the gut in further studies comparing
bacterial adaptation to different microbiota.
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Background
Propionibacterium freudenreichii is a food-grade GRAS

bacterium, used as a cheese ripening starter, which dis-

plays promising probiotic potential that needs to be ex-

plored more deeply [1]. In vivo experiments indicate that

P. freudenreichii consumption results in modulation of the

gut microbiota, including enhancement of the bifidobac-

terial population [2-4] and decrease in Clostridium and

Bacteroides [5]. Modulation of gut content enzymatic

activity was also reported, including enhancement of beta-

galactosidase activity and decrease in beta-glucuronidase

and azoreductase activities [6-8]. In vitro and in human-

microbiota-associated (HMA) rats, P. freudenreichii favored

apoptotic depletion of colon cancer cells [9,10]. Finally,

P. freudenreichii was shown to induce the synthesis of the

regulatory cytokine IL-10 in human PBMCs and to protect

mice against experimental colitis [11]. In humans, a milk

whey culture of P. freudenreichii correspondingly alleviates

ulcerative colitis symptoms [12,13].

There is experimental evidence that the aforementioned

probiotic effects rely on the active release of beneficial

metabolites within the gut. The bifidogenic effect of

P. freudenreichii depends on production of propionate,

2-amino-3-carboxy-1,4-napthoquinone (ACNQ) and 1,

4-dihydroxy-2-naphthoic acid (DHNA), an intermediate

in the menaquinone (vitamin K2) biosynthesis pathway

[14]. ACNQ, which may derive from DHNA, serves as an

electron acceptor of NAD(P)H diaphorase and as electron

donor of NAD(P)H peroxidase in bifidobacteria [15,16].

NAD(P) + regeneration would be responsible for bifidobac-

teria growth stimulation by propionibacteria via DHNA

and ACNQ. Production of bacteriocins by dairy propioni-

bacteria may also participate in microbiota modulation

[17]. Dairy propionibacteria also release beta-galactosidase

in the presence of bile salts [12]. The modulation of impor-

tant parameters of gut physiology such as motility, absorp-

tion, differentiation and apoptosis depends on propionate,

folate (vitamin B9) and nitric oxide (NO) production [1,18].

Finally, protective properties of P. freudenreichii against

colitis are reportedly linked with the ability to synthesize

immunomodulatory proteins [11] and to release the bifido-

genic compounds cited above [19,20].

Adaptation to the colonic lumen conditions is a pre-

requisite to active production and release of beneficial me-

tabolites. However, this environment may be stressful for

ingested bacteria, due to host defense mechanisms inclu-

ding pH variations, peristaltism, antimicrobial peptides and

bile acids, and to competition with resident microbiota for

nutrient acquisition and for growth niches. Adaptation to

the two major digestive stresses, acidic pH and elevated bile

salts concentration, was demonstrated in vitro in P. freu-

denreichii and the corresponding mechanisms were investi-

gated using proteomics. Acid adaptation requires induction

of enzymes involved in DNA synthesis and repair, in central

carbon metabolism, including the transcarboxylase cycle

specific to propionic fermentation in propionibacteria; and

in polypeptide metabolism (ClpB, ClpC) as well as the

universal chaperones GroEL and GroES [21-23]. Bile

salts adaptation relies on the induction of proteins in-

volved in stress sensing and signal transduction, in oxi-

dative stress remediation and detoxification (superoxide

dismutase, cysteine synthase, ABC transporters) and in

the Wood-Werkman cycle [23,24]. Such adaptation leads

to P. freudenreichii tolerance to elevated doses of these

stresses. Moreover, P. freudenreichii can survive and main-

tain an active metabolism within the digestive tract of

HMA rats [9,25] and of human volunteers [10,26]. How-

ever the molecular mechanisms responsible for this adap-

tation have not been fully elucidated in P. freudenreichii.

To investigate probiotic activity within the colon en-

vironment, in vivo expression technology (IVET) and

recombination-based in vivo expression technologies

(R-IVET) can be used. R-IVET achieved to compare

gene expression between laboratory medium and in vivo

conditions [27]. However, such methods require a pro-

moter probe library in a genetically accessible probiotic

strain, which is not available for P. freudenreichii. More-

over, they allow detection of promoter activities and re-

quire confirmation of gene induction. Another approach

is thus needed for genome-wide expression monitoring in

this actinobacterium. We recently developed proteomic

and transcriptomic tools to monitor in vitro gene expres-

sion under different stress conditions including heat, cold,

acid, bile salts or conditions encountered within cheese

curd [21,23,24,28-30]. For the present work, we developed

a new experimental strategy to investigate P. freudenreichii

activity within the colon of live animals. We chose the

pig, a suitable model, because of the physiological and

anatomical similarities of its gastro-intestinal tract to that

of humans [31]. A stationary phase culture, contained in

an implant that allowed exchange with the luminal con-

tent through a dialysis membrane, was kept within the

colon of vigilant piglets during 24 hours. Using our tran-

scriptomic tools, bacterial gene expression was then com-

pared to that of control bacteria kept in spent YEL culture

medium.

Methods

Strain culture

This study was conducted on P. freudenreichii strain CIRM

BIA 1 whose genome has been sequenced and annotated

[32]. It was obtained from the CIRM BIA collection (Centre

International de Ressources Microbiennes – Bactéries

d'Intérêt Alimentaire, STLO, INRA Rennes, France) and

was grown at 30°C in YEL broth [33] in closed glass tubes

without agitation. Growth was monitored spectrophoto-

metrically at 650 nm (A650nm). Cultures were stopped at an

A650nmof 3 ; i.e. in early stationary phase (close to 72 hours).
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Cultures were either kept in the spent YEL culture medium

for 24 hours or concentrated 5 times by a 5 min centrifuga-

tion (6000 g) at the growing temperature (30°C) and resus-

pended in spent YEL culture medium prior to introduction

into dialysis tubing.

Intra-colonic dialysis tubing

An intra-colonic dialysis tubing designed to contain the

bacteria but allow the exchange of solutes was custom-

made using a 50 kDa-cut-off SpectraPore® regenerated

cellulose dialysis tube, 1 cm in diameter. This tube

(13 cm long) was sealed at one end by a knot and fas-

tened to a surgical catheter at the other end. Tightness

was achieved using surgical thread (Additional file 1:

Figure S1). Sterilization of the dialysis tubing was per-

formed for 10 min at 105°C. Water tightness was checked

before use. Bromophenol Blue permeability and Dextran

Blue impermeability were checked, along with the diffu-

sion of bile salts across the dialysis tubing envelope (see

Additional file 1: Figure S1). Five mL of stationary phase

culture (1010 CFU/mL) were introduced aseptically in

the dialysis tubing through the catheter using a syringe

equipped with a 0.8 mm-diameter needle.

Animal procedure

The experimental protocol was designed in compliance

with recommendations of the French law (2001–464 29/

05/01) and EEC (86/609/CEE) for the care and use of

laboratory animals. It was approved by the Comité Rennais

d’Ethique en matière d’Expérimentation Animale (pro-

tocol #R-2010-GB01). Four ((Pietrain x Landrace) x Large

White) pigs (30 kg) from the experimental herd of INRA

St-Gilles (France) were housed individually in stainless steel

cages in a temperature-controlled (23°C) and 12 h/12 h

dark/light cycle room. They were acclimated to their new

housing conditions for 1 week. After an overnight fast, pigs

were anesthetized using isoflurane. After laparotomy, a sili-

con T-cannula was inserted into the proximal colon (15 cm

distal to the ileo-caecal valvula) and exteriorized on the left

side of the animal. Pigs were given morphine chlorhydrate

subcutaneously during the surgical procedure and 12 hr

after as well as ampicillin (30 mg/kg/d intra-muscular) for

3 days. Animals allowed one week for recovery and were

fed a standard pig diet (Additional file 2: Table S1). After

this recovery phase, the dialysis tubing was inserted into

the colonic lumen through the cannula and left for 24 hrs.

Briefly, animals were sedated using ketamine (10 mg/ intra-

muscular). The cannula was opened and the dialysis tubing

inserted slowly into the colonic lumen. It was tightly an-

chored to the cannula using a thread. The cannula was then

closed. The pig was monitored while recovering from

sedation then allowed freedom of movement and normal

access to food and water for 24 hrs. After this period, the

animal was again sedated with ketamine and the dialysis

tubing slowly removed from the colonic lumen by pulling

on the thread. A new dialysis tubing was then inserted. This

was repeated 4 times on 4 consecutive days, to generate 16

biological replicates from 16 independent fresh cultures. A

flowchart (Additional file 3: Figure S2) summarized the

complete experiment.

RNA extraction and quality control

1 ml of each culture or of a 1/10 v:v PBS dilution of the

content of the dialysis tubing was mixed to 2 volumes of

RnaProtect (Qiagen, Hilden, Germany), left 5 min at room

temperature and then centrifuged (8,000 g, 10 min, at room

temperature). The supernatant was removed and the pellet

stored at −80°C until total RNA was extracted. Pellets were

thawed on ice, suspended in 200 μL of lysis buffer (50 mM

Tris–HCl, 1 mM EDTA; pH 8.0) containing 20 mg/mL

lysozyme (MP Biomedicals, Illkirch, France) and 50 U/mL

mutanolysin (Sigma, Saint Quentin Fallavier, France), and

incubated for 15 min at 24°C. The suspensions were then

transferred to two milliliters tubes containing 50 mg of

zirconium beads (diameter, 0.1 mm; BioSpec Products,

Bartlesville, OK) and 100 μL of SDS (10%). The tubes were

shaken twice for 90 s at 30 Hz with a bead beater (MM301;

Retsch, Haan, Germany) chilled on ice for two min between

the shaking steps. RNA extraction was then performed

using an RNeasy minikit (Qiagen) and the Qiacube extrac-

tion robot (Qiagen) according to the instructions of the

manufacturer. RNA were suspended in 50 μL of RNase-

free water and treated with DNase (DNA free; Ambion,

Cambridgeshire, United Kingdom) according to the in-

structions of the supplier, and then stored at −80°C until

use. Quantification of RNA was performed and contam-

ination of RNA by proteins was assessed spectrophotomet-

rically using a NanoDrop ND-1000 spectrophotometer

(NanoDrop Technologies,Inc., Rockland, DE). RNA quality

was evaluated using an Agilent 2100 bioanalyzer (Agilent

Technologies, Santa Clara, CA, USA). All of the RNA sam-

ples from spent medium had a RIN value greater than 7.5,

indicating good integrity of the rRNA. On the other hand,

three samples from the intra-colonic environment was

excluded from hybridization experiments because its

RIN values was lower than 7.5 and one sample from the

intra-colonic environment was excluded because its RNA

concentration was too low (for details on RIN and con-

centration see Additional file 4: Table S2). The absence of

genomic DNA was confirmed by quantitative PCR.

Microarray hybridization

A 8 × 15 K microarray was designed using eArray (Agilent

technologies (https://earray.chem.agilent.com/earray/)) with

the following parameters: probe length 60 bp, 1 probe per

target, probe orientation sense, best probe methodology,

design with 3’ bias, possibility of probes trimming, pre-

ferred Tm 85°C (isothermal and GC rich genome).
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Microarrays are available under design ID 034169 and array

name pfreudenreichii-cirm1. RNA were retrotranscribed

into cDNA and labelled with cyanine with the One color

microarray-based prokaryote analysis FairPlay III Labeling

kit (Agilent Technologies) according to manufacturer in-

structions. Briefly, for each sample, 6 μg of total RNA were

retrotranscribed into cDNA with incorporation of an

amino-allyl dUTP and labeled using CyDye Cy3 mono re-

active (GE Healthcare, Orsay, France). Yield (> 650 ng of

cDNA) and specific activity (> 40 pmol of Cy3 per μg of

cDNA) of the Cy3-cDNA produced were checked with the

Nanodrop. 600 ng of Cy3-cDNA were hybridized on a sub-

array. Hybridization was carried out for 17 hours at

65°C using a Microarray hybridization chamber (Agilent

Technologies) in a rotating hybridization oven prior to

washing per Agilent protocol and scanning with an Agilent

Scanner (DNA Microarray Scanner, Agilent Technologies)

using the standard parameters for a gene expression 8 ×

15K oligoarray (5 μm and 20 bits). Data were then obtained

with the Agilent Feature Extraction software (10.5.1.1) ac-

cording to the appropriate GE protocol (GE1_105_Dec08).

Probes were considered valid when the corresponding spots

were present in at least 80% of the replicates of each experi-

mental condition after the flagging procedure (66 probes

were thus omitted from the rest of the analysis). The

remaining bad spots (less than 5% of the total) were im-

puted by the k-nearest neighborhood (k = 4) approach [34].

Retrotranscription quantitative PCR

In order to confirm the results from the transcriptomic

analyses, reverse transcription quantitative PCR (RT-qPCR)

experiments were carried out. The use of 3 biological RNA

replicates for each condition has been used in this work as

a control to confirm transcriptomic results obtained using

microarrays on 8 biological replicates. The RT-qPCR were

performed on RNA which were in sufficient amount to

perform PCR targeting 42 genes observed as differentially

expressed in the microarray analysis. Primers were de-

signed using Primer3 Plus software [35] with default pa-

rameters except for the difference of melting temperature

between the forward and reverse primers set to less than

1°C. The primer sequences for the tested genes are de-

tailed in Additional file 5: Table S3. cDNA synthesis, quan-

titative PCR, and cycle thresholds (Ct) were performed

according to Falentin et al. [36]. Briefly, cDNA was syn-

thesized using a qScript TM cDNA synthesis kit (Quanta

BioSciences, Maryland, USA). Amplification by qPCR was

performed with a 15 μL final volume mixture containing

5 μL of a cDNA template diluted 1 to 40, 0.5 mM of each

primer and 16 IQTM SYBR GreenSupermix (BioRad,

California, USA), in an Opticon 2 real-time PCR detector

(Biorad). Three cDNA obtained from spent YEL medium

culture conditions (corresponding to three biological repli-

cates) and three cDNA obtained from the intra-colonic

environment (corresponding to three biological replicates)

were amplified. Amplification cycles consisted of an initial

step at 95°C for 5 min followed by 40 cycles of 95°C for

30 s, 60°C for 30 s, and 72°C for 1 min. An amplicon de-

naturation step of 0.5°C/min from 65°C to 90°C was per-

formed to verify amplification specificity and determine

amplicon melting temperature.

Genes that were not differentially expressed in the

microarray analysis were chosen as possible internal stan-

dards for RT-qPCR normalization. The stability of mRNA

expression of three genes: serA, cbiM, ndk was checked

using the geNorm VBA applet for Microsoft Excel [37]

and were chosen as internal standard for normalization.

Statistical analysis of transcriptomic data

The aim of the statistical analysis was to generate the

most reliable list of genes with significantly different

levels of expression between our two distinct conditions:

the intra-colonic environment and the YEL medium.

An analysis of the variability within and between piglets

(N = 13770 probes) using matrix of parametric correlations

allowed us to choose the two most reproducible replicates

of 4 per piglet (Additional file 6: Figure S5). Four independ-

ent signals (one per piglet) were then obtained by averaging

the two selected signals from each piglet. For the YEL con-

dition, 8 of 12 biological replicates were randomly selected

and averaged two by two, establishing 4 independent mea-

surements (for details see Additional file 4: Table S2).

The signals corresponding to the same probes were av-

eraged, and the log2-signals were subsequently scale nor-

malized using the median value of each array [38] given a

final data sets of 2229 genes.

Differential comparisons between groups were per-

formed gene by gene using modified t-test with limma ad-

justment (p-value ≤ 10-4) from the limma package of R

software [39,40]. The Bayesian approach of which remains

very convenient and a powerful tool when working with a

low number of biological replicates [41].

The increase in the type I error rate induced by the

multiplicity of tests was controlled by the Benjamini-

Hochberg adjustment from the False Discovery Rate fa-

mily [35]. Genes were declared as differentially expressed

with P ≤ 0.001 and |fold change| > 2.

For the RT-qPCR analysis, geNorm was used to deter-

mine the normalized expression level of genes of interest

(http://medgen.ugent.be/genorm/). A student T-test was

performed and changes in gene expression between the

two conditions with a P-value < 0.05 were considered

significant.

Results and discussion

The objective of the study was to identify the pathways

used by P. freudenreichii to cope with the different stresses

encountered in the colon. A transcriptomic analysis of
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Propionibacterium freudenreichii (i) kept for 24 H in the

colon of piglet (intra-colonic environment) or (ii) kept in

spent YEL culture medium was performed. A dialysis bag

containing P. freundenreichii (1010 CFU/mL) in stationary

phase was introduced for 24 H in the colon of four piglets

through a cannula implanted surgically 7 days earlier. This

24 H –period was compatible with pig colonic transit

time. This was repeated on four consecutive days, a time

to take into account intra-animal variability. After each

24 h incubation period in the intra-colonic environment,

the content of the dialysis tubing was used for enumera-

tions and RNA extraction. Four RNA (out of 16) were ex-

cluded from subsequent analysis because of poor quality

or quantity (see Additional file 4: Table S2 for details). An

8*15 K Agilent microarray was designed especially for this

experiment and hybridized with cDNA from the retro-

transcription of RNA extraction. The control was RNA

extracted from bacteria in stationary phase kept in the

spent medium. Twelve RNA from colonic environment

and twelve RNA from spent YEL medium were hybridized

on microarrays. For the intra-colonic environment, eight

samples out of twelve gave the same response profile

(Additional file 7: Figure S3). We have chosen to analyze

the transcriptome of these eight samples. A modified t-test

was performed to list differentially expressed genes be-

tween samples from the intra-colonic environment and the

control (spent medium). Most differentially expressed

genes were confirmed with RT quantitative PCR (RT-

qPCR) on RNA from three biological replicates from co-

lonic environment and spent medium as control. RT-qPCR

always confirmed the induction or repression of gene per

microarray but standard deviation (individual variability)

was greater with RT-qPCR than with microarray data.

Overall, 767 genes (357 genes induced (Table 1,

Additional file 8: Table S4), 410 genes repressed

(Table 2, Additional file 9: Table S5) were declared as

differentially expressed. (Complete microarray expres-

sion data for these genes available on GEO, Genbank:

GSE50089). The differentially expressed genes represented

31% of the protein-coding genes of the CIRM-BIA1T gen-

ome targeted in the microarray. Category of genes most

affected by intra-colonic environment was those genes

implicated in carbohydrates metabolism (with 27 genes

of this functional category induced and 34 genes re-

pressed). Amino acid metabolism was the second most

affected category with 19 repressed and 20 induced

genes. Lastly, two categories were highly repressed:

ribosomal proteins with 21 genes repressed and tran-

scription initiation with 17 genes repressed (Figure 1).

1-Down regulation of glycolysis, Wood-Werkman cycle

and oxidative phosphorylation

In YEL medium, the glycolysis, the pentose phosphate

pathway and the Wood Werkman cycle (fermentation) are

three ways for P. freudenreichii to produce NADH and

NADPH reducing equivalents, ATP and precursor meta-

bolites needed for the biosynthesis of essential compounds

(amino acids, purine, pyrimidine, glycerol 3 phosphate,

fatty acids, N-acetyl glucosamine, vitamins). In the intra-

colonic environment, glucose is lacking and the bacteria

are in anaerobic conditions. Microarray analysis revealed a

down regulation of genes involved in glycolysis, the

Wood-Werkman cycle and oxidative phosphorylation. All

the genes encoding proteins involved in glycolysis were

repressed (Additional file 10: Figure S4). Some of them

were particularly down-regulated: pgm with a fold change

of -5.9, fba2 with a fold change of -21.5 (confirmed by

RT-qPCR with a fold change of -145.7), gap with a fold

change of -11.5 and eno1 with a fold change of -8.4

(confirmed by RT-qPCR with a fold change of -50.7). The

Wood-Werkman cycle (Additional file 10: Figure S4) is

specific to some propionic acid producing bacteria. It

holds a central place in propionic fermentation, the main

central carbon metabolic pathway in dairy propionibac-

teria. By this pathway, pyruvate is converted into propio-

nate. Pyruvate is first converted to succinate by successive

steps of the tricarboxylic cycle (TCA). All corresponding

genes were repressed in the intra-colonic environment.

Succinate is then converted into succinyl CoA, methyl-

malonyl CoA, propanoyl CoA and propionate by spe-

cific enzymes, whose corresponding transcripts were

down-regulated. mutA and mutB were repressed with

fold changes of -5.8 and -4.8, respectively, mcoE was re-

pressed with a fold change of -9.3 (confirmed with a fold

change of -21.7, p-value=0.06, by RT-qPCR). Tran-

scripts corresponding to the 12S and 5S subunits (no

probe was designed for the 1.3 S subunit) of the well-

studied methylmalonyl-CoA carboxytransferase were

repressed with fold changes of -7 and -10.3, respectively.

The latter repression was confirmed with a fold change

of -20.1 by RT-qPCR. The down-regulation of Wood-

Werkman cycle is probably involved in maintaining the

redox balance which is drastically affected by intra-colonic

environment [41] and is probably a consequence of the

low availability of pyruvate in intracellular content.

Although glycolysis and the Wood Werkman cycle were

down-regulated, all the genes of the pentose phosphate

pathway (except gnd2 gene) were stably expressed. This

pathway produces a major source of reducing equivalent:

NADPH needed for biosynthesis reactions and NADH

necessary for oxidative phosphorylation.

Several transcripts involved in aerobic respiration were

down-regulated in the intra-colonic environment: nuoG

encoding the G chain of NADH-quinone oxydoreductase

(responsible for the release of electrons and H+ contained

in NADH molecule) with a fold change of -9.9 (confirmed

with a fold change of -14.2 by RT-qPCR); electron transfer

flavoprotein-quinone oxydoreductase fixC and fixB with

Saraoui et al. BMC Genomics 2013, 14:911 Page 5 of 15

http://www.biomedcentral.com/1471-2164/14/911



Table 1 List of induced genes in intra-colonic environment compare to spent medium with RT-qPCR confirmation

Locus tag Gene Descript Function FC microarray
(induced in colon)

p value
microarray

FC RT-qPCR
(induced in colon)

pvalue
RT- qPCR

Probe name

PFREUD_23410 Permease of glycerol 3 P
ABC transporter

1.2 Transport/binding
proteins and lipoproteins

4,8 5,0E-08 34,0 1,4E-01 CUST_2220_PI426428742

PFREUD_23760 Xanthine/uracil permease 1.2 Transport/binding
proteins and lipoproteins

4,5 6,0E-08 3,7 9,0E-02 CUST_2250_PI426428742

PFREUD_06780 ATP-binding protein of iron
compound ABC transporter

1.2.3 Transport/binding
of inorganic ions

5,4 7,7E-08 5,1 1,9E-01 CUST_662_PI426428742

PFREUD_16350 Siderophore exporter 2.A.1.38.2 1.2.3 Transport/binding
of inorganic ions

4,4 1,3E-07 1,4 2,5E-01 CUST_1559_PI426428742

PFREUD_02570 fepC Permease component of
iron ABC transporter

1.2.3 Transport/binding
of inorganic ions

3,5 1,7E-07 3,3 3,1E-01 CUST_254_PI426428742

PFREUD_02700 glpT Glycerol-3-phosphate transporter 1.2.4 Transport/binding
of carbohydrates

3,1 4,1E-07 1,1 2,6E-01 CUST_267_PI426428742

PFREUD_06660 IM protein of ribose/xylose/arabinose/
galactoside ABC transporter

1.2.4 Transport/binding
of carbohydrates

5,2 1,1E-08 1,2 1,3E-01 CUST_650_PI426428742

PFREUD_12690 ydaO IM protein of branched-chain amino
acids ABC transporter (HAA: undef:
Branched-chain amino acids)

1.2.5 Transport/binding
of amino-acids

5,7 2,0E-08 3,7 2,0E-01 CUST_1218_PI426428742

PFREUD_03350 cytX Hydroxymethylpyrimidine transporter
CytX

1.2.6 Transport/binding of
nucleosides, nucleotides

4,0 1,7E-06 1,4 4,0E-01 CUST_332_PI426428742

PFREUD_15480 ftsQ Cell division protein FtsQ 1.7 Cell division 4,1 3,0E-07 1,5 3,5E-01 CUST_1474_PI426428742

PFREUD_19110 iolT3 iolT3 (myo-inositol transporter iolT3) 2.1 Metabolism of
carbohydrates and
related molecules

3,4 7,0E-08 5,9 2,8E-02 CUST_1811_PI426428742

PFREUD_19080 iolB iolB (Myo-inositol catabolism
IolB protein)

2.1.1 Specific carbohydrate
metabolic pathway

2,4 3,2E-07 1,9 4,3E-01 CUST_1808_PI426428742

PFREUD_22850 gntP Gluconate transporter
(transmembrane)

2.1.1 Specific carbohydrate
metabolic pathway

3,8 3,1E-06 24,1 5,0E-03 CUST_2167_PI426428742

PFREUD_04270 eda, hga, kdgA 2-dehydro-3-deoxyphosphogluconate
aldolase/4-hydroxy-2-oxoglutarate
aldolase

2.1.1 Specific carbohydrate
metabolic pathway

2,1 2,6E-05 2,8 2,0E-01 CUST_421_PI426428742

PFREUD_07170 pccB Propionyl-CoA carboxylase beta chain 2.1.1 Specific carbohydrate
metabolic pathway

2,5 8,0E-08 1,1 3,2E-02 CUST_701_PI426428742

PFREUD_09060 dhaG Glycerol dehydratase
reactivation factor DhaG

2.1.1 Specific carbohydrate
metabolic pathway

3,8 5,6E-07 4,9 2,5E-02 CUST_877_PI426428742

PFREUD_09130 pduP CoA-dependent propionaldehyde
dehydrogenase PduP

2.1.1 Specific carbohydrate
metabolic pathway

5,8 7,7E-08 4,7 4,0E-02 CUST_884_PI426428742

PFREUD_12840 ldh2 L-lactate dehydrogenase 2.1.2 Main glycolytic
pathways

3,6 8,3E-07 1,0 1,5E-01 CUST_1233_PI426428742
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Table 1 List of induced genes in intra-colonic environment compare to spent medium with RT-qPCR confirmation (Continued)

PFREUD_07770 araD L-ribulose-5-phosphate
4-epimerase AraD

2.1.2 Main glycolytic
pathways

3,3 4,2E-08 4,7 5,9E-02 CUST_759_PI426428742

PFREUD_11340 metH Methionine synthase
(5-methyltetrahydrofolate:
L-homocysteine
S-methyltransferase)

2.2 Metabolism of amino
acids and related molecules

2,1 9,2E-07 5,0 1,6E-01 CUST_1091_PI426428742

PFREUD_12630 cysK Cysteine synthase
(O-acetylserine sulfhydrylase)

2.2 Metabolism of amino
acids and related molecules

2,1 7,9E-07 5,3 1,2E-01 CUST_1214_PI426428742

PFREUD_13940 argH Argininosuccinate lyase
(Arginosuccinase)

2.2 Metabolism of amino
acids and related molecules

2,3 1,2E-06 2,5 1,3E-01 CUST_1323_PI426428742

PFREUD_02210 bkdB Dihydrolipoyllysine-residue
(2-methylpropanoyl)transferase.

2.2 Metabolism of amino
acids and related molecules

2,6 2,9E-06 5,5 4,0E-02 CUST_214_PI426428742

PFREUD_03880 ask Aspartokinase (Aspartate kinase) 2.2 Metabolism of amino
acids and related molecules

3,3 2,5E-07 1,3 1,8E-01 CUST_383_PI426428742

PFREUD_11270 cmk Cytidylate kinase (CK) (Cytidine
monophosphate kinase)
(CMP kinase)

2.3 Metabolism of nucleotides
and nucleic acids

2,5 9,4E-07 30,0 8,0E-05 CUST_1084_PI426428742

PFREUD_00670 1-acyl-sn-glycerol-3-phosphate
acyltransferase

2.4 Metabolism of lipids 4,2 1,1E-08 1,5 3,9E-01 CUST_66_PI426428742

PFREUD_07140 NUDIX hydrolase 2.6 Metabolism of phosphate 3,0 2,1E-07 4,1 2,5E-02 CUST_698_PI426428742

PFREUD_21590 cysW Sulfate transport system
permease protein CysW

2.7 Metabolism of sulfur 4,1 3,6E-07 14,3 2,5E-02 CUST_2047_PI426428742

PFREUD_11100 Single-strand binding protein/
Primosomal replication protein

3.1 DNA replication 2,6 1,3E-05 63,5 1,6E-01 CUST_1071_PI426428742

PFREUD_01220 DNA polymerase 3.1 DNA replication 2,3 1,7E-07 3,7 9,0E-02 CUST_124_PI426428742

S
a
ra
o
u
i
et

a
l.
B
M
C
G
en
o
m
ics

2
0
1
3
,
1
4
:9
1
1

P
a
g
e
7
o
f
1
5

h
ttp

://w
w
w
.b
io
m
e
d
ce
n
tra

l.co
m
/1
4
7
1
-2
1
6
4
/1
4
/9
1
1



Table 2 List of repressed genes in intra-colonic environment compared to spent medium with RT-qPCR confirmation

Locus tag Gene Descript Function FC microarray
(induced in colon)

pvalue
microarray

FC RT-qPCR
(induced in colon)

pvalue
RT- qPCR

PFREUD_14940 sufS Cysteine desulphurases, SufS 1.2 Transport/binding proteins and lipoproteins 7,4 2,5E-07 1,4 6,9E-02

PFREUD_19650 feoB Ferrous iron uptake protein B 9.A.8.1.x 1.2.3 Transport/binding of inorganic ions 6,7 1,0E-07 1,3 3,5E-02

PFREUD_20460 cycA1 D-serine/D-alanine/glycine
transporter 2.A.3.1.7

1.2.5 Transport/binding of amino-acids 16,5 3,9E-05 2,0 2,4E-02

PFREUD_05220 nuoG NADH-quinone oxidoreductase chain G 1.4 Membrane bioenergetics
(electron transport chain and ATP synthase)

9,9 4,3E-08 5,3 6,0E-03

PFREUD_10590 mcoE Methylmalonyl-CoA epimerase 2.1.1 Specific carbohydrate metabolic pathway 9,3 3,0E-07 21,7 6,8E-02

PFREUD_01040 gntK Gluconate kinase (Gluconokinase) 2.1.1 Specific carbohydrate metabolic pathway 2,9 2,9E-05 39,5 4,3E-02

PFREUD_18870 Methylmalonyl-CoA carboxytransferase
5S subunit.

2.1.1 Specific carbohydrate metabolic pathway 10,3 1,1E-07 10,0 1,3E-02

PFREUD_17320 eno1 Enolase 1 2.1.2 Main glycolytic pathways 8,4 3,6E-07 26,3 2,0E-03

PFREUD_23890 fba2 Fructose-bisphosphate aldolase class I 2.1.2 Main glycolytic pathways 21,3 1,1E-08 68,6 2,0E-03

PFREUD_05650 tuf Elongation factor Tu 3.7.4 Translation elongation 4,8 4,8E-05 2,0 4,9E-01

PFREUD_17840 dnaK1 Chaperone protein dnaK 1 3.9 Protein folding 15,5 1,5E-07 23,3 2,5E-03

PFREUD_19250 clpB 1 Chaperone clpB1 3.9 Protein folding 3,6 4,1E-04 10,9 6,6E-02

PFREUD_22780 hsp20 1 Heat shock protein 20 1
(20 kDa chaperone 1)

3.9 Protein folding 36,6 2,5E-08 20,2 1,4E-02
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fold changes of -4.3 and -2.2, respectively; cydB and cydA

encoding cytochrome d ubiquinol oxidase subunit I and II

with fold changes of -3.5 and -6.6, respectively. These lat-

ter results were impossible to confirm using RT-qPCR be-

cause of the difficulty of targeting one specific transcript

among multi-genic family transcripts. On the otherhand,

some transcripts specific to anaerobic respiration were

induced. Genes dmsA and dmsB encoding anaerobic di-

methyl sulfoxide reductase, chain A and B were induced

with fold changes of +3.2 and +2.5, respectively. The latter

protein is responsible for the final transfer of electrons on

various sulfoxide and N-oxide compounds. Another elec-

tron sink could be ferrous ion or sulfur. Accordingly, the

gene encoding the sulfur transporter cysW was induced

with a fold change of 4.1 (confirmed by RT-qPCR with a

fold change of 9.2). Anaerobiosis-inducible dimethyl sulf-

oxide reductases play a key role in bacterial adaptation to

anaerobic conditions in bacteria and serve as terminal re-

ductases using DMSO as a terminal electron acceptor.

They are involved in the colonization of intestine by

Campylobacter jejuni [42] and dmsA mutation results

in reduced in vivo adaptation in Actinobacillus pleurop-

neumoniae [43]. Such induction in P. freudenreichii re-

veals efficient adaptation to the anaerobic conditions of

the colon content. Similarly, an IVET approach identi-

fied a methionine sulfoxide reductase involved in adap-

tation and persistence in the murine gut [27].

The observed changes suggest profound metabolic

reprogramming in response to the intra-colonic envir-

onment. Such reprogramming has been described in

Bifidobacterium longum, where exposure to bile salts

in vitro [44] or to the colon in vivo [45] induces ex-

pression of the fructose-6-phosphate phosphoketolase

(F6PPK, or bifid shunt pathway) at the expense of

other catabolic pathways. Similarly, in the present study,

specific catabolic.

2-Induction of specific carbohydrate catabolism and al-

ternative pathways to produce NADH, NADPH, ATP and

precursors.

If the intra-colonic environment is particularly glucose-

depleted because of massive absorption upstream in

the upper part of the gut during digestion, other carbo-

hydrates like lactate, gluconate and propanediol are

produced in situ by autochthonous bacteria of the

colon. P. freudenreichii CIRM BIA1 has the ability to

degrade these sugars [32]. Microarray analysis revealed

the ability of P. freudenreichii to induce in vivo these

peculiar catabolic pathways to generate reducing equiva-

lents, ATP and metabolic precursors.

a. Lactate

Expression of the ldh1 and ldh2 genes, both encoding

L-lactate dehydrogenase was enhanced with a fold change

of +2.2 and +3.6, respectively (not confirmed by RT-

qPCR), while D-lactate dehydrogenase dld was repressed

with a fold change of −2.5. Although not a major fermen-

tation product in the gut, lactate is an important electron

sink in the colonic environment [46]. Both D- and L-

stereoisomers exist in the colon, in concentrations on the

millimolar scale. L-lactate is more abundant and is pro-

duced by many enteric bacteria including Bifidobacteria,

0
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Figure 1 Number of induced and repressed genes in the colonic environment, compared to spent medium, classified by metabolic

function. In grey and in black: induced and repressed genes, respectively. Differential comparisons between groups were performed gene by
gene using a modified t-test. Genes were declared as differentially expressed (DE) with a P value ≤ 0.001 and |fold change| > 2.
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Streptococci, Enterococci and Clostridia. D-lactate is a

minor fermentation product in the colon. Differential

modulation of L-lactate at the expense of D-lactate de-

hydrogenases could indicate metabolic adaptation to

the colon setting, considering that lactate, including

both stereoisomers, is the preferred carbon source for

P. freudenreichii in fermented dairy products.

b. Gluconate

Gluconic acid is another intestinal substrate that can be

degraded by P. freudenreichii. It is an organic compound

present in fruits and other vegetable products, but also in

the intestinal mucus, which represents a major source of

carbohydrates for enteric bacteria [47]. In P. freudenreichii,

it is also a possible carbon and energy source and the glu-

conate degradation pathway was accordingly induced in

the intra-colonic environment (Figure 2). The degradation

of gluconate by entire cells of P. freudenreichii has, to our

knowledge, not been previously mentioned. The metabolic

pathway was reconstructed following an E. coli model.

The gene gntP coding for the gluconate transporter

was induced 3.7 fold in the intra-colonic environment

compared to the YEL medium. The induction was con-

firmed with a fold change of +24 using RT-qPCR. The

second step of the gluconate catabolic pathway is the

phosphorylation of gluconate into 6P gluconate by gluco-

kinase. Surprisingly, the expression of gntK was down reg-

ulated with a fold change of −2.8 (confirmed by RT-qPCR

(C)(A) (B)

Figure 2 Induction of gluconate, propanediol and branched-chain amino acid degradation pathway in the colonic environment

compared to spent medium. (A) Induction of gluconate degradation pathway in the colonic environment compared to spent medium. I and R

indicate induced and repressed genes in the colonic environment, compared to spent medium, followed by the fold change based on a mean
of four repetitions of microarray data. Differential comparisons between groups were performed gene by gene using modified t-test. Genes were

declared as differentially expressed with a p-value ≤ 0.001 and |fold change| > 2. Three repetitions of RT-qPCR were performed and genes were
declared as DE with a Student test P value < 0.05. (B) Induction of propanediol degradation in the colonic environment, compared to spent medium.
Differential comparisons between groups were performed gene by gene using modified t-test. Genes were declared as differentially expressed with a

P value ≤ 0.001 and |fold change| > 2. R indicates a repression. I indicates an induction. Numbers indicate the fold change based of a mean of four
repetitions for microarray data. Three repetitions of RT-qPCR were performed and genes were declared as DE with a Student test p-value < 0.05.

(C) Pathway of amino acid catabolism induced in the colonic environment, compared to spent medium. Differential comparisons between groups were
performed gene by gene using a modified t-test. Genes were declared as differentially expressed with a P value ≤ 0.001 and |fold change| > 2. I indicates
an induction. Numbers indicates the fold change based on a mean of four repetitions for microarray data. Three repetitions for RT-qPCR were performed

and genes were declared as differentially expressed with Student test p-value < 0.05.
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with a fold change of - 39.5). We speculate that this phos-

phorylation step could be performed by another non-

specific carbohydrate kinase such as PFREUD_03250

(annotated as rbsK) induced with a fold change of +3.6

in the intra-colonic environment. 6P gluconate is then

degraded by the pentose phosphate pathway the genes

of which were stably expressed (gnd, rpiB, tal genes,

see above) or by the Entner Doudoroff pathway. Gene

eda of the latter pathway was induced with a fold

change of 2.1 (not confirmed statistically by RT-qPCR).

Pentose phosphate and Entner Doudoroff pathways

produce NADPH which can be used for further biosyn-

thesis reactions.

c. Propanediol

Propanediol is another substrate available for bacteria in

the anaerobic environment of the colon because it is pro-

duced by the degradation of rhamnose and fucose by the

commensal microbiota [48,49]or by the degradation of gly-

cerol by Clostridium and Enterobacteriacea [50]. Propane-

diol degradation produces NADH which can be used as a

source of electrons for oxidative phosphorylation (Figure 2).

A locus containing 15 genes involved in propanediol deg-

radation was found in the genome of P. freudenreichii

CIRM-BIA1T [32]. Most genes of this locus appeared to be

induced in the intra-colonic environment: pduD which en-

codes a subunit of B12 dependent dioldehydratase, the first

enzyme of propanediol degradation was induced 2-fold;

pduP responsible for the degradation of propionaldehyde

to propionyl-CoA was induced with a fold change of +5.8

(confirmed by RT-qPCR with a fold change of 4.7). Two

slightly different pathways were proposed for propanediol

degradation in Salmonella typhimurium [49] and in Lis-

teria innocua [48]. All the coding sequences of the propa-

nediol locus in Propionibacterium freudenreichii are highly

similar to those of Clostridium, Salmonella and Listeria

species. However, two genes (pduL and pduW) present in

Salmonella typhimurium and Listeria innocua are missing

in the genome of Propionibacterium freudenreichii CIRM-

BIA1. Their products are responsible for the conversion of

propionyl-CoA into propionate. We propose that the next

degradation step could be operated by the enzyme encoded

by pccB responsible for the conversion of propionyl-CoA

to R-methylmalonyl-CoA which was induced with a fold

change of + 2.5. R-methylmalonyl-CoA can be further de-

graded during the Wood-Werkman cycle.

The pdu operon is a key feature in the probiotic Lactoba-

cillus reuteri, involved in growth on propanediol, involved

in reuterin biosynthesis, in colonization of the human di-

gestive tract [51] and in protection towards Salmonella

typhimurium colonization [52]. To our knowledge, L. reu-

teri and P. freudenreichii are the only probiotic species with

a pdu operon allowing utilization of propanediol. This abil-

ity confers an advantage to the strain. Since pdu mutation

confers a virulence defect to Salmonella enterica [53] in

mice, we can suppose that the catabolism of propanediol is

essential for the persistence of this pathogen in their host.

As a consequence, P. freudenreichii can also be considered

to compete with Salmonella enterica for utilization of the

propanediol present in the intestine.

d. Metabolism of amino acid

Intra-colonic conditions affected amino-acids transport

and catabolism pathways. The dcuA gene, encoding a C4-

dicarboxylate uptakeproteins responsible for the transport

of aspartate, was repressed with a fold change of −5.2

(Additional file 9: Table S5). The genes cycA1 and cycA2,

the products of which are responsible for the transport of

glycine and alanine, were repressed with a fold change

of −16.5 and −6.6, respectively (cycA1 repression was con-

firmed by RT-qPCR with a fold change of −2). The gene

encoding L- aspartate oxidase (nadB2) was repressed with

a fold change of −9.3, consistent with the absence of oxy-

gen, which is essential to its catabolic reaction. Repression

of dadA2 and ald, with a fold change of −3.4

and −61, indicates a down-regulation of glycine and ala-

nine degradation, respectively.

On the other hand, other transcripts involved in aspar-

tate degradation like aspB, tyrB and got were slightly in-

duced with fold changes of +2.3, 1.7 and 2.1, respectively.

Similarly, (Figure 2) three genes encoding the inner

membrane protein component of branched-chain amino

acids ABC transporter were induced in the intra-colonic

environment: ydaO, braE and brad with fold changes

of +5.6, 4.2 and 3.2, respectively. These branched-chain

amino acids can be introduced into proteins or trans-

formed into enoyl-CoA, incorporated into branched chain

fatty acids. All genes corresponding to the degradation

pathway that produces enoyl CoA were stably expressed or

induced in the intra-colonic environment. bkdA2 and bkdB

were induced with fold changes of 2.6 and 2.8, respectively

(bkdB was confirmed with a fold change of 5.5 by

RT-qPCR). Branched chain fatty acids can be introduced in

the bacterial membrane, conferring fluidity and resistance

to oxidation, or released into the lumen. A protective role

of BCFAs in intestinal barrier function of the host has re-

cently been described [54].

e. Purine and pyrimidine

P. freudenreichii also seems to use ribose and nucleo-

tides as sources of carbon and nitrogen. The degrad-

ation pathway of uracil, an RNA-specific base, was

induced. The uracil transporter (Xanthine/uracil per-

mease) encoded by PFREUD_23760 was induced +4.5

(confirmed with a fold change of +3.7 by RT-qPCR).

The gene cmk encoding a cytidylate kinase was in-

duced +2.5 (confirmed with a fold change of +30 by

RT-qPCR). Purine and pyrimidine are available in the
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intestine as a result of the degradation of nucleic acids

obtained from diet. Bases are required by E. coli to

colonize of the intestine [55]. The ability to use such

bases to adapt to the colonic conditions seems to be

shared by P. freudenreichii.

3-Recovery of precursor metabolites in the medium to

fulfill anabolic needs

Transcript corresponding to the transport of inositol

iolT3 was induced +3.4 (confirmed with a fold change

of +5.9 by RT-qPCR) whereas the remaining degrada-

tion pathways were slightly induced (iolD +1.5 and

iolB +2.4) or stably expressed. Inositol is a carbohydrate

found in many vegetable food components, including

fruits but also cereals, nuts and beans, which were

present in the pig diet in this study. Its bioavailability is

enhanced by degradation of phytates within the gut

lumen by members of the gut microbiota [56]. Inositol

thus constitutes a usable substrate for P. freudenreichii

in the gut environment.

Similarly, the glycerol and glycerol 3P transporter

PFREUD_23410 was induced +4.7 (confirmed with a

fold change of +34 by RT-qPCR), whereas the degrad-

ation pathway of glycerol was not induced. Glycerol is

another substrate available in the gut as a result of the

hydrolysis of dietary triglycerides by digestive enzymes.

P. freudenreichii can ferment glycerol, a property used in

the LGA selective medium for the isolation of dairy pro-

pionibacteria [57].

Both inositol and glycerol are incorporated into P.

freudenreichii membranes in the form of phosphatidyl

inositol. However, this anabolic pathway is not induced,

as indicated by the repression of the phosphatidyl ino-

sitol transferase encoded by pgs1 with a fold change

of −1.5 (p-value < 0.001, data not shown). Glycerol and

inositol are thus most likely used partly as carbon and

energy sources in the intestine and partly incorporated

as cell building blocks. We suspected that glycerol is also

needed during propanediol degradation, interacting with

DhaG a glycerol dehydratase reactivation factor encoded

by a gene dhaG induced with a fold change of +3.8 (con-

firmed by RT-qPCR with a change of +4.9) and present

in the middle of propanediol operon.

Figure 3 synthetizes all induced and repressed catabolic

pathways of cells in colonic environment compared to P.

freudenreichii cells maintained in the spent medium.

4-Down regulation of protein synthesis but induction

of genes involved in cell division

Protein production is probably reduced. It is consistent

with the repression of several ribosomal proteins and the

tuf gene, which encodes the translation elongation factor

(Additional file 9: Table S5) with a fold of – 4.8. Counts

before introduction into the colon and after 24H in the

colon showed a good survival rate (66%) with high repeat-

ability (1.2 E10 +/− 1.6 E9 before versus 8 E9 +/− 1.6 E9

CFU after 24H, significant t-test p-value < 0.001). Never-

theless, microarray showed induction of genes expressed

Figure 3 Overview of Propionibacterium freudenreichii metabolism of in the colonic environment compared to spent medium.

Differential comparisons between groups were performed gene by gene using a modified t-test. Genes were declared as differentially expressed with

P value ≤ 0.001 and |fold change| > 2. In blue, genes repressed in the colonic environment: glycolysis, tricarboxylic acid cycle (TCA), Wood-Werkman
cycle, oxidative phosphorylation. In red, gene induced or stably expressed in the colonic environment compared to spent medium: pentose phosphate,

gluconate, inositol, propanediol, uracil and branched-chain amino-acid degradation.
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specifically during cell division: ftsE, ftsQ, ftsW1, ftsW2

with a fold change of +3.3, +4, +2.3, +2, respectively and

in DNA replication: dnaA encoding a chromosomal repli-

cation protein, PFREUD_21610 encoding a primosomal

replication protein, dnaE1 encoding the alpha subunit of

polymerase III, PFREUD_01220 encoding a DNA polymer-

ase and polA encoding the DNA polymerase I were in-

duced with a fold change of +2, +2.6, +2.2, +2.3 and +2.3,

respectively (Additional file 8: Table S4). This suggests that

part of the propionibacteria population recovered the ability

to divide after 24H in the colon.

5-Down regulation of general stress proteins

Considering that the colonic environment is thought to

be stressful, molecular chaperones were surprisingly re-

pressed in P. freudenreichii in this condition, compared to

spent YEL medium. For example, expression of GroEL and

GroES is generally induced in bacteria by different stresses

that lead to protein misfolding. In P. freudenreichii, pulse

labelling and proteomic analysis revealed induction of this

complex by acid stress [21], yet not by thermal and bile

salts stress [23,24]. It is repressed here under intra-colonic

conditions, suggesting that no major protein misfolding is

sensed by P. freudenreichii. Moreover, both dnaJ1 and

dnaJ2 molecular chaperones, as well as hsp20 which is in-

volved in disaggregation of stress-denatured proteins, were

repressed with fold changes of −2.8, -3.9 and −36, respec-

tively (confirmed with a fold change of −20 by RT-qPCR).

The same was observed for the stress-induced ATP-

dependent proteinase clpB (−3.6 confirmed by RT-qPCR

with a fold-change of −10.9, while clpC was non-

significantly repressed, -2.17 fold with p-value = 0.055)

involved in stress-denatured proteins degradation and

turnover, for the chaperones dnaK1 (−15.5 confirmed

at −23.3 by RT-qPCR) and dnaK2 (−7.7) and for the

co-chaperone grpE1 (−5.5) and grpE2 (−3.5). By contrast,

an R-IVET approach showed clpC to be involved in

digestive adaptation in L. plantarum WCFS1 [27].

Together, these data suggest that no major damage at

the level of protein folding and function is sensed by

P. freudenreichii in colonic conditions compared to the

control culture left in spent medium. The repression of

chaperones agrees with the abundance of carbon and

nitrogen exploited by P. freudenreichii in the colonic

environment (see above).

6-Limit of the method

We designed an innovative approach to tackle the

question of adaptation of a probiotic to the colonic

environment. However, although innovative, this approach

has several drawbacks that must be acknowledged. The

first one is that the transcriptomic profile we observed

for Propionibacterium freudenreichii within the gut is

probably related to the specific microbiota of our pigs.

In particular, it must be acknowledged that following

surgery, pigs received intra-muscular ampicillin for 3

consecutive days. This probably modified gut micro-

biota as demonstrated by Janczyk et al. 2007 [58] who

observed long-lasting effect of amoxicillin on some bac-

teria abundance in piglets (decrease of Roseburia faeca-

lis-related population and increase of an enterobacterial

population with 100% identity to Shigella spp., Escheri-

chia coli and Salmonella enterica serovar Typhi). How-

ever other studies demonstrated microbiota resilience

within few days in other species [59]. Similarly, the

influence of the pig diet on gut microbiota and substrate

availability must be acknowledged. The other drawback

is the influence of pig diet since we can imagine that a

higher supply of propanediol and gluconate would have

enhanced P. freudenreichii probiotic potential. Despite

these limitations in the approach, we believe our data

will greatly benefit the scientific community working on

probiotic bacteria and P. freudenreichii specifically.

Further studies using the same innovative approach

but comparing Propionibacteria transcriptomic profile

in pigs harboring different microbiota composition

(whether due to antibiotic treatment, diet composition

or any other factor influencing microbiota composition)

would constitute another step into the understanding of

probiotic action upon gut and host physiology but are

beyond the scope of this study.

Conclusions

The aim of this study was to obtain a molecular insight

into the adaptation of P. freudenreichii to intra-colonic

conditions. Transcriptomic analysis revealed metabolic

reorientation in accordance with intestinal conditions

(Figure 3). Glycolysis, the Wood-Werkman cycle and

oxidative phosphorylation were probably down-regulated

(in blue) due to the lack of glucose and anoxic conditions

encountered in the intra-colonic environment. However,

P. freudenreichii was able to induce pathways (in red)

involved in the metabolism of substrates available in the

colon (propanediol, gluconate, inositol, amino-acids and

nucleic bases) and in the production of energy (ATP),

reducing equivalent (NADH and NADPH) and metabolic

precursors. Furthermore, induction of genes indicating

growth (cell division proteins), as well as DNA poly-

merase involved in replication, confirmed the adap-

tation 24H after the introduction of P. freudenreichii

into the pig colon. Survival and metabolic activity

within the gut, which constitute a prerequisite to

P. freudenreichii probiotic potential expression, seem

to be achieved by utilization of specific substrates such

as propanediol and gluconate. This unique in vivo

experimental approach is the first demonstration of

P. freudenreichii physiological adaptation to the colon

of an omnivorous mammal.
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