Lorentz Force Electrical Impedance Tomography
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I. INTRODUCTION

The electrical conductivity of biological tissues arouses great interest for medical imaging researchers. Indeed this parameter potentially shows a good contrast in the human body. For example, fat is ten times less conductive than muscle tissue [5] while the acoustic impedance, observed in ultrasonography , only changes of a few percents through the soft tissues. Electrical conductivity anomalies can moreover reveal pathologies like tumors [8]. The most advanced technique today to measure the electrical conductivity of tissue is the Electrical Impedance Tomography (EIT) [3]. In this technique, several electrodes are placed around the body or the organ under study. An electrical current is injected through each electrode while its distribution in the tissues is measured by the others. These measurements allow an electrical impedance image reconstruction through mathematical analysis. This apparently simple and inexpensive technique suffers however of a low spatial resolution due to the intrinsic ill-posed nature of the mathematical problem [2]. On another hand, the vibration of a conductor inside a magnetic field induced by ultrasound induces by Lorentz force an electrical current which is connected to the electrical conductivity of the conductor [4]. This approach can be applied to the measurement of ultrasound velocity using a wire as sensing element, for its electrical conductivity is known [6], [7]. Conversely,the ultrasound pressure distribution in the conductor is known [START_REF] Martial | An approximate nonlinear model for time gain compensation of amplitude modulated images of ultrasound contrast agent perfusion. Ultrasonics, Ferroelectrics and Frequency Control[END_REF], the electrical conductivity could be deduced . In this last approach, the biological tissues are submitted to a magnetic field created for example by a permanent magnet, and a focused ultrasound beam is used to vibrate the tissues in a specific region of interest [START_REF] Martial | A bulk modulus dependent linear model for acoustical imaging[END_REF]. In the same way the movement of a conductor in a magnetic field would induce an electrical current, this vibration induces a current in the tissues which can be detected by the mean of electrodes. The focusing of ultrasound allows conferring to the imaging process an important characteristic when compared to Electrical Impedance Tomography : the spatial resolution is close to the one that would be reached by ultrasound imaging. However, the drawback of such approach lies in the weakness of the induced electrical current. The initial name of the technique, the Hall Effect Imaging [START_REF] Wen | Hall effect imaging[END_REF] was criticized later on as the phenomenon is not exactly an Hall Effect [START_REF] Roth | Comments on "hall effect imaging[END_REF],. The technique has also been called Magneto-Acousto-Electrical Tomography [9] or scan of electric conductivity gradients with ultrasonically-induced Lorentz force [START_REF] Montalibet | Scanning electric conductivity gradients with ultrasonically-induced lorentz force[END_REF]. We use here the name of Lorentz Force Electrical Impedance Tomography (LFEIT), which has the advantage of describing both the imaged parameter and the method.

II. THEORY

For clarity reasons, the X axis is defined as the orientation of the magnetic field, the Z axis is defined along the ultrasound propagation direction and the Y axis is placed accordingly using the right-hand rule. As expo- sed previously, the Lorentz Force Electrical Impedance Tomography is based on the movement of a conductor placed inside a magnetic field, which induces an electrical current. Physical and mathematical modellings have been proposed to describe the method [1], [START_REF] Bradley | A theoretical model for magnetoacoustic imaging of bioelectric currents[END_REF]. We choose here the model presented by Montalibet et al. which gives a good understanding of the phenomenon [START_REF] Montalibet | Electric current generated by ultrasonically induced lorentz force in biological media[END_REF]. In this model, the induced current is found to be proportional to the convolution product of the electrical conductivity gradient H with the ultrasound pressure shape P :

i(t) = ( dσ dz B ρ ) * ( t 0 p(τ )dτ )dS = c(H * P )(t) (1)
with i the induced electrical current, dσ dz the electrical conductivity gradient along z axis, B the magnetic field, ρ the density, p the ultrasound pressure and c the speed of sound. In other words, the electrical current detected by the electrodes is a temporal image of the ultrasound pulse at each electrical conductivity interface, as shown by the figure (1). More refined models are however available [1], [START_REF] Bradley | A theoretical model for magnetoacoustic imaging of bioelectric currents[END_REF].

III. MATERIALS AND METHODS

The goal of this study was to build a setup to produces LFEIT images of gelatine phantoms and biological tissues. The experiment setup is illustrated in figure (3). A generator (HP33120A, Agilent, Santa Clara, CA, USA) The front interface can be seen on both images, although the lower one is less visible.

V. DISCUSSION AND CONCLUSION

A method to observe electrical conductivity gradients by combining ultrasound and magnetic field is tested experimentally. The tested transducer is a standard single element ultrasonic therapy transducer. The magnetic field is created by a permanent magnet with sufficient air gap to insert a tissue sample. The signal has been shown to be little influenced by the electrodes positions [START_REF] Montalibet | Etude du couplage acoustomagnétique : détection des gradients de conductivité électrique en vue de la caractérisation tissulaire[END_REF]. The oil bath prevents any electrical contact between the sample and the transducer ; in practical applications it could easily be placed around the transducer rather than around the patient. The experiment showed images of quality comparable to the one of the ultrasound images taken in the same conditions. The combination of ultrasonography and Lorentz Force Electrical Impedance Tomography with ultrasonically-induced Lorentz force can be made easily with the same material. Elements like fat layers which are hardly visible here in the ultrasonic image can be observed in the Lorentz Force Electrical Impedance Tomography image. The technique has potentially the spatial resolution of the ultrasound wavelength [START_REF] Islam | Computer image reconstruction of bioelectric currents from magnetoacoustic measurements[END_REF], allowing the observation of small inhomogeneities and can help thus revealing pathologies like cancer by detecting tumorous tissues where other techniques fail to do so.

Image quality could be improved with a higher ultrasound frequency and a thinner beam. The compatibility of ultrasound imaging with MRI [START_REF] Haigron | Image-guided therapy : evolution and breakthrough [a look at[END_REF] shows that it is possible to use much stronger magnetic fields, which would increase the intensity of the induced electrical current, and thus the signal to noise ratio. Moreover, even if the magnetic field homogeneity is not as critical in this technique as in MRI [START_REF] Montalibet | Scanning electric conductivity gradients with ultrasonically-induced lorentz force[END_REF], a more homogeneous magnetic field would provide sharper images of the interfaces. The technique can also be used in a reverse mode [START_REF] Wen | Hall effect imaging[END_REF], with an electrical current applied in a tissue submitted to a magnetic field, which leads to ultrasound wave [START_REF] Xu | Magnetoacoustic tomography with magnetic induction (mat-mi)[END_REF] and was recently applied to human tissue ex-vivo [START_REF] Hu | Magnetoacoustic imaging of human liver tumor with magnetic induction[END_REF]. It is nevertheless hard to say which of these techniques would be the most useful for biomedical imaging [START_REF] Bradley | The role of magnetic forces in biology and medicine[END_REF]. fon. Electromagnetic hydrophone with tomographic system for absolute velocity field mapping. Applied Physics Letters, 100(24) :243502-243502, 2012.
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 1 Figure1-The electrical signal detected by electrodes in Lorentz Force Electrical Impedance Tomography is proportional to the convolution product between electrical conductivity gradients and the ultrasound pressure shape.
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 23 Figure 2 -Pressure field simulation along ultrasound axis (Y = 0 mm) of the transducer. The maximum of pressure is approximately at 15 cm of the transducer.
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 4 Figure 4 -Photo of salty gelatin sample. The sample is made of 2 blocks, one of 8x2x2 cm 3 under the second of 4x2x3 cm 3 . Two electrodes are in contact above and under the sample. Arrows are indicating front and back interfaces.
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 5 Figure 5 -Photo of beef sample. The sample has an L-shape, 6 cm wide, 2 cm large and 6 cm high. Two electrodes are in contact above and under the sample. Squares are 5 mm wide. Arrows are indicating two front interfaces and the fat layer.
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 6 Figure 6 -(a) Ultrasound image of the gelatin sample. (b) Electrical impedance image of the gelatin sample. Arrows are indicating the interfaces shown on the photograph.
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 7 Figure 7 -(a) Ultrasound image of the beef sample. (b) Electrical impedance image of the beef sample. Arrows are indicating the interfaces shown in the photograph.