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Highlights: 

 The mismatch negativity (MMN) is normal in migraine patients. 

 The N1 orienting component and the N2b are increased in migraine patients. 

 Auditory processes up to attention triggering are preserved in migraine patients. 

 Attention orienting to sound income and sound deviance are exacerbated in migraine. 

 These observations suggest abnormal activation of attention-related frontal networks 

 

 

 

Abstract 

Objective 

To investigate automatic event-related potentials (ERPs) to an auditory change in migraine patients. 

Methods 

Auditory ERPs were recorded in 22 female patients suffering from menstrually-related migraine and 

in 20 age-matched control subjects, in three sessions: in the middle of the menstrual cycle, before and 

during menses. In each session, 200 trains of tone-bursts each including two duration deviants were 

presented in a passive listening condition. 

Results 

In all sessions, duration deviance elicited a mismatch negativity (MMN) showing no difference 

between the two groups. However, migraine patients showed an increased N1 orienting component to 

all incoming stimuli and a prolonged N2b to deviance. They also presented a different modulation of 

P3a amplitude along the menstrual cycle, which tended to normalize during migraine attacks. None of 

the studied ERP components showed a default of habituation. 

Conclusions 

This passive paradigm highlighted increased automatic attention orienting to auditory changes but 

normal auditory sensory processing in migraineurs.  

Significance 

Our observations suggest normal auditory processing up to attention triggering but enhanced 

activation of attention-related frontal networks in migraineurs. 



 3 

1. Introduction 

 

Migraine is one of the most common headache disorders and affects 11% of the adult population 

(Stovner et al., 2007). Attacks are characterized by recurrent throbbing headaches accompanied by 

nausea, vomiting, photophobia, and/or phonophobia and are aggravated by movements (The 

International Classification of Headache Disorders, 2004). Between attacks, migraine patients may 

also show a hypersensitivity to visual, auditory, or olfactory stimuli (Main et al., 1997; 2000). 

Moreover, sound/light-induced headaches are frequent in migraine patients (Vingen et al., 1999; 

2004). The pathophysiological basis of such hypersensitivity to external stimuli is currently not 

completely elucidated. 

In line with these symptoms, electrophysiological studies have revealed changes in cortical excitability 

between migraine attacks. Increased attention orienting to new incoming stimuli had been long ago 

demonstrated in migraine patients. The initial (or early) Contingent Negative Variation (iCNV), which 

reflects the orienting properties of a warning stimulus in an active paradigm, has been found to be 

increased in migraine (Maertens de Noordhout et al., 1986), preferentially just before an attack (Kropp 

and Gerber, 1998), but not systematically (Böcker et al., 1990; Mulder et al., 2001). A default in the 

habituation of several event-related potentials (ERPs) to visual and auditory stimuli has also been 

observed in migraine patients in numerous studies (for a review, see Coppola et al., 2009), although 

not systematically (Oelkers et al., 1999; Sand and Vanagaite Vingen, 2000; Omland et al., 2013). 

Using an auditory habituation paradigm made of small consecutive trains of tones (Woods and 

Elmasian, 1986), we also found normal habituation pattern of the sensory N1 in migraineurs 

(Demarquay et al., 2011). Interestingly, this passive paradigm allowed to investigate the automatic 

response to the first stimuli of stimulation trains, and revealed that migraine patients exhibited a 

drastically augmented N1 orienting component, a fronto-central negative component appearing after 

the obligatory sensory N1 when the inter-stimulus interval is greater than 4 s (Näätänen and Picton, 

1987; Alcaini et al., 1994). The response to standard stimuli inside the trains also exhibited enhanced 

negative potentials in the descending slope of the N1 wave. By comparison with the augmented N1 
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orienting component observed in response to the first stimuli of the trains, we called this additional 

component “residual orienting component” and we concluded that migraine patients showed 

exacerbated attention orienting not only to first stimuli after a silent gap but also to repeated similar 

incoming stimuli.  

The electrophysiological studies described above showed abnormal responses not only to attended 

warning stimuli but also to passively endured stimuli. They emphasized attention-orienting 

exacerbation and/or habituation deficit in migraine without clearly disentangling basic auditory 

processing dysfunction and abnormal orienting processes. The use of passive oddball paradigms is of 

particular interest here because it allows studying both automatic sensory responses to auditory 

changes and automatic attention triggering. Indeed, in those paradigms, a rare and random change in 

repetitive stimulation elicits a negative response (Mismatch Negativity or MMN) disclosed when the 

response to the standard is subtracted from the response to the deviant. MMN is attributed to 

discriminative processes using memory traces developed from the previous stimulation (review in 

Näätänen et al., 2001; Näätänen et al., 2007; Näätänen et al., 2011). It is noteworthy that the memory 

traces probed by the MMN are thought to reflect the outcome of perceptual processing (Näätänen and 

Winkler, 1999; Näätänen et al., 2011) and further that MMN occurs automatically, even if subject’s 

attention is not directed to the sounds (Näätänen et al., 1993). Nevertheless, if deviant stimuli are 

salient enough, attention-orienting processes can be triggered, and an N2b-P3a complex (brain 

orienting response) is further obtained following the MMN (Näätänen et al., 1982). In contrast, 

presenting a second consecutive deviant drastically diminishes the MMN (and subsequent orienting 

responses), which has been called “short-term habituation of the MMN” (Sams et al., 1984). This 

phenomenon was explained by the simultaneous occurrence, for the repeated deviant, of mismatch 

processes with the (declining) neuronal model of the standard and match processes with the neuronal 

model of the deviant. Altogether, the study of ERPs triggered by a rare change in auditory stimulation 

thus offers the advantage to assess, in a passive listening situation, the integrity of pre-attentive stages 

of perceptual processing, as indexed by the MMN, as well as the automatic triggering of attention, 

indexed by the N2b-P3a complex. For these reasons, passive auditory oddball paradigms have been 

used in a very large number of ERP studies in various pathologies (review in Näätänen, 2003; 
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Naatanen et al., 2012), but surprisingly very rarely in migraine. 

Indeed, most of the oddball paradigm studies in migraine have required an active detection of deviant 

tones and they mainly focused on the P300 in response to targets, which was found to be altered in 

migraine patients (Drake et al., 1989; Mazzotta et al., 1995; Wang et al., 1995). The investigation of 

brain mechanisms to a stimulus change during passive listening has been rarely reported in migraine 

patients. Only one study investigated the MMN in adult migraineurs and reported increased N1 and 

MMN latencies, suggesting a hypo-activity of automatic cortical processes (de Tommaso et al., 2004). 

Two recent paediatric migraine studies also pointed to subtle MMN alterations in these patients 

(Valeriani et al., 2009; Korostenskaja et al., 2011). One study (Wang and Schoenen, 1998) explored 

the amplitude of an N2-P3a complex in response to deviant stimuli and reported for migraine patients 

a potentiation of this response in successive blocks, contrasting with a habituation in controls. 

The aim of the present study was thus to investigate the specific response to deviant stimuli in 

migraine patients, from the pre-attentive processes (MMN) to the attention-orienting processes (N2b, 

P3a), and to assess the habituation of the different components. Abnormalities of the MMN would 

suggest dysfunction in basic auditory processing of migraine patients. In light of our previous results, 

we expected a pathological brain orienting response to deviants.  
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2. Methods 

 

The present analysis is the second part of a larger auditory ERP study conducted in migraineurs using 

small trains of repeated standard tones with occasional deviant stimuli. The first part of the analysis 

focused on the responses to standards and their habituation patterns (Demarquay et al., 2011). Here we 

explore the response to deviant stimuli. 

 

2.1 Migraine patients and healthy subjects 

Twenty-two female migraine patients suffering from menstrually-related migraine without aura 

(A1.1.2 in ICHD 2004) were included in the study (mean age ± SD: 27 years ± 7; disease duration: 12 

years ± 8; attack frequency: 2 ± 1 per month). Migraine patients and controls were recruited through 

advertising in Lyon University and INSERM administration. A neurologist (CF, FB or GD) 

subsequently examined eligible subjects.    

Twenty age-matched female controls participated in the study (28 years ± 9). Exclusion criteria for all 

subjects included chronic daily headache, known morphological brain abnormality, current substance 

abuse, and migraine preventive medication. 14 migraine patients and 11 controls took oral 

contraceptives (
2
 = 0.0649, p = 0.799). 

All subjects gave their written informed consent (CCPPRB centre Léon-Bérard, Lyon, A 06-107, 

04/20/06) and were remunerated for their contribution.  

 

2.2 Recording procedure  

The recording procedure has been described in detail previously (Demarquay et al., 2011).  

Patients and healthy subjects were recorded in 3 different sessions, in the middle of the menstrual 

cycle (session 0, S0, day 15 ± 4 of the on-going cycle), before menses (session 1, S1, day -1 ± 1 of the 

cycle), and at the beginning of the menses (session 2, S2, day 1 ± 1 of the cycle). As a general rule, S2 

immediately followed S1 (mean delay = 2 days ± 1), except for 1 healthy subject and for 3 patients, 
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for whom S1 and S2 were in separate cycles. Session 0 randomly preceded or followed S1 and S2. S0 

was before S1 in 12/22 patients and in 13/20 healthy subjects (
2
 = 0.923, p = 0.337). 

Among the 22 migraineurs, ERPs were recorded during a migraine attack in 12 patients (session 1 for 

5 patients; session 2 for 6 patients; session 0 for 1 patient). In all patients, the attack occurred before 

the onset of the ERP recording and lasted until the end; medication was given at the end of recording 

session. 

During the recording sessions, the subject sat in a comfortable armchair in a quiet room. She was 

instructed to watch a silent movie of her choice and not to pay attention to the auditory stimuli.  

EEG was recorded continuously from 7 scalp electrodes placed at frontal (Fz, F3, F4), central (Cz), 

and parietal (Pz) sites, and at the two mastoids (M1, M2). The reference electrode was placed on the 

tip of the nose, the ground electrode on the forehead. One bipolar EOG derivation was recorded from 

2 electrodes placed on the supra-orbital and infra-orbital ridges of the right eye. Using a Micromed 

System98 EEG recording system, the signal was amplified (band-pass 0.3-100 Hz), digitized 

(sampling frequency 1024 Hz) and stored for off-line analysis. One stimulation session lasted about 45 

minutes without any interruption. 

 

2.3 Auditory paradigm 

The stimuli were delivered binaurally through insert earphones at an intensity of 65 dB HL. 

In each recording session, 200 trains of auditory stimuli were presented with an average of 10 stimuli 

per train (random number from 8 to 12). The inter-train interval ranged between 5.5 and 8.0 seconds 

(mean value 6.75 s). Within trains, stimulus onset asynchrony was 610 ms. 

The stimuli were spectrally rich tone bursts (fundamental frequency 800 Hz). The more frequent 

stimuli (standards) had a duration of 75 ms, including 5-ms rise and fall times. Duration deviants 

(duration 30 ms) were used, because duration changes (with deviants shorter than standards) are 

known to provide robust and reproducible MMNs (Tervaniemi et al., 1999). Two deviant tones were 

pseudo-randomly included in each train. The first deviant was randomly presented after 3 to 9 

consecutive standards. In each recording session, one hundred trains (50% of the trains) obeyed the 

rule routinely used in oddball paradigms, namely at least 2 standards were presented between the first 
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and the second deviant. In the other half of the trains, the second deviant appeared immediately after 

the first one (repeated deviant). One recording session thus included 300 “generic” deviants appearing 

after at least 2 standards (200 generic deviants being first deviants and 100 generic deviants being 

second deviants) and 100 “repeated deviants” appearing immediately after another deviant. Figure 1 

illustrates the design and the timing of auditory stimulation. 

Additionally, 20% of the trains ended with a salient stimulus (environmental sound). Evoked 

responses for these novel stimuli are beyond the scope of the present report. 

 

2.4 Event-related potentials  

The software package for electrophysiological analysis (ELAN) developed at the Lyon Neuroscience 

Research Center (Aguera et al., 2011) was used for ERP analysis. Responses to standards and to 

deviants were considered for averaging for an epoch of 700 ms including a pre-stimulus period of 100 

ms. Epochs showing peak-to-peak deflections larger than ± 100V were rejected. One patient showed 

a large stimulation artifact at the mastoids 15 ms after stimulus onset in the 3 recording sessions. For 

this patient, an independent component analysis (ICA) was used in order to isolate and remove this 

unwanted component.  

The ERPs were baseline-corrected by subtracting the mean value of the signal during the 100 ms prior 

to the stimulus. A 30-Hz low-pass digital filter (bidirectional Butterworth, 6
th
 order) and a 2-Hz high-

pass filter (bidirectional Butterworth, 2
nd

 order) were applied to the averaged epochs.  

To fulfill the different aims of the study, we performed the following types of averages in each session 

for each participant: 1) averages of “generic standards” (in black Figure 1), from which the first 3 

standards in the trains and the standards that immediately followed a deviant were excluded; 2) 

averages of “generic deviants” (in black Figure 1), from which the deviants that immediately followed 

another deviant were excluded; 3) averages of “first” deviants, which included only the first deviant in 

each train; 4) averages of “repeated deviants” (in grey Figure 1), which included only the second 

deviants that immediately followed a first deviant. To assess long-term habituation averages 1 and 2 

were performed separately in the first half (first 100 trains) and in the second half (last 100 trains) of 
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each session. Averages 3 and 4 were used to investigate the so-called “short-term habituation” to 

deviance. 

 

 

2.5 Statistical analysis 

In a first stage, we studied the response to generic deviants and to generic standards. In a second stage, 

the response to generic standards was subtracted from the response to generic deviants in order to 

classically assess the response specific to deviance. A mismatch negativity (MMN) was expected 

around 100-150 ms after the point in time when the deviant stimulus turns out to be shorter than 

standards (in our paradigm, 25 ms after stimulus onset). Based on previous studies using similar 

paradigms (Jung et al., 2006; Ruby et al., 2008), we also expected a central negative N2b and a 

positive P3a following the MMN. At both stages, analyses were performed along two streams. Firstly, 

we assessed ERP amplitudes around the maxima of the expected components (N1 for the standard and 

deviant ERPs; MMN, N2b, and P3a for the subtraction ERP). The time-windows and electrode sites of 

interest for the assessment of the expected components were derived from the observation of the grand 

averages over sessions and subjects. Secondly, in order to uncover possible abnormalities in the ERPs 

of migraine patients away from the peaks of the main expected components, we also performed a 

direct comparison of the ERPs of migraine patients and healthy subjects using Kruskal-Wallis tests at 

each time sample (between 0 and 300 ms) and each electrode. For this analysis the data were pooled 

over the three sessions (see also Demarquay et al., 2011). To correct for multiple comparisons, we 

only considered as significant the effects lasting more than 15 ms (Guthrie and Buchwald, 1991). This 

procedure allowed defining two other time windows of interest (one in the descending slope of N1 and 

one in the descending slope of N2b), where we further assessed session and habituation effects. The 

two streams of analysis provide objective measures of the different ERP components, as they do not 

depend of visual selection of individual peaks. 

In all cases, ANOVAs were applied to ERP mean amplitudes in the time-windows of interest to 

investigate the effects of the between-subject factor Pathology (2 levels, 20 healthy subjects versus 22 

migraine patients) and the within-subject factors Session (3 levels, S0 = middle of the menstrual cycle, 
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S1 = before menses, and S2 = during menses) and Long-Term Habituation (LTH, 2 levels, first half 

and second half of the recording sessions). When analyzing the N1, the within-subject factor Type of 

stimulus (2 levels, generic standard versus generic deviant) was also considered. The so-called “short-

term habituation” to deviance was separately investigated in an ANOVA with Pathology and Session 

factors, comparing the response to the first deviant and the response to the immediately following 

deviant (within-subject factor Short-Term Habituation, STH, 2 levels, first deviant versus repeated 

deviant).  

A saturated ANOVA model was used to test for all possible factor interactions. When appropriate, 

Greenhouse-Geisser (G-G) correction of the degrees of freedom was applied. For post-hoc 

comparisons we used Tukey’s HSD test. Statistical analyses were performed with the Statistica 

software (StatSoft Inc). 
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3. Results 

 

Across the three recording sessions, the mean number of accepted generic deviant trials was 266 ± 32 

for the migraine patients and 268 ± 27 for the healthy subjects (i.e. 11% of rejected deviant trials on 

average). 

 

3.1 N1 sensory and orienting components to generic standards and deviants 

In both populations, N1 peaked around 85 ms (Figure 2a) and displayed a central topography with the 

typical polarity inversion at the mastoids of the sensory N1 component (Figure 2c). The sensory N1 

component was assessed in the 75-95 ms time-window at electrode Cz. Sample-by-sample Kruskal-

Wallis tests comparing the responses to standard stimuli of patients and controls showed significant 

differences in the 100-120 ms time-window at F3, Fz, F4, and Cz (see Figure 3). Similar differences 

were obtained in this latency range for the deviant ERPs. This time-window corresponds to the 

residual orienting component of the N1, hidden in the descending slope of the sensory N1 and 

previously found enhanced in migraine patients in response to standard stimuli (Demarquay et al., 

2011). We assessed the amplitude of the N1 orienting component as the mean potential in the 100 - 

120 ms time-window on a cluster including the 4 frontal-central electrodes. 

The results of four-way ANOVAs on the measures of N1 sub-components, with Pathology as 

between-subject factor and with Session, Type of stimulus, and Long-Term Habituation as within-

subject factors are displayed in Table 1. Both sub-components showed a significant long-term 

habituation that did not interact with Pathology. The type of stimulus influenced the two components 

with opposite effects: deviants triggered a larger N1 orienting component than standards, but a smaller 

N1 sensory component. For the sensory N1, the effect of the type of stimulus can be attributed to the 

acoustical difference between the two sounds: the less energetic shorter deviant gives rise to smaller 

obligatory ERP components, as we already observed in a number of other studies using the same 

MMN paradigm (Fischer et al., 1999; Ruby et al., 2008). In the N1 orienting component time-window, 
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the effect of the type of stimulus can be attributed to an overlap with the onset of the MMN: the 

response to deviants shows enhanced negative potentials at frontal sites starting from 200 ms, i.e. in 

the descending slope of N1. As expected from the Kruskal-Wallis tests, a significant effect of 

Pathology was found for the N1 orienting component. Migraine patients thus present an enhancement 

of negative potentials at the latency of the orienting component in the late part of the N1, as already 

observed for standard stimuli (Demarquay et al., 2011). The present study suggests that this 

enhancement does not differ between deviant and standard stimuli (see Figure 3, c and d). 

 

3.2 Main components of the deviance-specific response: MMN, N2b, P3a 

A negative difference wave was observed in both populations after 100 ms in the specific response to 

deviance (Figure 2b). Visual inspection of the difference wave and its topography (Figure 2, b and c) 

made it possible to disentangle an MMN, maximal at frontal sites and characterized by a pronounced 

polarity inversion at both mastoids around 135 ms, followed in both populations by a central 

negativity without any accompanying polarity inversion (N2b) peaking around 165 ms and a central 

positivity (P3a) peaking around 250 ms. We assessed MMN amplitude as the mean potential between 

115 and 145 ms measured at the 3 frontal electrodes (F3, Fz, and F4). N2b and P3a amplitudes were 

measured at Cz. N2b amplitude was measured as the mean potential between 145 and 200 ms. The 

junction between N2b and P3a (i.e. the point where the response changes its polarity between the two 

components) occurs around 200 ms and seems different in the two groups. For P3a we thus assessed 

the mean of positive potentials between 200 and 300 ms, in order to avoid contaminating the estimate 

with the latest part of the N2b. Figure 4 displays the measures of MMN (Fig. 4a), N2b (Fig. 4b), and 

P3a (Fig. 4c) amplitudes for each group and in each recording session. 

3.2.1 Long-term habituation of the components of the deviance-specific response 

Figure 5 illustrates the effects of long-term habituation on the difference response in the three 

recording sessions at frontal sites (average of F3, Fz, and F4) where MMN is measured and at Cz 

where N2b and P3a are measured. The results of three-way ANOVAs performed on the measures of 
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the three components, with Pathology as between-subject factor and Session and LTH as within-

subject factors are shown in Table 2. None of the three components showed a significant effect of 

Pathology. Long-term habituation significantly affected N2b and P3a and showed no significant 

interaction with Pathology. MMN did not habituate over the course of an entire session, in accordance 

with previous unpublished data from our lab using a similar protocol. 

For N2b, an effect of Session was observed, with larger N2b in the pre-menstrual session (post-hoc S1 

versus S2 p = 0.04, S1 versus S0 p = 0.10, Fig. 4b). This N2b amplitude variation as a function of the 

recording session combined with the LTH of this component resulted in an interaction between 

Session and LTH. However, the effect of the menstrual cycle on N2b amplitude was not different 

between patients and healthy subjects. 

For P3a, an interaction between Pathology and Session was the result of a smaller P3a in the menstrual 

session than in the session in the middle of the menstrual cycle for control subjects only (post-hoc S2 

versus S0 p = 0.04 for healthy subjects, p = 0.41 for patients, Fig 4c). Thus, in the menstrual session, 

i.e. in the session where migraine attacks preferentially occur, the migraine patients did not show the 

decrease in P3a component observed in healthy subjects. In order to highlight a possible effect of a 

migraine attack on P3a, we performed an additional analysis differentiating the 11 patients who 

actually presented a migraine attack during one of the recording sessions (S1 or S2) and the 10 

patients who did not, excluding the only subject who experienced headache during the session in the 

middle of the cycle (S0). A 3-way ANOVA was applied to P3a amplitude, with the between subjects 

factor “migraine-attack” (3 levels: control subjects, patients with and patients without migraine attack) 

and LTH and Session as within-subject factors. In this analysis, the Session factor had only 2 levels, 

the between menses session (S0) and a peri-menses session, possibly with a migraine attack. For 

patients with a migraine attack, the peri-menses session was S1 for 5 patients and S2 for 6 patients. 

For the patients who did not report a migraine attack and for the controls, the peri-menses session was 

randomly chosen to be S1 (5 patients and 9 controls) or S2 (5 patients and 11 controls, see 

(Demarquay et al., 2011), for a similar analysis). This additional ANOVA resulted in a significant 

interaction between the intra-subject factor “Session” and the between-subject factor “migraine attack” 
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(F(2,38) = 4.653, p = 0.016). Post-hoc tests were not significant. However, as displayed in Figure 4d, 

patients with a migraine attack showed a tendency for a decrease in P3a amplitude in the peri-menses 

session like the healthy subjects, while patients without a migraine attack showed a tendency for an 

increase in P3a amplitude in the peri-menses session. Another 3-way ANOVA using LTH and Session 

as within-subject factors, but restricted to the migraine patients (2 levels: patients with and without 

migraine attack), confirmed this different modulation of P3a amplitude by migraine attacks, with a 

marginally significant interaction between the intra-subject factor "Session" and the between-subject 

factor "migraine attack" (F(1,19) = 4.300, p = 0.052).  

3.2.2 “Short-term habituation” of the components of the deviance-specific response 

Figure 6 shows the difference responses restricted to the first deviants in the trains (first deviant minus 

generic standard) and to the deviants that immediately followed the first deviants (repeated deviant 

minus generic standard), grand averaged over the 3 sessions. It illustrates the effects of the so-called 

“short-term habituation” on the components of the response to deviance. Table 3 displays the results 

of ANOVAs performed on MMN, N2b, and P3a components with Pathology as between-subject 

factor and with Session and STH as within-subject factors. There was a significant effect of STH on 

the three components (MMN, N2b, P3a), the response globally collapsing to repeated deviance in both 

populations. For N2b, there was an interaction between STH and Pathology due to a non-significant 

tendency (p = 0.26) for this component to be larger in migraine patients than in controls in response to 

the first deviant. For P3a an interaction between STH, Pathology and Session resulted from smaller 

amplitude of the P3a to the first deviant in S2 than in S0 for the healthy subjects (post-hoc S2 versus 

S0 p = 0.07 for healthy subjects), as also observed above for generic deviants.  

 

3.3 Direct comparison of responses to deviance in migraine patients and in healthy subjects: “Late 

N2b” 

To investigate effects of pathology in the specific response to deviance outside the maxima of the 

expected components, we considered the sample-by-sample difference between the difference 

responses (generic deviants minus generic standards) of Patients and Controls averaged over the three 
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sessions. This was done separately for the first half (first 100 trains) and the second half (last 100 

trains) of the recordings because of the large LTH of the N2b and P3a components (see above). We 

ran sample-by-sample Kruskal-Wallis tests at each electrode and each time sample between 0 and 300 

ms post-stimulus to compare the two groups. A significant difference between the two groups was 

observed at the 3 frontal electrodes in the 190 – 210 ms time-window in the first half of the sessions 

(Figure 7). Indeed, the “Patients minus Controls” difference curve showed a maximum around 200 ms 

at frontal sites, with the N2b thus appearing to last longer in migraine patients than in controls. To 

further investigate the effects of Session on this “Late N2b” which was different between groups, we 

performed a two-way ANOVA on the mean potentials measured between 190 and 210 ms for the first 

100 trains of each session on a cluster including the 3 frontal electrodes with Pathology as between-

subject factor and Session as within-subject factor (see the measures in Figure 7d). This “late N2b” 

was significantly enhanced in migraine patients (F(1,40) = 5.106, p = 0.029), which was expected 

based on the Kruskal-Wallis tests reported above. There was also a global effect of Session (F(2,80) = 

3.630, ε = 0.926, p = 0.035), with a collapse in the menstrual session (S2 versus S1 p = 0.04 and S2 

versus S0 p = 0.06), but without any interaction with Pathology (F(2,80) = 1.470, p = 0.237). In other 

words, migraine patients show enhanced negative frontal potentials in the late part of N2b, mostly 

evident in the first half of the sessions, when N2b and P3a have not yet habituated. 
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4. Discussion 

 

Sensory processing has been extensively studied in migraine patients using ERPs (Schoenen et al., 

2003), and has mostly concerned habituation to repeated sensory stimulation in passive paradigms, as 

well as brain responses to sensory changes in active paradigms. However, the specific response to 

unexpected change in auditory stimulation during passive listening was scarcely reported. In this 

study, we investigated the brain processes triggered by shorter tones randomly presented among 

repeated tones in migraine patients in a situation of passive listening during three sessions along the 

migraine cycle. The paradigm made it possible to study the MMN reflecting automatic mismatch 

detection and subsequent N2b and P3a components reflecting attention orienting (Näätänen and 

Gaillard, 1983). MMN was normal in migraine patients. However, along all recording sessions, 

migraine disease modulated the responses at three stages of processing where attention-orienting 

processes are thought to occur. First, around the descending slope of the N1, at the latency of a 

possible residual orienting component (around 105 ms), fronto-central negative potentials were 

enhanced in migraine patients, both for standard and for deviant tones. Second, in the differential 

response to deviance (deviants minus standards), frontal potentials were negatively enhanced in 

migraine patients during the descending slope from the N2b to the P3a (around 200 ms). Finally, P3a 

amplitude was modulated differently along the menstrual cycle in the two groups, and tended to 

normalize during migraine attacks. 

 

4.1 Normal automatic mismatch detection in migraine 

In the control group, randomly presented short-duration deviant tones elicited an MMN, followed by 

N2b and P3a components. MMN is considered to be elicited pre-attentively (review in Näätänen and 

Winkler, 1999), and to reflect automatic mismatch processes between the incoming deviant and a 

memory trace of the previous repeated standard. As expected, immediately repeating the deviant tone 

drastically diminished the amplitude of the MMN and of subsequent components (so-called “short-
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term habituation” of the MMN in Sams et al., 1984). In contrast, MMN amplitude did not evolve over 

the course of the entire recording sessions (i.e., did not show any significant long-term habituation), 

contrarily to subsequent attention-triggering mechanisms (N2b - P3a), in accordance with previous 

observations (Lyytinen et al. (1992), and own unpublished observation over blocks of 3 hours of 

stimulation). 

Statistical analysis did not reveal any difference in MMNs between migraineurs and controls, 

suggesting that up to the level of auditory processing where MMN operates, this processing does not 

show any impairment in migraine. The current results extend our previous findings of preserved 

sensory N1 component in migraine (Demarquay et al., 2011) by showing that the sensory memory 

traces underlying MMN generation are also preserved in migraine. Our results contrast with a report 

suggesting that MMN habituates in controls but not in migraineurs (de Tommaso et al., 2004). In this 

earlier report, the stimulation paradigm was similar to our paradigm. However, MMN was measured 

in the deviant ERP rather than in the usual deviant minus standard ERP. Considering this important 

methodological discrepancy with our study and the fact that MMN latencies reported in de Tommaso 

et al. (2004) were globally late in controls and in patients (around 200 ms), we can speculate that these 

MMN measures rather concerned the N2b. Similarly, in their pediatric MMN study, Valeriani et al. 

(2009) reported an habituation deficit of the MMN in migraine, but did not attempt to disentangle 

MMN from N2b. In an attempt to dissociate the sensory mismatch processes from the subsequent 

attention alerting processes, we assessed separately the mean amplitudes of the potentials at the 

respective latencies of MMN and N2b. Other techniques such as trial-by-trial time-frequency analysis 

of the EEG, beyond the scope of the present report, could be helpful to definitely exclude differences 

in change detection processes between migraine patients and controls.  

Neither the present study, nor our previous migraine study (Demarquay et al., 2011) of auditory ERPs 

in a passive listening situation evidenced any abnormality in basic sensory processing, including 

MMN generation. These observations are consistent with previous studies showing no significant 

difference between migraineurs and controls with regard to sensory N1 and P2 component (Drake et 

al., 1989; Sand and Vanagaite Vingen, 2000). 
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4.2. Abnormal attention orienting in migraine 

Contrasting with the fairly normal MMN observed in migraine patients, we observed at two different 

processing stages enhanced frontal negative potentials in migraine patients, which suggest an 

increased attention orienting (Halgren et al., 2011). Patients showed larger negative frontal potentials 

firstly in the descending slope of the N1 for responses to both standard and deviant tones, and 

secondly in the late part of the N2b in the response specific to deviance (deviants minus standards 

difference wave). 

In a previous report (Demarquay et al., 2011), we already reported such increased fronto-central 

negative potentials for standard tones in migraine. This effect was peculiarly pronounced when tones 

appeared at the beginning of the trains of stimuli (i.e. after a long silence), when the orienting 

component (or component III, Näätänen and Picton, 1987) of the N1 is large (Alcaini et al., 1994). We 

interpreted these enhanced fronto-central negative potentials in response to any standard tone as a 

residual N1 orienting component. Here we show that a comparable effect is obtained with deviant 

tones, suggesting that augmented orienting processes might actually be elicited by any incoming 

auditory stimulus in migraine. Interestingly, the increase of the N1 orienting component observed in 

migraine patients occurs earlier than the MMN (see Figure 2). As MMN appears fairly normal in 

migraine, it can be hypothesized that these abnormal early orienting processes do not interfere with the 

sensory memory and comparison processes underlying MMN generation.  

Migraine patients also showed augmented frontal negative potentials in the deviance-specific response 

located in the descending slope of N2b. This effect was mostly evident in the first half of all sessions. 

N2b is a fronto-central subcomponent, which typically arises in active paradigms and has been 

associated with attention-triggering (Snyder and Hillyard, 1976; Näätänen and Gaillard, 1983; Kiehl et 

al., 2001) and cognitive control encompassing response inhibition to a non-target deviant, response 

conflict, and error monitoring (Folstein and Van Petten, 2008; Schwartze et al., 2011). N2b was shown 

to be associated with higher order processing than the MMN (Ritter et al., 1992). However N2b can 

also occur in passive oddball paradigms, in particular when the difference between standards and 

deviants is large enough (Näätänen et al. (1982); see also Ruby et al. (2008) for an example of N2b 
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recorded in a passive oddball paradigm using duration deviants). Although participants in our study 

were instructed to watch a silent movie and to ignore auditory stimuli, their attention might have been 

involuntarily oriented to the deviant stimuli and the prolonged negative potentials at the end of N2b 

observed in migraineurs could reflect an abnormal activity at the moment of this involuntary shift of 

attention. 

Moreover, P3a amplitude was modulated along the menstrual cycle in both groups. Controls showed a 

smaller P3a during menses than in the session between menses. As far as we know, this was never 

described in the literature. The overall migraine population showed an opposite pattern, with an 

enhanced P3a in the menstrual session. This abnormality tended to normalize during migraine attacks. 

In a previous study (Demarquay et al., 2011), we already observed P3a abnormalities depending on 

the recording session. However, whereas the present result concerned the P3a individualized in the 

response specific to deviance, the former result concerned the P3a in response to the first tones of the 

trains, a component partially overlapping the sensory P2. Thus, the two results can hardly be 

compared. Nevertheless, both results have in common a normalization of P3a amplitudes during 

migraine attacks, in accordance with previous observations concerning several other components 

(Kropp and Gerber, 1995; Kropp and Gerber, 1998; Evers et al., 1999; Judit et al., 2000). 

As a whole, our results reveal ERP abnormalities arising in migraine patients at stages of processing 

where attention-orienting mechanisms are susceptible to operate. They are in keeping with findings 

using active paradigms (and thus involving attention), showing abnormal cognitive responses like the 

P300 to targets (Drake et al., 1989; Wang et al., 1996; Evers et al., 1998) or the CNV to warning 

stimuli (Maertens de Noordhout et al., 1986; Kropp and Gerber, 1993). As the main generators of N1 

orienting component, N2b and P3a are thought to be located in frontal areas (see Alcaini et al. (1994) 

for the N1 orienting component, Halgren et al. (2011) for the N2b and Polich and Criado (2006) for 

P3a), the abnormal automatic attention orienting towards acoustic stimuli observed in migraineurs 

may reflect abnormal attention-related frontal networks in migraine. 
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4.3. Sensory processing and attention orienting in migraine  

To sum up, the present ERP findings allow setting the working hypothesis of normal sensory stages of 

auditory processing in migraine, but exacerbated mechanisms of automatic attention orienting to the 

auditory stimulation, possibly relying on an abnormal involvement of frontal networks. As 

emphasized above, our results are in line with previous studies that showed normal N1 and P2 sensory 

responses but altered cognitive responses like the iCNV, and P300. The apparent discrepancy with 

previous reports of a lack of habituation of auditory ERPs in migraine (Wang et al., 1996; Ambrosini 

et al., 2003) could be related to the paradigms used in these studies. Indeed, lack of habituation was 

observed in paradigms using intensity dependence of auditory potentials (IDAP), where sound 

intensity varies randomly within blocks. No habituation deficit was observed when stimulus intensity 

changes did not occur within blocks (Sand and Vanagaite Vingen, 2000), or in paradigms not 

involving intensity variations such as ours (Demarquay et al., 2011). We can speculate that random 

changes in the auditory stimulation might be more arousing than unvarying stimuli, and thus more 

likely to automatically engage attentional networks. This is in keeping with the present findings of an 

increased attention orienting to rare changes occurring in streams of otherwise repetitive tones. 

Furthermore, a link between habituation deficits in migraine and abnormal orienting activity has been 

already proposed by Siniatchkin et al. (Siniatchkin et al., 2000). 

In the visual modality, the habituation of ERPs has been widely tested in migraine patients, mainly 

using pattern-reversal stimuli, with contrasting results (Schoenen et al., 1995; Afra et al., 1998; Wang 

et al., 1999). One study suggested that the visual habituation deficit in migraine depends on the 

stimulus characteristics (Oelkers et al., 1999), but a recent one using individual identification of visual 

evoked peaks in a blinded evaluation design found normal habituation in interictal migraineurs, with 

similar check-size effects in patients and controls (Omland et al., 2013). Besides, recent studies 

showed an increased automatic attentional response to sudden-onset visual events in migraineurs 

(Mickleborough et al., 2011a). Interestingly, in line with our observation of an enhancement of the N1 

orienting component in auditory ERPs, these authors showed an early attention effect in the visual N1 

ERP component in migraine patients (Mickleborough et al., 2011b). Thus, in the visual modality also, 
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further studies might possibly enlighten a link between observed habituation deficits and attention 

orienting exacerbation. 

 

4.4. Methodological issues  

In the present study, in an attempt to follow a migraine cycle, we only recorded patients with 

menstrually-related migraine. This strategy indeed allowed us to record 11 patients during a migraine 

attack. However, as patients were not requested to fulfill migraine diaries, it might be possible that, 

during some recordings, some patients were in a preictal state, a state where cortical excitability has 

been shown to fluctuate. This would be more likely for sessions S1 and S2, i.e., the sessions around 

menses. Indeed, before an attack, migraineurs show a normalization of the interictal lack of 

habituation of CNV (Kropp and Gerber, 1995; Kropp and Gerber, 1998; Siniatchkin et al., 1999) and 

of IDAP potentials (Judit et al., 2000). It is however noteworthy that, except for the P3a, the between-

group differences observed in the present study (enhanced N1 orienting component and enhanced late 

N2b in migraine patients) did not depend on the recording sessions, suggesting that these effects are 

not modulated along the migraine cycle. We cannot exclude that a precise sorting of the recording 

sessions in "interictal" "pre-ictal" and "ictal" could allow to reveal further differences between 

migraine patients and controls. 

 

In conclusion, our study shows normal auditory sensory processing in migraine patients but increased 

automatic attention orienting processes to auditory changes (and more generally to any incoming 

auditory stimulus). The pathophysiologic basis of such heightened attentional response recorded in 

migraineurs is still unknown, but could, at least partially, be linked to the close relationship observed 

between environmental stimuli and migraine. Understanding the links between photo/phonophobia 

and an increased automatic attention orienting in migraine is a challenge for future studies. 
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Figure 1: Design and timing of the auditory stimulation paradigm. 

In each recording session, 200 trains of 8 to 12 tone bursts are presented with an inter-train interval 

(ITI) ranging between 5.5 and 8 seconds. Within-train stimulus onset asynchrony (SOA) is 610 ms. 

Two deviants (tone-bursts shorter than the standard stimuli) are presented in each train. In 50% of the 

trains, at least 2 standards are presented between the first and the second deviant (as for example in the 

first train of the figure). In the other 50% of the trains, the second deviant immediately follows the 

first one (repeated deviant, as in the second train of the figure). “Generic deviants” (colored in black) 

exclude the repeated deviants (colored in grey). “Generic standards” (colored in black) exclude the 

first 3 stimuli of the trains and the standard stimuli following a deviant (colored in grey).  
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Figure 2: 

(a): Responses to generic standard stimuli (thick lines) and to generic deviant stimuli (thin lines) grand 

averaged over the 3 sessions for 20 healthy subjects (dotted lines) and for 22 migraine patients (plain 

lines). The shaded area displays the temporal window defined for the assessment of sensory N1 (75-95 

ms). 

(b): Deviance-specific response (generic deviant minus generic standard) grand averaged over the 3 

sessions for 20 healthy subjects (dotted line) and for 22 migraine patients (plain line). The shaded 

areas display the temporal windows defined for the assessment of MMN (115-145 ms), N2b (145-200 

ms) and P3a (200-300 ms). 

(c): Scalp potential maps indicative of the topographies of the different components (sensory N1 to 

standards, MMN, N2b and P3a in the deviance-specific response). These maps were drawn using 

spherical spline interpolation from the potentials measured at the seven scalp electrodes, averaged in 

the different time-windows in migraine patients and in healthy subjects. The range of voltage values 

used for the color scale is mentioned for each time-window. 
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Figure 3: Investigation of the N1 orienting component. 

(a) Map of the difference between healthy subjects and migraine patients in the response to standards 

grand averaged over the first and the last 100 trains of the 3 sessions at 110 ms, i.e. around the latency 

of the difference maximum. 

(b) Map of the p values of the Kruskal-Wallis test comparing the response to standards in healthy 

subjects and in migraine patients at 110 ms in the grand average of the first half and the last half of the 

trains of the 3 sessions. 

(c) Response to standard stimuli grand averaged over the 3 sessions for 20 healthy subjects (thick 

dotted lines) and for 22 migraine patients (thick plain lines) at the 4 frontal-central electrodes (F3, Fz, 

F4 and Cz). 

(d) Response to deviant stimuli grand averaged over the 3 sessions for 20 healthy subjects (thick 

dotted lines) and for 22 migraine patients (thick plain lines) at the 4 frontal-central electrodes (F3, Fz, 

F4 and Cz). 

In (c) and (d), at each electrode, the difference curve between the two populations (Patients minus 

Controls) is plotted with a thin line and the thick line over the x-axis denotes the temporal window in 

which point-by-point Kruskal-Wallis tests shows a significant difference between patients and 

controls. 
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Figure 4: Mean amplitude for each session of the different components measured in the deviance-

specific response (response to the generic deviant minus response to the generic standard). The black 

lines denote the standard error of the mean. 

In (a), (b), (c), the measures are displayed for each session in migraine patients and in controls, for: (a) 

MMN (mean value in the 115 - 145 ms time-window at the 3 frontal electrodes), (b) N2b (mean value 

in the 145 - 200 ms time-window at Cz) and (c) P3a (mean of positive values in the 200 - 300 ms 

time-window at Cz). S0 = session 0, S1 = session 1, S2 = session 2. 

In (d), P3a was measured in 3 groups of subjects: 10 patients who showed no migraine attack during 

the recording sessions, 11 patients who suffered headache during one peri-menses session, and the 20 

control subjects. The measures are displayed for the session between menses (S0) and for a peri-

menses session (the session with headache for the patients experiencing an attack during recording and 

a randomly chosen peri-menses session (S1 or S2) for the other two groups). 
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Figure 5: Long-term habituation of the response to deviance: difference response (generic deviant 

minus generic standard) averaged for 22 patients (plain lines) and for 20 healthy subjects (dotted 

lines), in the first (thick lines) and in the last (thin lines) 100 trains in each of the 3 recording sessions 

(S0: Session 0, S1: Session 1, S2: Session 2). Top row: response averaged over the 3 frontal 

electrodes, bottom row: response at Cz. 
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Figure 6: “Short-term habituation” of the response to deviance: difference ERPs (deviant minus 

standard) restricted to the first deviants in the blocks (thick lines) and to the deviants immediately 

following the first deviant (repeated deviants, thin lines) averaged over the 3 recording sessions, for 22 

patients (plain lines) and for 20 healthy subjects (dotted lines). 
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Figure 7: Investigation of the “late N2b”. 

(a) Map of the difference between healthy subjects and migraine patients in the deviance-specific 

responses (generic deviants minus generic standards) in the first and the last 100 trains, averaged over 

the 3 sessions at 200 ms, i.e. at the latency of the difference maximum. 

(b) Map of the p values of the Kruskal-Wallis test comparing the deviance-specific responses in 

healthy subjects and in migraine patients at 200 ms in the first half and the second half of the trains 

averaged over the 3 sessions. 

(c) Deviance-specific response grand averaged over the first 100 trains of the 3 sessions for 20 healthy 

subjects (thick dotted lines) and for 22 migraine patients (thick plain lines) at the 3 frontal electrodes 

(F3, Fz and F4). At each electrode, the difference curve between the two populations (Patients minus 

Controls) is plotted with a thin line and the thick line over the x-axis denotes the temporal window in 

which the point-by-point Kruskal-Wallis tests show a significant difference between patients and 

controls. 

(d) “Late N2b” amplitude (mean value and standard error of the mean in the 190 - 210 ms time-

window averaged over the 3 frontal electrodes) for each population and for the 100 first trains of each 

session. S0 = session 0, S1 = session 1, S2 = session 2. 
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Table 1 

 

 

 

Table 1: Results of the four-way ANOVAs on the amplitudes of the N1 sub-components, with 

Pathology as between-subject factor and with Session (S0, S1, and S2), Long-Term Habituation (LTH: 

first half versus second half of the recording session) and Type of stimulus (standard versus deviant) 

as within-subject factors. Degrees of freedom for each factor are indicated in parenthesis. Sensory N1 

was measured at Cz in the 75-95 ms time-window where the maximal amplitude is observed in the 

grand average response (see Figure 2) and orienting component was measured at the 4 frontal-central 

electrodes in the 100-120 ms latency range, i.e., in the spatio-temporal window where a significant 

between-group difference was observed with Kruskal-Wallis tests (see Figure 3). Results involving 

Pathology are printed in italics. Significant p values (p ≤ 0.05) are printed in bold. 
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Table 2 

 

]

MMN N2b  P3a

F3 + Fz + F4 (115-145 ms) Cz (145-200 ms) Cz (200-300 ms)

F ε - GG p F ε - GG p F ε - GG p

Pathology (1,40) 0.139 0.712 2.219 0.144 0.078 0.781

Session (2,80) 0.061 0.993 0.940 3.605 0.927 0 .0 3 5 0.355 0.921 0.685

Session x Pathology (2,80) 0.874 0.993 0.421 0.438 0.927 0.632 5.980 0.921 0 .0 0 5

LTH (1,40) 0.763 1.000 0.388 10.919 1.000 0 .0 0 2 13.401 1.000 0 .0 0 1

LTH x Pathology (1,40) 0.164 1.000 0.688 2.192 1.000 0.147 1.920 1.000 0.174

Session x LTH (2,80) 0.679 0.982 0.507 3.988 0.994 0 .0 2 3 1.008 0.991 0.369

Session x LTH x Pathology (2, 80) 0.626 0.982 0.534 1.753 0.994 0.180 0.579 0.991 0.561

 

 

Table 2: Results of the three-way ANOVAs on the amplitudes of the different components (MMN, 

N2b, and P3a) of the difference response (deviant minus standard), with Pathology as between-subject 

factor and with Session (S0, S1, and S2) and Long-Term Habituation (LTH: first half versus second 

half of the session) as within-subject factors. Degrees of freedom for each factor are indicated in 

parenthesis. MMN was assessed as the mean amplitude at the 3 frontal electrodes between 115 and 

145 ms, N2b as the mean amplitude at Cz between 145 and 200 ms and P3a as the mean amplitude of 

positive potentials at Cz between 200 and 300 ms. Results involving Pathology are printed in italics. 

Significant p values (p ≤ 0.05) are printed in bold. 

 



 35 

Table 3 

 

MMN N2b P3a 

F3 + Fz + F4 (115-145 ms)  Cz (145-200 ms) Cz (200-300 ms)

F ε - GG p F ε - GG p F ε - GG p

Pathology (1,40) 0.366 0.548 0.855 0.361 1.418 0.241

Session (2,80) 0.116 0.997 0.890 2.410 0.952 0.099 1.058 0.974 0.350

Session x Pathology (2,80) 0.282 0.997 0.755 0.205 0.952 0.805 1.572 0.974 0.215

STH (1,40) 12.375 1.000 0 .0 0 1 37.886 1.000 < 0 .0 0 1 49.620 1.000 < 0 .0 0 1

STH x Pathology (1,40) 0.675 1.000 0.416 4.144 1.000 0 .0 4 8 0.000 1.000 0.995

Session x STH (2,80) 0.130 0.834 0.842 0.620 0.994 0.540 0.664 0.873 0.499

Session x STH x Pathology (2, 80) 0.614 0.834 0.516 0.206 0.994 0.813 7.763 0.873 0 .0 0 1

 

 

Table 3: “Short-term habituation” of the main components of the difference response (this analysis 

does not relate to short-term habituation in a classical sense, but rather examines how repeating a 

deviant alters the deviant-specific response, see Introduction): results of the three-way ANOVAs on 

the amplitudes of MMN, N2b and P3a, with Pathology as between-subject factor and with Session 

(S0, S1, and S2) and Short-Term Habituation (STH, first deviant versus repeated deviant) as within-

subject factors. Degrees of freedom for each factor are indicated in parenthesis. MMN was assessed as 

the mean amplitude at the 3 frontal electrodes between 115 and 145 ms, N2b as the mean amplitude at 

Cz between 145 and 200 ms and P3a as the mean amplitude of positive potentials at Cz between 200 

and 300 ms as in Table 2. Results involving Pathology are printed in italics. Significant p values (p ≤ 

0.05) are printed in bold. 

 

 
 

 

 

 


