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Abstract

Background: Chagas disease, caused by the protozoan Trypanosoma cruzi is endemic in Latin America. Thirty

percent of infected individuals develop chronic Chagas cardiomyopathy (CCC), an inflammatory dilated

cardiomyopathy that is, by far, the most important clinical consequence of T. cruzi infection. The others remain

asymptomatic (ASY). A possible genetic component to disease progression was suggested by familial aggregation

of cases and the association of markers of innate and adaptive immunity genes with CCC development. Migration

of Th1-type T cells play a major role in myocardial damage.

Methods: Our genetic analysis focused on CCR5, CCL2 and MAL/TIRAP genes. We used the Tag SNPs based

approach, defined to catch all the genetic information from each gene. The study was conducted on a large

Brazilian population including 315 CCC cases and 118 ASY subjects.

Results: The CCL2rs2530797A/A and TIRAPrs8177376A/A were associated to an increase susceptibility whereas the

CCR5rs3176763C/C genotype is associated to protection to CCC. These associations were confirmed when we

restricted the analysis to severe CCC, characterized by a left ventricular ejection fraction under 40%.

Conclusions: Our data show that polymorphisms affecting key molecules involved in several immune parameters

(innate immunity signal transduction and T cell/monocyte migration) play a role in genetic susceptibility to CCC

development. This also points out to the multigenic character of CCC, each polymorphism imparting a small

contribution. The identification of genetic markers for CCC will provide information for pathogenesis as well as

therapeutic targets.
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Background
Chagas disease (American trypanosomiasis) is caused by

the protozoan Trypanosoma cruzi and transmitted by the

reduviid bug. It occurs exclusively in the Americas, particu-

larly in poor, rural areas of Mexico, Central America, and

South America. The disease remains endemic in Latine

America where the vector-based transmission is still active

in some countries. Imported disease is increasingly recog-

nized as an emerging problem in the USA and Europe due

to immigration from Latin America. It is estimated that as

many as 8–9 million people have Chagas disease. Approxi-

mately, 40 million people are currently at risk of infection

[1]. Decades after acute infection, approximately 30% of in-

fected individuals develop Chronic Chagas cardiomyopathy

(CCC), one of the most important consequence of T. cruzi

infection. CCC is an inflammatory dilated cardiomyopathy,

with a potentially fatal outcome. 5 to 10% of infected in-

dividuals develop digestive disease. The remaining two-

thirds of infected individuals remain asymptomatic (ASY)

and free from heart disorders for life [2]. 20,000 deaths at-

tributable to Chagas disease occur annually, typically due

to CCC [3]. Heart failure due to CCC has a worse progno-

sis with 50% shorter survival when compared to other car-

diomyopathies of different etiologies [4,5].

The dynamics of the immune response to T. cruzi is

that of a persistent infection with an obligatory intracel-

lular parasite. During acute T. cruzi infection, T. cruzi

pathogen-associated molecular patterns (PAMPs) trigger

innate immunity in multiple cell types [6], which release

proinflammatory cytokines and chemokines, such as IL-1,

IL-6, IL-12, IL-18, TNF-α, CCL2, CCL5, and CXCL9 acti-

vating and mobilizing migration of cascades of inflam-

matory cells [7,8]. Antigen-presenting cells subsequently

elicit a strong T cell and antibody response against T.

cruzi, where IL-12 and IL-18 drive the differentiation of

IFN-γ-producing T. cruzi–specific Th1 T cells which mi-

grate to sites of T. cruzi-induced inflammation, including

the myocardium, in response to locally produced chemo-

kines [9,10]. Th1 T cell and antibody responses lead to

control but not complete elimination of tissue and blood

parasitism, establishing a low-grade chronic persistent in-

fection by T. cruzi. As a result of persistent infection, both

CCC and ASY chronic Chagas disease patients show a

skewed Th1-type immune response [11,12], but those

who develop Chagas cardiomyopathy display a particularly

strong Th1-type immune response with increased num-

bers of IFN-γ-producing T cells in peripheral blood mono-

nuclear cells (PBMC) [13] as well as plasma TNF-α in

comparison with uninfected or ASY patients [14]. PBMC

of CCC patients also display increased levels of IFN-γ- or

TNF-α producing CCR5/CXCR3+ CD4+ T cells [15,16].

In addition, CCC patients display a reduced number of

CD4+CD25highIL-10+ and CD4+CD25highFoxP3+ regulatory

T cells in their peripheral blood as compared to patients in

the ASY form of Chagas disease, suggesting such cells may

play a role in the control of the intensity of inflammation

in chronic Chagas disease [15,17]. Furthermore, PBMC

from CCC patients displayed increased numbers of CD4+

CD25highFoxP3+CTLA-4+ T cells, and decreased numbers

of as compared to ASY patients. These reports suggest that

a smaller CD4+FoxP3+/CD25+ Treg compartment with

deficient suppressive activity exists in CCC patients, lead-

ing to uncontrolled production of Th1 cytokines [18]. Cir-

culating CD4+IL-17+ T cells appear in low frequency in

PBMC from CCC patients as compared with ASY patients

and non-infected individuals [18,19]. On the whole, these

results suggest that proinflammatory cells and cytokines

are markers associated with progression to CCC, whereas

the production of IL-10, IL-17 and increased numbers of

regulatory T cells are markers of protection from CCC de-

velopment, indicating that failure to regulate Th1 responses

may be the underlying immune defect of patients who pro-

gress to CCC.

The exacerbated Th1 response observed in the PBMC

of CCC patients is reflected on the Th1-rich myocardial

inflammatory infiltrate, with mononuclear cells predomin-

antly producing IFN-γ and TNF-α, with lower production

of IL-4, IL-6, IL-7, and IL-15 [7,20,21]. It has recently been

shown that CCL5+, CCXCL9+, CCR5+, CXCR3+ cells

were abundant in CCC myocardium, and mRNA levels of

the Th1-chemoattracting chemokines CXCL9, CXCL10,

CCL2 (also known as MCP-1), CCL3, CCL4, CCL5; along

with CCL17, CCL19, CCL21 and their receptors were

also found to be upregulated in CCC heart tissue [12,22].

Importantly, median expression of CCL5, a CCR5 ligand,

was the highest among all chemokines tested (166-fold

increase over control). Significantly, the intensity of the

myocardial infiltrate was positively correlated with CXCL9

mRNA expression. Moreover, a single nucleotide poly-

morphism in the CXCL9 gene, associated with a reduced

risk of developing severe CCC in a cohort study, was asso-

ciated with reduced CXCL9 expression and intensity of

myocarditis in CCC [22]. These results are consistent with

a major role of locally produced Th1-chemoattractant

chemokines in the accumulation of CXCR3/CCR5+ Th1

T cells in CCC heart tissue [23].

Familial aggregation of CCC has been described, suggest-

ing that there might be a genetic component to disease

susceptibility [24]. Several genes were associated to an in-

creased risk to develop cardiomyopathy (HLA, MHC, TNF,

IL1A, IL1B, IL1RN, IL10, IL12B, TIRAP, CCL2, BAT1,

LTA, IKBL, CCR5, MIF, IFNG, CXCL9, CXCL10) [25-50].

So far, up to 30 case control studies were done (see for re-

view [51-53]). These studies often led to inconclusive re-

sults that may be explained in different ways: a) the use of

seronegative subjects as controls which are inadequate

controls, since it is unknown whether they were exposed

to the pathogen; b) the relatively small size of the study
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groups which affected the power (the probability) to detect

an association; c) the number of tested SNPs; d) the highly

heterogeneous genetic background of the study population

due to admixture; e) the sex ratio known to exist has not

been taken in consideration [54].

Among these susceptibility studies, putative implication

of genes crucially involved in the innate immunity-such as

the Toll like receptors (TLR) and some of its most relevant

signalling molecules like TIRAP was searched for. Two

studies on the TLR and TIRAP failed to identify disease

associations with TLR 1,2, 5, 6 and 9; in one of the reports

an association was found with a TLR4 SNP among Chilean

chagasic patients [55], while in the second study – which

enrolled nearly double the number of Brazilian Chagasic

individuals - no association was found with TLR4, but in-

stead with TIRAP S180L heterozygosity [41]. Chemokines

are key players in controlling migration of specific cell

types bearing their receptors to sites of tissue inflamma-

tion, and associations between CCR5 –involved in T cell

and macrophage migration and CCL2 –involved in mono-

cyte migration - with CCC were reported [42,47,48]. Both

processes, TLR signaling and chemokine-mediated cell mi-

gration are of paramount importance in Chagas disease

and are key to the pathogenesis of CCC. Here, we con-

ducted a study focusing on TIRAP, CCL2 and CCL5.

Thorough genetic analysis, testing multiple tag SNPs per

gene and thus detecting any possible relevant genetic vari-

ants in a large Brazilian population and ASY subjects as

controls we could have a sensitive assessment of the con-

tribution of genetic variants in prognosis to CCC either

confirming or finding additional associated SNPs in the

mentioned genes. This can be considered a candidate gene

replication study, performed with a larger cohort of Chagas

patients and only comparing CCC to the asymptomatic

seropositive (ASY) patient group. Significant associations

were found for CCR5, CCL2, and TIRAP genes.

Methods
Ethical standard

Written informed consent was obtained from all the pa-

tients, in accordance with the guidelines of the various

internal review boards of all the involved institutions.

The protocol was also approved by the INSERM Internal

Review Board and the Brazilian National Ethics in Re-

search Commission (CONEP). All the patients enrolled

in this study were over 21 years old so paternal consent

was not required. In the case of samples from heart do-

nors, written informed consent was obtained from their

families. Investigations were conformed to the principles

outlined in the declaration of Helsinki.

Diagnostic criteria

The diagnostic criteria for Chagas disease included the de-

tection of antibodies against T. cruzi in at least two of three

independent serological tests (EIA [Hemobio Chagas;

Embrabio São Paulo], indirect immunofluorescence as-

says [IFA-immunocruzi; Biolab Merieux], and indirect

hemagglutination tests [Biolab Merieux]) [12]. All Chagas

disease patients underwent standard electrocardiography

and echocardiography. Echocardiography was performed

at the hospital, with a Sequoia model 512 echocardiograph

with a broad-band transducer. Left ventricular dimensions

and regional and global function, including the recording

of left ventricular ejection fraction (LVEF), were evaluated

with a two-dimensional, M-mode approach, in accordance

with the recommendations of the American Society of

Echocardiography. ASY subjects had no electrocardiog-

raphy and echocardiography changes. CCC patients pre-

sented typical conduction abnormalities (right bundle

branch block and/or left anterior division hemiblock) [56].

CCC patients with significant left ventricular systolic dys-

function (LVEF <40%) were classified as having severe

CCC, whereas those with no significant ventricular dys-

function (LVEF ≥40%) were classified as having moderate

CCC. We selected 40% as arbitrary cutoff value that has

been previously used to define significant ventricular dys-

function by our group and others [22,57,58].

Study population for polymorphism analysis

The patients and ASY controls were born and raised in

rural areas of Sao Paulo, Minas Gerais and Bahia states

and enrolled in one of the study centers (Incor, FMUSP,

FMRP, UFTM, IDPC). Patients with digestive forms were

excluded of this study. Patients were classified as ASY

(n = 118) or as having CCC (n = 315). ASY individuals

were used as the control subjects for this study because

they were from the same areas of endemicity as the pa-

tients with CCC, had encountered the parasite and had

tested seropositive for T. cruzi infection, but the infec-

tion had not progressed to CCC. Of the 118 ASY sub-

jects, 45.3% were male, whereas in the CCC patients

group, this percentage reaches 61.3%. The difference in

sex distribution between the groups was significant (p =

1.21E-4; OR = 2.126; 95% CI: 1.450 – 3.12). It is well

known that male patients infected with T. cruzi have a

higher risk of progression to CCC than female patients

[54,59,60]. Of 315 patients with CCC, 106 (42 men [39.6%]

and 64 women [60.4%]) showed no significant ventricular

dysfunction and were thus classified as having moderate

CCC, whereas 199 (144 men [72.4%] and 55 women

[27.6%]) had severe ventricular dysfunction and were clas-

sified as having severe CCC. Data for left ventricular ejec-

tion fraction were missing for 10 patients with CCC. So,

when we compared moderate patients to severe patients,

these 10 individuals were excluded from the analysis. Re-

garding progression of the ASY cases to CCC, the yearly

progression rate –regardless of age group- is ca. 1-2%/year.

The average age of Subjects with asymptomatic form was
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above 55 years. Taking into account that they were all born

in endemic areas before vector transmission was inter-

rupted, it is likely that in most if not all cases vector-borne

infection occurred in early childhood. The odds that a sig-

nificant number of such mature patients convert to CCC,

and that this thwarts our statistical calculation is rather

low; however, this is a pitfall of all cross sectional studies

on diseases that display progression.

Blood samples and DNA preparation

For each subject, 5 to 15 ml of blood were collected in

EDTA tubes. Genomic DNA was isolated on a silica-

membrane according to the manufacturer’s protocol (QIA

amp DNA Blood Max Kit, Qiagen, Hilden, Germany).

SNP selection

Tag single nucleotide polymorphisms (SNPs) were se-

lected on the basis of HapMap Data for the Caucasian

and Yoruba reference populations. Tag SNPs were se-

lected within a region extending 5 kb on either side of

the candidate gene. The minor allele frequency (MAF)

cut off value was arbitrarily set at 20% (so the markers

characterized by a MAF < 20% were excluded from the

analysis by lack of power). In each reference population,

the markers with MAF > 20% are included in different

blocks of correlation (based on the r2 values). One marker

in each block was selected and considered as a Tag SNPs.

Indeed, markers located in the same block of correlation

gave the same genetic information in association studies.

Tag SNPs characterised by a MAF over 20% on at least

one reference population were selected. These Tag SNPs

were defined to catch all the genetic information from the

candidate gene. We selected three tag SNPs for CCR5, six

tag SNPs for CCL2 and six tag SNPs for MAL/TIRAP

genes. Taking into account a disease with a prevalence of

30%, a cutoff for significant association of 0.05, for a geno-

type relative risk of 1.3, the probability to detect a real as-

sociation reaches 63% with 315 chronic cases and 118

ASY controls. We decided to use a cut off of 20% instead

of 10% or 15%. For lower cut off, the number of Tag SNPs

will increase and it will request a seriously large your

study population to have a good statistical power.

SNP genotyping

Most of the genotyping was done with the Golden Gate

genotyping assay (Illumina, San Diego, USA). In some

cases, genotyping assays were performed with the Taq-

Man system (Applied Biosystems, Foster City, USA) ac-

cording to the manufacturer’s instructions.

Statistical analysis

SPSS Statistics software v. 17.0 (IBM, Armonk, USA) was

used for statistical analyses. We performed stepwise binary

logistic regression analysis on the whole population, to

analyse the relationship between the probability of an indi-

vidual to develop chronic Chagas cardiomyopathy and the

main covariates (sex and polymorphisms). Sex was consid-

ered as a binary covariate. In our stepwise binary logistic

regression analysis, genotypes were considered as binary

covariates. Indeed, for each polymorphism we had two al-

leles (A frequent one; a rare one). So, we obtained three

genotypes (AA, Aa and aa). In our stepwise binary logistic

regression analysis, genotypes were considered as binary

covariates. So, we performed three different analyses (Ana-

lysis 1: AA vs Aa + aa (we supposed that the a allele is

dominant); Analysis 2: AA + aa vs Aa (we supposed that

the heterozygote carriers are different from the homozy-

gote ones); Analysis 3: AA +Aa vs aa (we supposed that

the A allele is dominant)). The best results are indicated in

Tables 1, 2 and 3.

In multivariates analyses, several polymorphisms and

gender were included as covariates. All the covariates

are analyzed in the same time. In a stepwise approach,

the worse associated covariate (non significant) is re-

moved and the analysis is run again up to keep only sig-

nificant associated covariates.

Results and discussion
Fifteen Tag SNPs were genotyped successfully on our

original cohort including ASY subjects (n = 118) and

CCC patients (n = 315) (Table 4). The genotyping steps

were done successfully for all the Tag SNPs. The geno-

type distribution of each SNP is summarized in Table 5.

All the SNPs were in Hardy-Weinberg equilibrium on

the ASY individuals considered as control subjects (p >

0,001) (Table 6).

Polymorphisms rs3176763C/A and rs11575815A/T, around

the CCR5 gene, are associated to an increased risk of CCC

Three tag SNPs were genotyped for the CCR5 gene. In

the CCC subjects group, 266 (84.4%) subjects carried the

rs3176763C/C genotype whereas 110 (94.0%) of the ASY

controls carried this genotype. This difference was sig-

nificant in an univariate analysis including also the gen-

der as covariate (p = 0.006; OR = 1.79; 95% CI: 1.18-2.70)

(see Table 1).

For the rs11575815A/T polymorphism, 278 (90.3%) CCC

subjects carried the genotypes rs11575815A/A or rs1157

5815A/T versus 93 (82.3%) for the ASY controls. This dif-

ference was significant (p = 0.030; OR = 1.41; 95% CI: 1.03-

1.92) (see Table 1).

We performed a multivariate analysis (binary regression,

stepwise procedure) to confirm the associations found pre-

viously in univariate analysis. Similarly to the univariate

analysis, the genotypes were considered as binary variables.

In this analysis, we included rs3176763C/A, rs11575815A/

T and the gender as covariates. Polymorphism rs31767

63C/A (p = 0.014; OR = 1.69; 95% CI: 1.11-2.57) and the
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gender (p = 0.002; OR = 2.04; 95% CI: 1.31-3.19) were still

significantly associated to CCC (see Table 7). A trend of

association was detected for rs11575815A/T (p = 0.077;

OR = 1.33; 95% CI: 0.97-1.82).

When we compared the ASY subjects to severe CCC

patients (left ventricular ejection fraction value under

0.4%), only the association of rs3176763C/A was main-

tained in univariate analysis (p = 0.005; OR = 1.88; 95% CI:

1.20-2.94) (see Table 2). These two markers (rs3176763C/

A and rs11575815A/T) did not discriminate moderate

CCC from severe CCC (p > 0.5).

Polymorphisms rs4586T/C, rs3917891C/T and

rs2530797A/G, around the CCL2 gene, are associated to

an increased risk of CCC

Six tag SNPs were genotyped for the CCL2 gene. In the

CCC subjects group, 74 (24.0%) carried the rs4586T/T

genotype whereas 38 (34.5%) of the ASY controls carried

this genotype. This difference was significant in an uni-

variate analysis (p = 0.032; OR = 1.30; 95% CI: 1.02-1.65)

(see Table 1).

For the rs3917891C/T polymorphism, 264 (86.0%) CCC

subjects carried the rs3917891C/C genotype versus 107

Table 2 Association studies between CCC with a left ventricular ejection fraction value under 0.4% and ASY including

as covariates the gender and the polymorphism one by one

GENE Tag SNP Genotype groups Association test

CCR5 rs3176763 CC vs CA + AA p = 0.005; OR = 1.88; 95% CI: 1.20-2.94

rs3087253 AA vs AT + TT p = 0.861; OR = 1.02; 95% CI: 0.80-1.31

rs11575815 AA + AT vs TT p = 0.138; OR = 1.29; 95% CI: 0.92-1.82

CCL2 rs3760396 GG vs GA + AA p = 0.920; OR = 1.02; 95% CI: 0.77-1.35

rs2857656 CC vs CG + GG p = 0.514; OR = 1.08; 95% CI: 0.85-1.39

rs4586 TT vs TC + CC p = 0.034; OR = 1.34; 95% CI: 1.02-1.75

rs3917891 CC vs CT + TT p = 0.053; OR = 1.55; 95% CI: 1.00-2.41

rs2530797 AA vs AG + GG p = 0.005; OR = 1.42; 95% CI: 1.11-1.82

rs991804 CC vs CT + TT p = 0.824; OR = 1.06; 95% CI: 0.65-1.73

TIRAP rs11220437 TT vs TC + CC p = 0.181; OR = 1.22; 95% CI: 0.91-1.63

rs591163 GG + GA vs AA p = 0.188; OR = 1.39; 95% CI: 0.88-1.90

rs8177352 AA vs AG + GG p = 0.858; OR = 1.02; 95% CI: 0.78-1.34

rs8177375 AA vs AG + GG p = 0.174; OR = 1.25; 95% CI: 0.91-1.69

rs8177376 AA vs AC + CC p = 0.005; OR = 1.46; 95% CI: 1.12-1.91

rs17866704 TT vs TC + CC p = 0.087; OR = 1.25; 95% CI: 0.97-1.62

Table 1 Association studies between CCC and ASY including as covariates the gender and the polymorphism one by one

GENE Tag SNP Genotype groups Association test

CCR5 rs3176763 CC vs CA + AA p = 0.006; OR = 1.79; 95% CI: 1.18-2.70

rs3087253 AA vs AT + TT p = 0.640; OR = 1.06; 95% CI: 0.84-1.32

rs11575815 AA + AT vs TT p = 0.030; OR = 1.41; 95% CI: 1.03-1.92

CCL2 rs3760396 GG vs GA + AA p = 0.373; OR = 1.13; 95% CI: 0.87-1.46

rs2857656 CC vs CG + GG p = 0.440; OR = 1.09; 95% CI: 0.87-1.36

rs4586 TT vs TC + CC p = 0.032; OR = 1.30; 95% CI: 1.02-1.65

rs3917891 CC vs CT + TT p = 0.037; OR = 1.56; 95% CI: 1.03-2.37

rs2530797 AA vs AG + GG p = 0.028; OR = 1.28; 95% CI: 1.03-1.60

rs991804 CC vs CT + TT p = 0.493; OR = 1.17; 95% CI: 0.75-1.82

TIRAP rs11220437 TT vs TC + CC p = 0.155; OR = 1.21; 95% CI: 0.93-1.58

rs591163 GG + GA vs AA p = 0.237; OR = 1.01; 95% CI: 0.79-1.30

rs8177352 AA vs AG + GG p = 0.913; OR = 2.06; 95% CI: 0.45-9.55

rs8177375 AA vs AG + GG p = 0.203; OR = 1.21; 95% CI: 0.90-1.61

rs8177376 AA vs AC + CC p = 0.004; OR = 1.42; 95% CI: 1.12-1.80

rs17866704 TT vs TC + CC p = 0.023; OR = 1.31; 95% CI: 1.04-1.66
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(93.9%) for the ASY controls. This difference was signifi-

cant (p = 0.037; OR = 1.56; 95% CI: 1.03-2.37) (see Table 1).

For the rs2530797A/G polymorphism, 163 (52.9%) CCC

subjects carried the rs2530797A/A genotype versus 47

(41.6%) for the ASY controls. This difference was significant

(p = 0.028; OR = 1.28; 95% CI: 1.03-1.60) (see Table 1).

The same polymorphisms were associated when we com-

pared the ASY subjects to severe CCC patients (rs4586T/C:

p = 0.034; OR = 1.34; 95% CI: 1.02-1.75; rs3917891C/T: p =

0.053; OR = 1.55; 95% CI: 1.00-2.41; rs2530797A/G: p =

0.005; OR = 1.42; 95% CI: 1.11-1.82) (see Table 2).

We performed multivariate analysis including these three

polymorphisms and the gender as covariates. When we

compared the ASY subjects to CCC patients, only the poly-

morphism rs2530797A/G and the gender remained sig-

nificantly associated (rs2530797A/G: p = 0.022; OR = 1.30;

95% CI: 1.04-1.64; gender: p = 0.001; OR = 2.09; 95% CI:

1.33-3.28) (see Table 7).

The same result was obtained, when we compared the

ASY subjects to severe CCC patients (rs2530797A/G:

p = 8.51×10-7; OR = 1.46; 95% CI: 1.13-1.88; gender: p =

0.004; OR = 3.59; 95% CI: 2.16-5.97). These three markers

(rs4586T/C, rs3917891C/T and rs2530797A/G) did not

discriminate moderate CCC from severe CCC (p > 0.16).

Polymorphism rs8177376A/C, around the MAL/TIRAP

gene, is associated to an an increased risk of CCC

Six tag SNPs were genotyped for the MALTIRAP gene.

For the rs8177376A/C polymorphism, 230 (75.4%) CCC

subjects carried the rs8177376A/A genotype versus 63

(54.9%) for the ASY controls. This difference was signifi-

cant (p = 0.004; OR = 1.42; 95% CI: 1.12-1.80) (see Table 1).

The same result was obtained when the analysis was re-

stricted to severe CCC (p = 0.005; OR = 1.46; 95% CI:

1.12-1.91) (see Table 2).

Table 3 Association studies performed on an independent cohort including as covariates the gender and the

polymorphism one by one

CCC VS ASY

GENE Tag SNP Genotype groups Association test

CCL2 rs3760396 GG vs GA + AA p = 0.626; OR = 1.35; 95% CI: 0.40-4.55

rs2857656 CC vs CG + GG p = 0.267; OR = 1.16; 95% CI: 0.89-1.51

rs4586 TT vs TC + CC p = 0.128; OR = 1.25; 95% CI: 1.94-1.67

rs3917891 CC vs CT + TT p = 0.127; OR = 1.42; 95% CI: 0.90-2.23

rs2530797 AA vs AG + GG p = 0.007; OR = 1.46; 95% CI: 1.11-1.92

rs991804 CC vs CT + TT p = 0.435; OR = 1.23; 95% CI: 0.73-2.09

TIRAP rs11220437 TT vs TC + CC p = 0.149; OR = 1.27; 95% CI: 0.92-1.75

rs591163 GG + GA vs AA p = 0.154; OR = 1.32; 95% CI: 0.90-1.94

rs8177352 AA vs AG + GG p = 0.278; OR = 1.20; 95% CI: 0.87-1.66

rs8177375 AA vs AG + GG p = 0.256; OR = 1.22; 95% CI: 0.87-1.72

rs8177376 AA vs AC + CC p = 0.037; OR = 1.36; 95% CI: 1.19-1.80

rs17866704 TT vs TC + CC p = 0.051; OR = 1.32; 95% CI: 1.00-1.76

CCC with a left ventricular ejection fraction value under 0.4% VS ASY

GENE Tag SNP Genotype groups Association test

CCL2 rs3760396 GG vs GA + AA p = 0.392; OR = 1.84; 95% CI: 0.45-7.46

rs2857656 CC vs CG + GG p = 0.499; OR = 1.10; 95% CI: 0.83-1.46

rs4586 TT vs TC + CC p = 0.194; OR = 1.23; 95% CI: 0.90-1.67

rs3917891 CC vs CT + TT p = 0.156; OR = 1.40; 95% CI: 0.88-2.24

rs2530797 AA vs AG + GG p = 0.002; OR = 1.59; 95% CI: 1.19-2.13

rs991804 CC vs CT + TT p = 0.876; OR = 1.05; 95% CI: 0.60-1.83

TIRAP rs11220437 TT vs TC + CC p = 0.265; OR = 1.21; 95% CI: 0.86-1.71

rs591163 GG + GA vs AA p = 0.134; OR = 1.38; 95% CI: 0.91-2.10

rs8177352 AA vs AG + GG p = 0.224; OR = 1.23; 95% CI: 0.88-1.73

rs8177375 AA vs AG + GG p = 0.313; OR = 1.21; 95% CI: 0.84-1.74

rs8177376 AA vs AC + CC p = 0.046; OR = 1.36; 95% CI: 1.05-1.85

rs17866704 TT vs TC + CC p = 0.095; OR = 1.29; 95% CI: 0.96-1.74
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A statistically significant difference was also detected

for the rs17866704T/C polymorphism (p = 0.023; OR =

1.31; 95% CI: 1.04-1.66) (see Table 1). In our cohort, 175

((57.4%) CCC subjects carried the rs17866704T/T geno-

type versus 80 (70.8%) for the ASY controls. The two

SNPs remained associated in a multivariate analysis (see

Table 7).

Some trend of association was detected for the rs17

866704T/C polymorphism when we compared the ASY

subjects to the severe CCC patients (p = 0.087; OR =

1.25; 95% CI: 0.97-1.62) (see Table 2). The rs8177376A/

C marker did not discriminate moderate CCC from se-

vere CCC (p > 0.57).

The associations of the CCL2 and MAL/TIRAP genes were

confirmed in a cohort from the original reports

The original data reporting association between the CCL2

and TIRAP genes were done by Ramasawmy et al. [41,42].

These studies were done on 169 patients with CCC and

76T. cruzi infected ASY individuals. Our present study

population is partially overlapping with the original one

described by Ramasawmy et al. So, we repeated the ana-

lysis for these two genes on our cohort after removing the

common subjects. This independent cohort includes 110/

118 ASY subjects and 281/315 CCC patients. Of 281 pa-

tients with CCC, 192 had severe ventricular dysfunction

and were classified as having severe CCC. The genotype

distribution of the CCL2 and TIRAP Tag SNPs, on this in-

dependent cohort, is summarized in Table 8. In association

studies, the gender was also included as covariates.

For the CCL2rs2530797A/G polymorphism, 132 (50.6%)

CCC subjects carried the rs2530797A/A genotype versus

25 (33.8%) for the ASY controls (see Table 8). This differ-

ence was significant (p = 0.007; OR = 1.4 p = 0.007; OR =

1.46; 95% CI: 1.11-1.926) (see Table 8). The same polymor-

phism remained associated when we compared the ASY

subjects to severe CCC patients (p = 0.002; OR = 1.59; 95%

CI: 1.19-2.13) (see Table 3).

For the MAL/TIRAPrs8177376A/C polymorphism, 195

(75.6%) CCC subjects carried the rs8177376A/A genotype

versus 42 (61.8%) for the ASY controls (see Table 8). This

difference was significant on the whole independent co-

hort (p = 0.037; OR = 1.36; 95% CI: 1.19-1.80) (see Table 3).

The same result was obtained when the analysis was re-

stricted to severe CCC (p = 0.046; OR = 1.36; 95% CI:

1.05-1.85) (see Table 3).

A trend of association was detected for the rs17866

704T/C polymorphism in both analyses (p = 0.051; OR =

1.32; 95% CI: 1.00-1.76) (see Table 3) and (p = 0.095; OR =

1.29; 95% CI: 0.96-1.74) (see Table 3).

In order to detect interaction between the candidate

genes a multivariate stepwise binary logistic regression

analysis was performed on ASY subjects and CCC pa-

tients (see Table 9). In this analysis, we included the gen-

der, rs11575815A/T, rs2530797A/G, rs8177376A/C and

rs17866704T/C as covariates. Polymorphisms CCR5rs317

6763C/A (p = 0.007; OR = 1.879; 95% CI: 1.19-1.89), TIRAP

rs8177376A/C (p = 0.007; OR = 1.393; 95% CI: 1.09-1.77)

and the gender (p = 0.001; OR = 2.226; 95% CI: 1.39-3.55)

were still significantly associated to CCC (see Table 9).

However, if we want to add a significant number of genes

and polymorphisms at the first step of the multivariate

analysis, the study population (which is one of the largest

described so far) is underpowered. So, we are working to-

ward obtaining a cohort between 1,500 and 2,000 subjects

that would enable us to assess whether possessing a given

combination of alleles in several SNPs contribute more

strongly for prognosis than the individual SNPs.

We conducted an association study on several previ-

ously studied candidate genes on a Brazilian population.

Whereas previously studies were done on a limited num-

ber of subjects (CCC patients ranges from 27 to 169, ASY

controls ranges from 27 to 132) our study was done on a

main cohort including 433 Chagas disease patients from

the states of Sao Paulo, Minas Gerais and Bahia states.

These patients were classified as seropositive ASY (n = 118)

or as having CCC (n = 315). Whereas, previous studies

were done on a limited number of SNPs, here, a Tag

SNPs approach was applied to catch all the genetic

information from each candidate gene.

For the CCR5 gene, two markers were associated to

CCC (rs3176763C/A and rs11575815A/T). The associ-

ation of rs3176763C/A was confirmed in a multivariate

analysis or in a univariate analysis focusing only on severe

Table 4 List of the tag SNPs genotyped on the original

study population

GENE Tag SNP Position relative to
coordinate system

Position relative to
transcription start point

CCR5 rs3176763 C/A 46414281 −113

rs3087253 A/G 46418689 +4295

rs11575815 A/T 46420170 +5776

CCL2 rs3760396 G/C 32581441 −928

rs2857656 C/G 32582007 −362

rs4586 T/C 32583269 +900

rs3917891 C/T 32585687 +3318

rs2530797 A/G 32586094 +3725

rs991804 C/T 32587725 +5356

TIRAP rs11220437 T/C 126148160 −12630

rs591163 G/A 126148432 −12358

rs8177352 A/G 126153843 −6947

rs8177375 A/G 126163064 +2274

rs8177376 A/C 126163612 +2822

rs17866704 T/C 126165757 +4967
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Table 5 Genotype distribution on controls (ASY individuals) and cases (CCC) taking into account the gender and the left ventricular ejection fraction values

ASY CCC CCC (EF ≤ 0.4) CCC (EF ≥ 0.4)

Gene SNP Genotype Total Male Female Total Male Female Total Male Female Total Male Female

CCR5 rs3176763 CC 110 50 59 266 167 97 169 127 42 88 34 54

(94.0%) (96.2%) (92.2%) (84.4%) (87.0%) (80.2%) (84.9%) (88.2%) (76.4%) (89.0%) (81.0%) (84.4%)

CA 7 2 5 48 25 23 30 17 13 17 8 9

(6.0%) (3.8%) (7.8%) (15.2%) (13.0%) (19.0%) (15.1%) (11.8%) (23.6%) (16.0%) (19.0%) (14.1%)

AA 0 0 0 1 0 1 0 0 0 1 0 1

(0.0%) (0.0%) (0.0%) (0.3%) (0.0%) (0.8%) (0.0%) (0.0%) (0.0%) (0.9%) (0.0%) (1.6%)

CCR5 rs3087253 AA 46 18 28 134 81 52 80 61 19 52 20 32

(41.4%) (36.7%) (45.9%) (43.9%) (43.5%) (44.4%) (41.0%) (43.3%) (35.2%) (51.0%) (50.0%) (51.6%)

AG 47 22 24 119 73 46 80 52 28 34 16 18

(42.3%) (44.9%) (39.3%) (39.0%) (39.2%) (39.3%) (41.0%) (36.9%) (51.9%) (33.3%) (40.0%) (29.0%)

GG 18 9 9 52 32 19 35 28 7 16 4 12

(16.2%) (18.4%) (14.8%) (17.0%) (17.2%) (16.2%) (17.9%) (19.9%) (13.0%) (15.7%) (10.0%) (19.4%)

CCR5 rs11575815 AA 51 25 25 158 97 60 104 74 22 51 22 29

(45.1%) (49.0%) (41.0%) (51.3%) (51.6%) (50.8%) (52.8%) (52.1%) (53.7%) (50.0%) (53.7%) (47.5%)

AT 42 20 22 120 70 49 71 50 16 43 16 27

(37.2%) (39.2%) (36.1%) (39.0%) (37.2%) (41.5%) (36.0%) (35.2%) (39.0%) (42.2%) (39.0%) (44.3%)

TT 20 6 14 30 21 9 22 18 3 8 3 5

(17.7%) (11.8%) (23.0%) (9.7%) (11.2%) (7.6%) (11.2%) (12.7%) (7.3%) (7.8%) (7.3%) (8.2%)

CCL2 rs3760396 GG 87 41 45 247 152 94 153 112 41 87 36 51

(75.7%) (80.4%) (71.4%) (79.9%) (80.9%) (79.0%) (77.7%) (78.9%) (74.5%) (85.3%) (90.0%) (82.3%)

GC 27 9 18 60 35 24 43 29 14 14 4 10

(23.5%) (17.6%) (28.6%) (19.4%) (18.6%) (20.2%) (21.8%) (20.4%) (25.5%) (13.7%) (10.0%) (16.1%)

CC 1 1 0 2 1 1 1 1 0 1 0 1

(0.9%) (2.0%) (0.0%) (0.6%) (0.5%) (0.8%) (0.5%) (0.7%) (0.0%) (1.0%) (0.0%) (1.6%)

CCL2 rs2857656 CC 50 24 25 122 70 50 77 52 25 42 17 25

(44.2%) (48.0%) (40.3%) (39.7%) (37.6%) (42.0%) (39.3%) (36.9%) (45.5%) (41.2%) (42.5%) (40.3%)

CG 51 22 29 150 92 58 96 72 24 51 18 33

(45.1%) (44.0%) (46.8%) (48.9%) (49.5%) (48.7%) (49.0%) (51.1%) (43.6%) (50.0%) (45.0%) (53.2%)

GG 12 4 8 35 24 11 23 17 6 9 5 4

(10.6%) (8.0%) (12.9%) (11.4%) (12.9%) (9.2%) (11.7%) (12.1%) (10.9%) (8.8%) (12.5%) (6.5%)

CCL2 rs4586 TT 38 20 18 74 41 32 46 31 15 26 9 17

(34.5%) (40.8%) (30.0%) (24.0%) (21.7%) (27.4%) (23.4%) (21.8%) (27.3%) (25.5%) (22.0%) (27.9%)
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Table 5 Genotype distribution on controls (ASY individuals) and cases (CCC) taking into account the gender and the left ventricular ejection fraction values

(Continued)

TC 53 23 29 148 90 57 94 70 24 52 19 33

(48.2%) (49.9%) (48.3%) (48.1%) (47.6%) (48.7%) (47.7%) (49.3%) (43.6%) (51.0%) (46.3%) (54.1%)

CC 19 6 13 86 58 28 57 41 16 26 13 11

(17.3%) (12.2%) (21.7%) (27.9%) (30.7%) (23.9%) (28.9%) (28.9%) (29.1%) (25.5%) (31.7%) (18.0%)

CCL2 rs3917891 CC 107 47 59 264 161 101 166 120 46 91 37 54

(93.9%) (90.4%) (96.7%) (86.0%) (86.1%) (85.6%) (85.6%) (85.7%) (85.2%) (88.3%) (90.2%) (87.1%)

CT 7 5 2 41 25 16 26 19 7 12 4 8

(6.1%) (9.6%) (3.3%) (13.4%) (13.4%) (13.6%) (13.4%) (13.6%) (13.0%) (11.7%) (9.9%) (12.9%)

TT 0 0 0 2 1 1 2 1 1 0 0 0

(0.0%) (0.0%) (0.0%) (0.7%) (0.5%) (0.8%) (1.0%) (0.7%) (1.9%) (0.0%) (0.0%) (0.0%)

CCL2 rs2530797 AA 47 13 33 163 104 58 110 81 29 47 19 28

(41.6%) (25.5%) (54.1%) (52.9%) (55.6%) (48.7%) (55.8%) (57.0%) (52.7%) (45.6%) (47.5%) (44.4%)

AG 52 33 19 115 68 46 69 51 18 44 16 28

(46.0%) (64.7%) (31.1%) (37.3%) (36.4%) (38.7%) (35%) (35.9%) (32.7%) (42.7%) (40%) (44.4%)

GG 14 5 9 30 15 15 18 10 8 12 5 7

(12.4%) (9.8%) (14.8%) (9.7%) (8.0%) (12.6%) (9.1%) (7.0%) (14.5%) (11.7%) (12.5%) (11.1%)

CCL2 rs991804 CC 51 25 25 120 67 51 78 52 26 40 15 25

(45.5%) (48.1% (42.4%) (41.2%) (38.3%) (44.7%) (42.6%) (39.4%) (51.0%) (40.4%) (39.5%) (41.0%)

CT 53 24 29 148 92 56 88 67 21 54 20 34

(47.3%) (46.2%) (49.2%) (50.9%) (52.6%) (51.1%) (48.1%) (50.8%) (41.2%) (54.5%) (52.6%) (55.7%)

TT 8 3 5 23 16 7 17 13 4 5 3 2

(7.1%) (5.8%) (8.5%) (7.9%) (9.1%) (6.1%) (9.3%) (9.8%) (7.8%) (5.1%) (7.9%) (3.3%)

TIRAP rs11220437 TT 92 44 47 229 142 85 146 106 40 74 31 43

(80.0%) (84.6%) (75.8%) (73.9%) (74.7%) (72.0%) (73.7%) (73.6%) (74.1%) (71.8%) (75.6%) (69.4%)

TC 22 8 14 76 45 31 48 36 12 28 9 19

(19.1%) (15.4%) (22.6%) (24.5%) (23.7%) (26.3%) (24.2%) (25.0%) (22.2%) (27.2%) (22.0%) (30.6%)

CC 1 0 1 5 3 2 4 2 2 1 1 0

(9.0%) (0.0%) (1.6%) (1.6%) (1.6%) (1.7%) (2.0%) (1.4%) (3.7%) (1.0%) (2.4%) (0.0%)

TIRAP rs591163 GG 51 23 28 158 95 82 104 74 20 52 30 32

(46.4%) (46.9%) (46.7%) (51.5%) (50.5%) (53.0%) (53.1%) (52.1%) (50.0%) (51.5%) (55.6%) (52.5%)

GA 44 19 24 120 76 43 75 56 16 38 19 22

(40.0%) (38.8%) (40.0%) (39.1%) (40.4%) (36.8%) (38.3%) (39.4%) (40.0%) (37.6%) (35.2%) (36.1%)
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Table 5 Genotype distribution on controls (ASY individuals) and cases (CCC) taking into account the gender and the left ventricular ejection fraction values

(Continued)

AA 15 7 8 29 17 12 17 12 4 11 5 7

(13.6%) (14.3%) (13.3%) (9.4%) (9.0%) (10.3%) (8.7%) (8.5%) (10.0%) (10.9%) (9.3%) (11.5%)

TIRAP rs8177352 AA 83 38 44 225 132 91 140 98 42 80 31 49

(73.5%) (4.5%) (72.1%) (73.3%) (70.6%) (77.1%) (71.4%) (69.5%) (76.4%) (77.7%) (75.6%) (79.0%)

AG 28 12 16 73 48 25 47 36 11 23 10 13

(24.8%) (23.5%) (26.2%) (23.8%) (25.7%) (21.2%) (24.0%) (25.5%) (20.0%) (22.3%) (24.4%) (21.0%)

GG 2 60 1 9 7 2 9 7 2 0 0 0

(1.8%) (23.5%) (1.6%) (2.9%) (3.7%) (1.7%) (4.6%) (5.0%) (3.6%) (0.0%) (0.0%) (0.0%)

TIRAP rs8177375 AA 95 45 49 246 153 91 156 115 41 82 34 48

(84.1%) (88.2%) (80.3%) (79.4%) (81.4%) (75.8%) (79.2%) (81.0%) (74.5%) (78.8%) (82.9%) (76.2%)

AG 16 5 11 60 33 27 39 26 13 20 6 14

(14.2%) (9.8%) (18.0%) (19.4%) (17.6%) (22.5%) (19.8%) (18.3%) (23.6%) (19.2%) (14.6%) (22.2%)

GG 2 1 1 4 2 2 2 1 1 2 1 1

(1.8%) (2.0%) (1.6%) (1.2%) (1.0%) (1.7%) (1.0%) (0.7%) (1.8%) (1.9%) (2.4%) (1.6%)

TIRAP rs8177376 AA 63 26 37 230 143 85 149 110 39 74 29 45

(54.9%) (57.8%) (60.7%) (75.4%) (77.7%) (71.4%) (76.8%) (79.1%) (70.9%) (71.8%) (72.5%) (71.4%)

AC 40 18 22 70 40 30 44 28 16 25 11 14

(37.7%) (40.0%) (36.1%) (23.0%) (21.7%) (25.2%) (22.7%) (20.1%) (29.1%) (24.3%) (27.5%) (22.2%)

CC 3 1 2 5 1 4 1 1 0 4 0 4

(2.8%) (2.2%) (3.3%) (1.6%) (0.5%) (3.4%) (0.5%) (0.7%) (0.0%) (3.9%) (0.0%) (6.3%)

TIRAP rs17866704 TT 80 35 44 175 103 71 115 80 35 54 20 34

(70.8%) (70.0%) (71.0%) (57.4%) (55.4%) (60.7%) (59.0%) (56.7%) (64.8%) (53.5%) (50.0%) (55.7%)

TC 32 15 17 106 64 41 63 46 17 40 16 24

(28.3%) (30.0%) (27.4%) (34.8%) (34.4%) (35.0%) (32.3%) (32.6%) (31.5%) (39.6%) (40%) (39.3%)

CC 1 0 1 24 19 5 17 15 2 7 4 3

(0.9%) (0.0%) (1.6%) (7.9%) (10.2%) (4.3%) (8.7%) (10.6%) (3.7%) (6.9%) (10.0%) (4.9%)
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CCC cases. rs3176763C/A polymorphism is located in the

promoter of the gene and may affect the binding of tran-

scription factors. Although these SNPs were not studied

before, is in line with the literature in studies performed in

other Latin American countries with diverse ethnic com-

positions, where several SNPs were located in the 5′UTR

of the CCR5 gene where they may influence binding of

regulatory elements to gene expression control regions

[22,47,48,61]. As suggested by Florez et al., these polymor-

phisms do not act independently [61]. Multiple poly-

morphic changes in the promoter may influence in a

differential way the levels of CCR5 expression and the type

of cell in which it is expressed. So, it’s more appropriate to

talk about a susceptibility haplotype rather than individual

SNPs. The content and the length of this haplotype may

vary from one population to the other. The subsets of pa-

tients that develop Chagas cardiomyopathy display an ex-

acerbated Th1 immune response. The relevance of the

CCR5 and CXCR3 chemokine–chemokine receptor axis

Table 6 Hardy-Weinberg equilibrium test

GENE Tag SNP Chi2 p

CCR5 rs3176763 C/A 0.111257738 0.9458

rs3087253 A/G 1.014584489 0.6021

rs11575815 A/T 0.111257738 0.9458

CCL2 rs3760396 G/C 0.491314613 0.7821

rs2857656 C/G 0.035595421 0.9823

rs4586 T/C 0.004981781 0.9975

rs3917891 C/T 0.114371123 0.9444

rs2530797 A/G 0.004293958 0.9978

rs991804 C/T 1.35646743 0.5075

TIRAP rs11220437 T/C 0.063307752 0.9688

rs591163 G/A 1.190573349 0.5514

rs8177352 A/G 0.042221875 0.9791

rs8177375 A/G 1.69100575 0.4293

rs8177376 A/C 1.294967649 0.5233

rs17866704 T/C 1.314206075 0.5183

Table 7 Multivariate stepwise binary logistic regression analysis between CCC and ASY including as covariates the

gender and the polymorphisms associated in univariate analysis gene by gene

GENE: CCR5

Step Covariates Groups Association test

Step1 gender Male vs Female p = 0.002; OR = 2.042; 95% CI: 1.31-3.19

rs3176763 CC vs CA + AA p = 0.014; OR = 1.689; 95% CI: 1.11-2.57

rs11575815 AA + AT vs TT p = 0.077; OR = 1.328; 95% CI: 1.03-1.82

Step2 gender Male vs Female p = 0.001; OR = 2.058; 95% CI: 1.32-3.21

rs3176763 CC vs CA + AA p = 0.007; OR = 1.766; 95% CI: 1.16-2.68

rs11575815 AA + AT vs TT Excluded

GENE: CCL2

Step Covariates Groups Association test

Step1 gender Male vs Female p = 0.002; OR = 2.056; 95% CI: 1.31-3.23

rs2530797 AA vs AG + GG p = 0.162; OR = 1.198; 95% CI: 1.07-1.54

rs4586 TT vs TC + CC p = 0.348; OR = 1.138; 95% CI: 1.15-1.49

rs3917891 CC vs CT + TT p = 0.131; OR = 1.392; 95% CI: 1.1-2.140

Step2 gender Male vs Female p = 0.002; OR = 2.070; 95% CI: 1.32-3.25

rs2530797 AA vs AG + GG p = 0.051; OR = 1.258; 95% CI: 1.00-1.59

rs3917891 CC vs CT + TT p = 0.095; OR = 1.435; 95% CI: 1.06-2.19

rs4586 TT vs TC + CC Excluded

Step3 gender Male vs Female p = 0.001; OR = 2.091; 95% CI: 1.33-3.28

rs2530797 AA vs AG + GG p = 0.022; OR = 1.303; 95% CI: 1.04-1.64

rs4586 TT vs TC + CC Excluded

rs3917891 CC vs CT + TT Excluded

GENE: TIRAP

Step Covariates Groups Association test

Step1 gender Male vs Female p = 0.002; OR = 2.062; 95% CI: 1.30-3.27

rs8177376 AA vs AC + CC p = 0.013; OR = 1.357; 95% CI: 1.06-1.73

rs17866704 TT vs TC + CC p = 0.039; OR = 1.298; 95% CI: 1.01-1.66
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Table 8 Genotype distribution on our independent cohort which included 110 ASY controls and 281 cases (CCC) taking into account the gender and the left

ventricular ejection fraction values

ASY CCC CCC (EF ≤ 0.4) CCC (EF ≥ 0.4)

Gene SNP Genotype Total Male Female Total Male Female Total Male Female Total Male Female

CCL2 rs3760396 GG 61 30 30 208 128 79 140 99 41 76 28 36

(81.3%) (81.1%) (81.1%) (80.0%) (80.9%) (76.7%) (78.7%) (80.5%) (74.5%) (86.4%) (93.3%) (78.3%)

GC 13 6 7 50 26 23 37 23 14 11 2 9

(17.3%) (16.2%) (18.9%) (19.4%) (19.2%) (22.3%) (20.8%) (18.7%) (25.5%) (12.5%) (6.7%) (19.6%)

CC 1 1 0 2 1 1 1 1 0 1 0 1

(1.4%) (2.7%) (0.0%) (0.6%) (0.9%) (1.0%) (0.5%) (0.8%) (0.0%) (1.1%) (0.0%) (2.1%)

CCL2 rs2857656 CC 34 16 17 101 57 42 71 46 25 28 11 17

(46.6%) (44,4%) (47,2%) (38.7%) (36.8%) (42.0%) (39.9%) (37,4%) (45.5%) (36,4%) (36,7%) (36,2%)

CG 36 20 16 133 59 54 86 62 24 45 16 29

(49.3%) (55,6%) (44,4%) (51%) (51%) (51,9%) (48,3%) (50,4%) (43.6%) (58,4%) (53,3%) (61,7%)

GG 3 0 3 27 19 8 21 15 6 4 3 1

(4,1%) (0%) (8,3%) (10.3%) (12.3%) (7,7%) (11.8%) (12.2%) (10.9%) (5,2%) (10%) (2,1%)

CCL2 rs4586 TT 23 13 10 62 34 27 44 29 15 17 5 12

(32,4%) (37,1%) (28,6%) (23,8%) (21.8%) (26,5%) (24,6%) (23,4%) (27.3%) (22,4%) (16,7%) (26,1%)

TC 39 20 18 130 78 51 84 60 24 44 17 27

(54,9%) (57,1%) (51,4%) (50%) (50%) (50%) (46,9%) (48,4%) (43.6%) (57,9%) (56,7%) (58,7%)

CC 9 2 7 68 44 24 51 35 16 15 8 7

(12,7%) (5,7%) (20%) (22.2%) (28,2%) (23.5%) (28.5%) (28.2%) (29.1%) (19,7%) (26,7%) (15,2%)

CCL2 rs3917891 CC 69 34 34 220 132 86 150 104 46 66 27 39

(92%) (89,5%) (94,4%) (84.9%) (85,2%) (84,3%) (84,7%) (84,6%) (85.2%) (86,8%) (90%) (84,8%)

CT 6 4 2 37 22 15 25 18 7 10 3 7

(8%) (10,5%) (5,6%) (14,3%) (14,2%) (14,7%) (14,1%) (14.6%) (13.0%) (13,2%) (10%) (15,2%)

TT 0 0 0 2 1 1 2 1 1 0 0 0

(0%) (0%) (0.0%) (0.8%) (0.6%) (1%) (1.1%) (0.8%) (1.9%) (0.0%) (0.0%) (0.0%)

CCL2 rs2530797 AA 25 7 17 132 81 50 96 67 29 32 12 20

(33.8%) (18.9%) (47.2%) (50.6%) (51.9%) (48.5%) (53.6%) (54.0%) (52,7%) (41.6%) (40.0%) (42.6%)

AG 40 26 14 104 62 41 65 47 18 38 15 23

(54.1%) (70.3%) (38.9%) (39.8%) (39.7%) (39.8%) (36.3%) (37.9%) (32.7%) (49.4%) (50%) (48.9%)

GG 9 4 5 25 13 12 18 10 8 7 3 4

(12.2%) (10.8%) (13.9%) (9.6%) (8.3%) (11.7%) (10.1%) (8.1%) (14,5%) (9.1%) (10.0%) (8.5%)
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Table 8 Genotype distribution on our independent cohort which included 110 ASY controls and 281 cases (CCC) taking into account the gender and the left

ventricular ejection fraction values (Continued)

CCL2 rs991804 CC 35 16 18 99 55 42 71 45 26 26 10 16

(47.6%) (42,1%) (50%) (40,9%) (38.7%) (42,9%) (43%) (39.5%) (51.0%) (36,1%) (37%) (35,6%)

CT 36 21 15 122 72 50 77 56 21 43 15 28

(48%) (55,3%) (41,7%) (50.4%) (50,7%) (51%) (46,7%) (49,1%) (41.2%) (59,7%) (55.6%) (62,2%)

TT 4 1 3 21 15 6 17 13 4 3 2 1

(5,3%) (2,6%) (8.3%) (8,7%) (10,6%) (6.1%) (10.3%) (11,4%) (7.8%) (4,2%) (7.4%) (2,2%)

TIRAP rs11220437 TT 61 30 30 189 114 73 132 92 40 51 20 31

(81,3%) (79,8%) (83,3%) (73.0%) (73,5%) (71,6%) (74,2%) (74,2%) (74.1%) (68%) (69%) (67,4%)

TC 13 8 5 65 38 27 42 30 12 23 8 15

(17,3%) (21,1%) (13,9%) (25,1%) (24,5%) (26.5%) (23,6%) (24,2%) (22.2%) (30,7%) (27,6%) (32,6%)

CC 1 0 1 5 3 2 4 2 2 1 1 0

(1,3%) (0.0%) (2,8%) (1.9%) (1.9%) (2%) (2.2%) (1.6%) (3.7%) (1.3%) (3.4%) (0.0%)

TIRAP rs591163 GG 27 14 13 132 77 54 91 61 30 40 16 24

(38%) (40%) (37,1%) (50,8%) (49,7%) (52,4%) (51,4%) (49,6%) (55,6%) (51.9%) (53,3%) (51,1%)

GA 33 15 17 103 63 39 70 51 19 29 11 18

(46,5%) (42,9%) (48,6%) (39.6%) (40,6%) (37,9%) (39,5%) (41,5%) (35,2%) (37.7%) (36,7%) (38,3%)

AA 11 6 5 25 15 10 16 11 5 8 3 5

(15,5%) (17,1%) (14,3%) (9.6%) (9.7%) (9,7%) (9%) (8.9%) (9,3%) (10.4%) (10%) (10,6%)

TIRAP rs8177352 AA 59 30 28 192 111 79 129 87 42 59 22 37

(80,8%) (81,1%) (80%) (74,1%) (71.6%) (77.5%) (72,5%) (70,7%) (76.4%) (77.6%) (73,3%) (80,4%)

AG 13 6 7 58 37 21 40 29 11 17 8 9

(17.8%) (16,2%) (20%) (22,4%) (23,9%) (20,6%) (22,5%) (23,6%) (20.0%) (22.4%) (26,7%) (19,6%)

GG 1 1 0 9 7 2 9 7 2 0 0 0

(1.4%) (2,7%) (0%) (3,5%) (4,5%) (2%) (5,1%) (5.7%) (3.6%) (0.0%) (0.0%) (0.0%)

TIRAP rs8177375 AA 61 32 28 203 124 77 140 99 41 58 24 34

(83,6%) (86,5%) (80%) (77,8%) (80%) (74%) (78,7%) (80,5%) (74.5%) (75,3%) (80%) (72,3%)

AG 10 4 6 54 29 25 36 23 13 17 5 12

(13,7%) (10,8%) (17,1%) (20,7%) (18,7%) (24%) (20,2%) (18.7%) (23.6%) (22,1%) (16,7%) (25,5%)

GG 2 1 1 4 2 2 2 1 1 2 1 1

(2,7%) (2,7%) (2,9%) (1.5%) (1.3%) (1.9%) (1.1%) (0.8%) (1.8%) (2,6%) (3,3%) (2,1%)
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Table 8 Genotype distribution on our independent cohort which included 110 ASY controls and 281 cases (CCC) taking into account the gender and the left

ventricular ejection fraction values (Continued)

TIRAP rs8177376 AA 42 19 23 195 121 72 134 95 39 56 24 32

(61,8%) (59,4%) (63,9%) (75,6%) (78,6%) (70,6%) (75,7%) (77,9%) (70.9%) (73,3%) (80%) (69,6%)

AC 25 13 12 60 32 28 42 26 16 18 6 12

(36,8%) (40.6%) (33,3%) (23.3%) (20,8%) (27,5%) (23,7%) (21,3%) (29.1%) (23,7%) (20%) (26,1%)

CC 1 0 1 3 1 2 1 1 0 2 0 2

(1,5%) (0%) (2,8%) (1.2%) (0.6%) (2%) (0.6%) (0.8%) (0.0%) (2,6%) (0.0%) (4.3%)

TIRAP rs17866704 TT 54 27 26 150 85 71 105 70 35 41 14 27

(72%) (75%) (68,4%) (58,4%) (55,2%) (60.7%) (59,7%) (57,4%) (64.8%) (54,7%) (46,7%) (60%)

TC 20 9 11 88 55 41 59 42 17 27 12 15

(26,7%) (25%) (28,9%) (34,2%) (35,7%) (35.0%) (33,5%) (34,4%) (31.5%) (36%) (40%) (33,3%)

CC 1 0 1 19 14 5 12 10 2 7 4 3

(1,3%) (0.0%) (2.6%) (7,4%) (9,1%) (4.3%) (6,8%) (8,2%) (3.7%) (9,3%) (13,3%) (6,7%)
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in Th1 cell migration to the heart has been demonstrated

in experimental models [62-64] and in CCC [22].

For the CCL2 gene, three markers were associated

with CCC (rs4586T/C, rs3917891C/T and rs2530797A/G).

Only the rs2530797A/G polymorphism remains associated

into multivariate analysis. The rs4586C/T polymorphism

is a synonymous marker, whereas the two other SNPs

are located into the 3′ region of the gene and may affect

stability of the transcript or the binding of regulatory el-

ements. The previous associated marker reported by

Ramasawmy et al. is located into the promoter region

(CCL2-2518A-G known as rs1024611) [42]. These re-

sults are absolutely not in discrepancy. Indeed, our tag

SNPs were selected on the CEU and YRI reference popula-

tions. In these two reference populations the rs2530797A/

G and rs1024611 are in strong linkage disequilibrium (pre-

vious associated marker) (D’ = 1). So the genetic involve-

ment of the CCL2 gene in the control of the human

susceptibility to chronic disease is confirmed. Patients with

severe Chagas disease had elevated plasma concentrations

of TNF-α and CCL2. Moreover, there is a good correlation

between levels of these proteins (especially TNF-α) and the

degree of left ventricular dysfunction [14]. Real-time quan-

titative PCR analysis in human CCC myocardium showed

that the gene expression levels of CCL2 was selectively up-

regulated [12], reinforcing the importance of regulation of

CCL2 expression in the pathogenesis of CCC.

For the TIRAP gene, only one marker, located into the 3′

UTR region of the gene, was strongly associated (rs8177

376A/C) and may affect stability of the transcript or the

binding of regulatory elements. This result is in line with

previous association reported by Ramasawmy et al. [41]

who reported a non-synonimous polymorphism at a coding

region (TIRAP975C/T, S180L known also as rs8177374).

Indeed these two SNPs (rs8177376 and rs8177374) are in

strong linkage disequilibrium. This gene encodes for a TIR

adaptor protein involved in the TLR4 signaling pathway of

the immune system. It activates NF-kappa-B, MAPK1,

MAPK3 and JNK, which promote cytokine secretion and

the inflammatory response.

Conclusions
Our data show beyond reasonable doubt that polymor-

phisms affecting key molecules involved in several immune

parameters (innate immunity signal transduction and T

cell/monocyte migration to inflammatory regions) play a

role in genetic susceptibility to CCC development. How-

ever, the functional impact of these markers remains un-

known. This also points out to the multigenic character of

CCC, each polymorphism imparting a small contribution.

When all the genetic markers will be identified, we will

be able to performed multivariate analyses using several

genes (gene polymorphisms) as covariates. In order to

perform this kind of analysis it is essential to enroll a

study population including at least 1,500 and 2,000 cases

and 1000 ASY controls. It will allow us to detect gene–

gene interactions and additive or antagonist effects be-

tween the associated polymorphisms. A panel of markers

will be defined to early detect individuals with a highest

risk to develop chronic Chagas cardiomyopathy. It will

provide information for pathogenesis as well as thera-

peutic targets. The identification of these marker sets may

Table 9 Multivariate stepwise binary logistic regression analysis between CCC and ASY including as covariates the

gender and the polymorphisms associated in all the previous multivariate analysis

Step Covariates Groups Association test

Step1 Gender Male vs Female p = 0.001; OR = 2.179; 95% CI: 1.36-3.49

CCR5rs3176763 CC vs CA + AA p = 0.014; OR = 1.763; 95% CI: 1.12-2.77

TIRAP rs8177376 AA vs AC + CC p = 0.014; OR = 1.363; 95% CI: 1.07-1.74

TIRAP rs17866704 TT vs TC + CC p = 0.048; OR = 1.291; 95% CI: 1.01-1.66

CCL2rs2530797 AA vs AG + GG p = 0.114; OR = 1.212; 95% CI: 1.04-1.54

TIRAP rs8177376 AA vs AC + CC p = 0.014; OR = 1.363; 95% CI: 1.07-1.74

Step2 Gender Male vs Female p = 0.001; OR = 2.179; 95% CI: 1.36-3.48

CCR5rs3176763 CC vs CA + AA p = 0.008; OR = 1.842; 95% CI: 1.17-2.88

TIRAP rs8177376 AA vs AC + CC p = 0.015; OR = 1.356; 95% CI: 1.06-1.73

TIRAP rs17866704 TT vs TC + CC p = 0.064; OR = 1.267; 95% CI: 1.01-1.63

CCL2rs2530797 AA vs AG + GG Excluded

Step3 Gender Male vs Female p = 0.001; OR = 2.226; 95% CI: 1.39-3.55

CCR5rs3176763 CC vs CA + AA p = 0.007; OR = 1.879; 95% CI: 1.19-1.89

TIRAP rs8177376 AA vs AC + CC p = 0.007; OR = 1.393; 95% CI: 1.09-1.77

TIRAP rs17866704 TT vs TC + CC Excluded

CCL2rs2530797 AA vs AG + GG Excluded
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also have a combined prognostic value for disease pro-

gression at the individual patient level, allowing close fol-

low up and early treatment of those carrying high-risk

genetic signatures.
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