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Performance map of a cluster detection test
using extended power
Aline Guttmann1,2*, Lemlih Ouchchane1,2, Xinran Li2, Isabelle Perthus3, Jean Gaudart4,5, Jacques Demongeot6

and Jean-Yves Boire1,2

Abstract

Background: Conventional power studies possess limited ability to assess the performance of cluster detection

tests. In particular, they cannot evaluate the accuracy of the cluster location, which is essential in such

assessments. Furthermore, they usually estimate power for one or a few particular alternative hypotheses and

thus cannot assess performance over an entire region. Takahashi and Tango developed the concept of extended

power that indicates both the rate of null hypothesis rejection and the accuracy of the cluster location. We

propose a systematic assessment method, using here extended power, to produce a map showing the

performance of cluster detection tests over an entire region.

Methods: To explore the behavior of a cluster detection test on identical cluster types at any possible location,

we successively applied four different spatial and epidemiological parameters. These parameters determined

four cluster collections, each covering the entire study region. We simulated 1,000 datasets for each cluster

and analyzed them with Kulldorff’s spatial scan statistic. From the area under the extended power curve,

we constructed a map for each parameter set showing the performance of the test across the entire region.

Results: Consistent with previous studies, the performance of the spatial scan statistic increased with the

baseline incidence of disease, the size of the at-risk population and the strength of the cluster (i.e., the relative

risk). Performance was heterogeneous, however, even for very similar clusters (i.e., similar with respect to the

aforementioned factors), suggesting the influence of other factors.

Conclusions: The area under the extended power curve is a single measure of performance and, although

needing further exploration, it is suitable to conduct a systematic spatial evaluation of performance. The

performance map we propose enables epidemiologists to assess cluster detection tests across an entire

study region.
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Résumé

Contexte: Les études de puissance ont montré leurs limites dans l’évaluation des performances des tests de

détection d’agrégats. En raison de la nécessité de prendre en compte à la fois la capacité du test à rejeter

l’hypothèse nulle et à localiser correctement l’agrégat, la puissance usuelle ne peut refléter la véritable performance

de ces tests. De plus, ces évaluations ne traitent en général qu’un nombre limité d’hypothèses alternatives ignorant

donc le comportement de ces tests sur l’ensemble d’une région d’étude. Takahashi et Tango ont proposé le

concept de puissance étendue qui, au-delà de la puissance usuelle, reflète également la précision de localisation de

l’agrégat. Nous proposons une méthode d’évaluation systématique, fondée ici sur la puissance étendue, pour

produire une carte offrant une visualisation synoptique des performances des tests de détection d’agrégats sur

l’ensemble d’une région.

Méthodes: De façon à explorer le comportement d’un test de détection d’agrégats sur un même type

d’agrégat pour toutes les localisations possibles, nous avons fixé quatre jeux de paramètres spatiaux et

épidémiologiques, de façon à simuler quatre collections d’agrégats, chacune couvrant l’ensemble de la région

d’étude. Mille jeux de données ont été simulés pour chaque agrégat et soumis au scan spatial de Kulldorff.

A partir de l’aire sous la courbe de puissance étendue, nous avons produit une carte de performance pour

chaque jeu de paramètres.

Résultats: Conformément aux précédentes études, la performance du scan spatial croît avec l’incidence de

base de la maladie, la taille de la population à risque et la force de l’agrégat (i.e., le risque relatif). Cependant,

même pour des agrégats très similaires, la performance du test est hétérogène, suggérant l’influence

potentielle d’autres facteurs.

Conclusions: L’aire sous la courbe de puissance étendue est une mesure unique de performance et, bien

qu’elle nécessite des évaluations plus poussées, elle convient à l’évaluation spatiale systématique de la

performance. La carte de performance que nous proposons autorise les épidémiologistes à évaluer les tests

de détection d’agrégats sur l’ensemble d’une région d’étude.

Background
Spatial clusters can be detected using a wide range of

statistical tests [1,2], many of which are available in free

software packages such as R [3,4]. Epidemiologists use

local methods to detect clusters without a priori

knowledge of their location, and to determine their

significance. Because these cluster detection tests (CDTs)

must reveal both the presence and location of clusters,

performance studies have been constrained by the

limitations of conventional estimation techniques. For

example, a CDT may have maximum power for rejecting

the null hypothesis (cluster absence), yet be incapable of

accurately locating the simulated cluster. CDT performance

is also a function of epidemiological and geographical con-

text [1,5-11]. Furthermore, because epidemiological (e.g.,

incidence and relative risk) and geographical (e.g., spatial

unit size and shape) factors tend to be intrinsically

linked, their proper or common effects are difficult to

evaluate. When evaluating the behavior of these CDTs

in a particular region, limited knowledge can conse-

quently be gleaned by simulating one or a few clusters

in that region, and even less knowledge can be accrued

from studies on other region.

Takahashi and Tango have proposed the concept of

extended power (EP) [12,13] as a more accurate measure

of CDT performance. This measure assesses both the

probability that the null hypothesis is rejected and the

accuracy of the cluster location. As such, it overcomes

the inadequacy of conventional power measures. How-

ever, EP cannot eliminate the need to define what is

meant by “an accurate” or “sufficiently accurate” loca-

tion. The level of spatial accuracy depends upon context;

for instance, an epidemiologist will require higher spatial

accuracy for an ad hoc study than for a survey system.

Takahashi and Tango therefore introduced a quantitative

indicator of spatial accuracy, and summarized CDT per-

formance using an EP curve in conjunction with this

spatial accuracy indicator.

In this work, we propose a method that integrates the

area under the EP curve (AUCEP) in order to produce

maps that provide a global overview of CDT perform-

ance over an entire study region.

Methods
Clustering model

To explore CDT behavior on same-class clusters in all

possible locations, we set common spatial and epidemio-

logical characteristics for four cluster collections cover-

ing the entire study region. The study region was the

Auvergne region (France), divided into n = 221 spatial
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units (SUs) equivalent to U.S. ZIP codes. The exhaustive

collection of approximately circular clusters with four

SUs was identified within the study region. To achieve

this outcome, the 221 SUs were successively associated

with their three nearest neighbors as defined by

Euclidian distances between the SU centroids. To obtain

four cluster collections, we applied four combinations of

two baseline risks (incidences) and two relative risks to

the same at-risk population, whose size was estimated by

mean annual number of live births.

For a realistic analysis, we used data archived in CEMC

(birth defects registry for the Auvergne region) and INSEE

(National Institute of Statistics and Economic Studies) data-

bases. We collected two categories of data from 1999 to

2006: all birth defects and cardiovascular birth defects. Both

datasets were sorted by SU. The number of live births was

approximated by the number of birth declarations in the

at-risk population. Global annual incidences of all birth

defects (Iall) and cardiovascular birth defects (ICV) were

estimated as 2.26% and 0.48% of births, respectively. In the

analysis, we constructed risk combinations of these two

incidences at relative risks of 3 and 6.

Datasets

For each cluster within the four categories (221 × 4), we

generated 1,000 datasets, i.e., a total of 884,000 datasets.

Each dataset consisted of 221 rows and 5 columns. The

rows contained SU coordinates (longitude and latitude),

observed number of cases, size of the at-risk population

(i.e., the number of live births) and expected number of

cases in the specified SU. This last quantity was the

product of the global incidence (Iall or ICV) and the at-

risk population size in the SU. The observed case num-

bers were assumed as independent Poisson variables

such that

H0 : E N ið Þ ¼ εi;N i ∼ Pois εið Þ; i ¼ 1;…; n
H1 : E N ið Þ ¼ πi;N i ∼ Pois πið Þ;πi ¼ Iθεi þ εi 1−Ið Þ; i ¼ 1;…; n

�

where Ni is the observed number of cases, εi denote the

expected number of cases in the ith SU under the null

hypothesis of risk homogeneity (H0) and πi the expected

number of cases in the ith SU under the alternative hy-

pothesis of one simulated cluster (H1). θ is the relative

risk, and I is a binary indicator set to 1 if the ith SU is

within the simulated cluster, and 0 otherwise.

Measure of performance

The extended power was proposed by Takahashi and Tango

as an improved measure of CDT performance. For a par-

ticular cluster, global performance is the weighted cumula-

tive sum of the contribution of each detected cluster in all

submitted datasets. Here, we summarize the construction

of the performance indicator. For a more detailed descrip-

tion, the reader is referred to Takahashi and Tango [12,13].

Within a simulated cluster of s SUs, if the null hypoth-

esis is rejected, the size l of a detected cluster and its s*

SUs (where s* denotes a subset of s) are recorded. A

maximum cluster size L is imposed, such that if l > L,

the detected cluster is discarded. This limit prevents very

large, meaningless clusters from contributing to CDT

global performance. In this work, L was set to 30 SUs.

All eligible detected clusters (EDCs), i.e. with l ≤ L, are

counted and sorted by l and s*. For each combined value

of l and s*, the proportion of corresponding detected

clusters (P(l,s*)) in all submitted datasets is assigned a

weight W(l,s*). This weight is also a function of the

detection accuracy (i.e., the correct location of the

simulated cluster). Thus, Takahashi and Tango define

W(l,s*,w+,w−) as

W l;s�;wþ;w−ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−min w− s−s�ð Þ; 1f g½ � 1−min wþ l−s�ð Þ; 1f g½ �
p

where w− and w+ are penalties for false negative and

false positive SUs, respectively. The penalties w− and w+

are determined according to the following constraints.

For w−, detected clusters that generate no false negative

must fully contribute to global performance, and those

that induce s false negatives must be discarded. These

constraints are satisfied when

w− ¼ 1=s

For w+, detected clusters that generate no false positive

must fully contribute to global performance, and those

that induce at least l0 false positives must be discarded.

These constraints are satisfied when

wþ ¼ 1=l0

So that l0 is not assigned arbitrarily, Takahashi and

Tango specify the ratio

q ¼ wþ=w−

To favor sensitivity over specificity (as is usually pre-

ferred), w− is greater than or equal to w+; thus l0 ≥ s

because 1/s ≥ 1/l0. For example, when:

� l0 ¼ s;w− ¼ wþ and q ¼ 1;

� l0 ¼ 2s;w− ¼ 2wþ and q ¼ 0:5;

� l0→∞;wþ ¼ 0 and q¼0:

For each value of q, the extended power is the cumula-

tive sum of W(l,s*,q) × P(l,s*), where l runs from 1 to L and

s* runs from 0 to s. CDT global performance in detecting

a particular cluster is then represented by the extended

power curve with q running from 0 to 1. At any point
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on this curve, the extended power is, by construction,

between 0 and 1. Furthermore, we note that the ex-

tended power is a monotonically decreasing function of

q. Consequently, the area under the extended power

curve (AUCEP), defined by

AUCEP ¼

Z

1

q¼0

W l;s�;qð Þ � P l;s�ð Þ

� �

dq

is between 0 and 1, with 0 signifying an inoperative CDT

(s* always null) and 1 a perfect CDT (H0 always rejected,

with all detected clusters exactly overlaying the simu-

lated cluster). As suggested by Takahashi and Tango

[13], we used the area under the extended power curve

as the measure of CDT performance.

Performance mapping

Global performance was visualized over the entire region

using maps representing the measured AUCEP for each

collection of clusters.

The AUCEP is a measure of a cluster and thus associ-

ated with four SUs. In order to obtain a global overview

on a single map, we assigned the AUCEP value of each

cluster, to its central SU. Thus, we affected a single

measure of AUCEP to each SU of the map. As we

defined four cluster collections for four risks combin-

ation (incidence and relative risks), we produced four

performance maps.

Kulldorff’s Spatial scan statistic

In this study, we selected Kulldorff ’s spatial scan

statistic [14,15], a well-known and widely used CDT

whose performance has been studied by many authors

[1,6,10,16]. The spatial scan statistic detects the most

likely cluster based on locally observed statistics of

likelihood ratio tests. The scan statistic considers all

possible zones z defined by two parameters: a center

that is successively placed on the centroid of each SU,

and a radius varying between 0 and a predefined max-

imum. The true geography being delineated by admin-

istrative tracts, i.e., each zone z defined by all SUs

whose centroids lie within the circle, is irregularly

shaped. Let Nz and nz be the size of the at-risk

population and the number of cases counted in zone z

(over the entire region, these quantities are the total

population size N and the total number of cases n, re-

spectively). The probabilities that an at-risk case lies

inside or outside zone z are respectively defined by pz
= nz/Nz and qz = (n − nz)/(N −Nz). Given the null hy-

pothesis H0: pz = qz versus the alternative H1: pz > qz
and assuming a Poisson distribution of cases, Kulldorff

defined the likelihood ratio statistics as proportional to

nz

λN z

� �nz n−nz

λ N−N zð Þ

� �n−nz

I nz > λN z½ �

where λ is global incidence, and the indicator function

I equals 1 when the number of observed cases in zone

z exceeds the expected number under H0, and 0 other-

wise. The circle yielding the highest likelihood ratio is

identified as the most likely cluster. The p-value is

obtained by Monte Carlo inference.

Software

Data simulation and analysis (see Data and Script in the

Additional files 1 and 2) were performed in R 2.14.0

[3,17-19] using AUVERGRID [20].

Results
The Auvergne region is characterized by low and

medium mountains situated around a central plain.

The at-risk population (see Methods) was heteroge-

neously distributed throughout sparsely populated areas

(mainly borderland and mountainous) and highly po-

pulated urban areas. Figure 1 shows the size of the

at-risk population in each cluster, which was assigned

to its central SU.

Figure 2 demonstrates how CDT performance im-

proved with increasing risk level. Clearly, the CDT

could not detect clusters within regions with low num-

ber of births. For these clusters, performance only mar-

ginally improved, even at the highest risk combination

(Figure 3).

CDT performance increased monotonically with the

at-risk population size (Figure 3). We noted a stronger

heterogeneity of CDT performance for the clusters with

the largest populations, especially at intermediate risk

levels (Figure 3); by this, we mean that clusters with

nearly the same population size led to slightly different

test performance behaviors. For example, Figure 4 shows

test performance in detecting three clusters centered on

SUs “43770” (red cluster in the figure), “03700” (blue

cluster) and “03420” (green cluster), which had popula-

tion sizes of 544, 558 and 545 births (mean number over

8 years), respectively. At the lowest risk level, the red

cluster was the only one even marginally detected,

whereas under other configurations, the blue cluster was

best detected. The worst detection performance was ex-

hibited with respect to the green cluster, particularly at

intermediate risk levels. We note that the green cluster

was the only borderland cluster.

Some summary statistics of the AUCEP distribu-

tions are displayed in Table 1. Figure 5 shows two

different extended power curves (and thus two dif-

ferent CDT behaviors) that have nearly equal AUCEP.

One of these clusters was centered on SU “03160”,

the other on SU “63112”.
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Generation of one performance map from 221,000

datasets required about 5 days of computational time

using the AUVERGRID grid.

Discussion
Takahashi and Tango [13] have suggested using the

AUCEP to compare performance between CDTs. We

used this synthetic indicator, suitable for compiling

maps, to describe CDT performance. It thus fulfills our

primary goal of realizing a systematic performance as-

sessment of a CDT over an entire study area, rather than

over only a few clusters. This mapping method, although

using Takahashi and Tango’s extended power, is not

dependent on this concept. Our method can use any

other indicator that meets the requirements of being a

scalar (i.e., a single measure of performance) indicating

both the spatial accuracy of the detection and the

capacity of cluster detection tests to reject the null

hypothesis.

Interpretation of the AUCEP requires further explor-

ation, however. Although a higher AUCEP clearly signi-

fies stronger CDT performance, quite different behaviors

can yield the same AUCEP. As shown in Figure 5, differ-

ent curves can possess very similar AUCEP values. This

figure shows the extended power curves “03160” and

“63112”, whose AUCEP values are nearly equal (0.931

and 0.932, respectively), but which reflect different CDT

behaviors. The procedures used to construct these

curves are described in detail within separate spread-

sheets (see EP curve in the Additional file 3).

The curve “63112” is nearly horizontal, indicating that

the EDCs (H0 rejected, and cluster size l <maximum

cluster size L) located the simulated cluster with high ac-

curacy. As q increases, less tolerance is given to false

positives until, eventually, only EDCs with at least one

true positive and less than s false positives can contrib-

ute to the extended power. A near zero slope thus

indicates that the same detected clusters, all of which

Figure 1 Size of the at-risk population for each cluster in the Auvergne region, as defined by mean number of live births per year

between 1999 and 2006 (source: INSEE). Q1: ≤ 102; Q2: > 102 and≤ 175; Q3: > 175 and≤ 293; Q4: >293.
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contain less than s false positives, contribute to the

extended power, regardless of q.

The intercept of curve “63112” is 0.939, meaning that

eligible clusters (l < L), all of which contribute to the

extended power (i.e., all clusters contain at least one

true positive), were detected in 93.9% of the tests (H0

rejected).

To summarize curve “63112”, the simulated cluster

was not always detected (no H0 rejection or EDC with-

out true positive); however, provided that an EDC identi-

fied at least one true positive, the location was accurate

(i.e., less than s false positives existed in the cluster).

In contrast, the curve “03160” yields the same AUCEP,

but is negatively sloped with an intercept of 0.951. Thus,

the associated CDT produced more EDCs containing at

least one true positive. The negative slope indicates that

a higher proportion of these EDCs generated at least s

false positives.

To summarize curve “03160”, the test rejected H0

more often and/or produced more EDCs, but located

the simulated cluster with less accuracy (i.e., this analysis

produced more than s false positives).

One particular curve has intercept equal to 1 (q = 0)

and a zero slope. An intercept equal to 1 implies that

the CDT always rejects H0 and that no false negatives

exist in the EDCs. All detected clusters entirely overlap

the simulated cluster, as in all other cases the weighting

function W(l, s*, q=0) is less than one. In addition, the zero

slope indicates the perfect test that always exactly locates

the simulated cluster. A perfect test always rejects H0,

and detected clusters always satisfy l = s* = s (i.e., gener-

ate no false positive or negative). The AUCEP of a perfect

Figure 2 AUCEP of Kulldorff’s spatial scan. AUCEP was measured for four combinations of two relative risk (RR) and two annual incidence of

birth defects: low RR = 3 and high RR = 6; low incidence = 0.48% births and high incidence = 2.26% births.
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test equals one, because in all other cases W(l, s*, q) is less

than one.

The intercept of an extended power curve can be

regarded as a “quantitative” feature of CDT perform-

ance (all EDCs generating true positives contribute

to the extended power), whereas the slope may be

thought of as a “qualitative” feature of CDT perform-

ance, assessing location accuracy. The parameter q

can, in fact, be regarded as a continuous indicator

reflecting to what extent a detected cluster must accur-

ately locate the simulated cluster to contribute to the

performance measure.

As shown in Figure 5, however, if an entire curve is

condensed into a single measure (such as the AUC),

some information is lost, because CDTs with different

behaviors (i.e., curves with different shapes) can yield

the same performance value.

Consequently, the impact of CDT behavior on the ex-

tended power curve must be thoroughly explored, and

behaviors relevant to a particular research or application

need to be defined. Through such exploration, the extent

to which the AUCEP is a relevant performance measure,

and the purposes for which it is most suited, can be

determined.

Figure 3 AUCEP of Kulldorff’s spatial scan based on the size of the at-risk population for four combinations of two relative risk (RR)

and two annual incidence of birth defects: low RR = 3 and high RR = 6; low incidence = 0.48% births and high incidence = 2.26% births.

Figure 4 AUCEP of Kulldorff’s spatial scan and locations of three simulated clusters for four combinations of two relative risk (RR) and

two annual incidence of birth defects: low RR = 3 and high RR = 6; low incidence = 0.48% births and high incidence = 2.26% births.
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The EP has the advantage of requiring only one arbi-

trarily set parameter. In this work, the parameter L, that

determines the maximum allowed size for EDCs, has

been set to 30 SUs. Takahashi and Tango [12] initially

proposed to set the limit L to one fourth or one third of

region size (in numbers of SUs). The authors stated that

it was not unreasonable to assume that an actual cluster

size will be less than such a limit. Such arguments are

often open to dispute but in any case, it is an arbitrary

decision. In our view, it would be more correct to set L

according to the size s of the simulated cluster because,

in the simulation, it is the “real” cluster. By construction,

the consequences of this arbitrary setting are limited to

the lowest values of q. Indeed, low values of q mean that

EDCs with false positives are less penalized, and thus

large clusters are allowed to contribute to EP. In our

case (L = 30), only values of extended power for q ≤ 0.15

could be underestimated, and only if we consider that

detected clusters more than 7.5 times larger than the

simulated cluster (4 SUs) are still meaningful. At last,

compared with L set to 30, computing AUCEP with L

equal to 221 (i.e. without an arbitrary limit) yields a dif-

ference in AUCEP always less than 10-5 in this work.

In producing our performance map, we chose to as-

sign the AUCEP value of a single cluster of four SUs to a

single SU. Because two clusters centered on neighboring

Table 1 AUCEP distribution for each risk combination and

category of at-risk population size

Risk
combination

Number of
birthsa

AUCEP

Mean (SD) Min - Max

ICV and RR = 3 ≤ 102 0.010 (0.003) 0.003 - 0.020

[102, 175] 0.021 (0.006) 0.007 - 0.033

[175, 293] 0.043 (0.013) 0.023 - 0.077

> 293 0.133 (0.089) 0.055 - 0.542

Iall and RR = 3 ≤ 102 0.070 (0.028) 0.019 - 0.138

[102, 175] 0.183 (0.038) 0.119 - 0.268

[175, 293] 0.382 (0.075) 0.246 - 0.543

> 293 0.713 (0.117) 0.492 - 0.950

ICV and RR = 6 ≤ 102 0.061 (0.025) 0.016 - 0.110

[102, 175] 0.185 (0.047) 0.114 - 0.297

[175, 293] 0.412 (0.083) 0.277 - 0.553

> 293 0.768 (0.113) 0.524 - 0.971

Iall and RR = 6 ≤ 102 0.511 (0.162) 0.168 - 0.787

[102, 175] 0.874 (0.050) 0.783 - 0.959

[175, 293] 0.970 (0.019) 0.915 - 0.995

> 293 0.990 (0.010) 0.964 - 1

amean number between 1999 and 2006.

Figure 5 Extended power curves for two simulated clusters. Line 03160: cluster centered on the SU with zip code 03160 (northwest

Auvergne); line 63112: cluster centered on the SU with zip code 63112 (central Auvergne). Both clusters were simulated with a relative risk of 6

and a baseline incidence of birth defects set to 2.26%.
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SUs likely contain common SUs, and the AUCEP evalu-

ates the detection of the entire cluster, visualizing

performance on a single map can only be done in two

ways. On the one hand, the AUCEP of a cluster can be

assigned to each of its SUs, or on the other hand, it can

be assigned to a single, albeit arbitrarily chosen, SU. In

the first solution, as each SU has a strong probability to

be associated with more than one cluster, it is then ne-

cessary to compute a summary statistic, such as the

mean, to produce a single map. In our view, it seems

more comprehensible to arbitrary assign the perform-

ance measure for the whole cluster on a single SU. As

we simulated more or less circular clusters, the central

SU of the cluster was naturally chosen for this assign-

ment. When simulating different cluster shapes, this

choice will clearly be less obvious. We nevertheless rec-

ommend assigning the performance measure to the SU

where the centroid of the cluster is located.

Authors who have studied CDT behavior mentioned

its dependence on epidemiological and geographical fac-

tors [1,5-11]. Consistent with previously published re-

sults, the performance of Kulldorff ’s spatial scan, and

more generally, all local CDTs, improves in study re-

gions of small SUs, large populations, high incidence of

the studied phenomenon and for clusters with strong

relative risk. Furthermore, as shown in Figure 4 and

Table 1, the variation in AUCEP among very similar sim-

ulated clusters (identical length, shape, population size

and risk association) suggests that other factors influ-

ence CDT performance. To our knowledge, no other

simulation study has been performed to both assess and

visualize CDT performance over an entire region. Until

now, authors have always considered a limited set of

simulated clusters with particular epidemiological or

geographical characteristics of interest. Consider the

typical example of population size effect. To assess this

effect, clusters are generally simulated in only a few arbi-

trarily chosen locations where a CDT behavior is as-

sumed to be representative of its behavior in any other

“similar” location. Usually, clusters in rural areas are

compared with clusters in urban areas. Such studies are

not sufficient to assess this factor that, as we have shown

(Figure 3), has a strong relationship with CDT perform-

ance. Furthermore, population size cannot explain in it-

self all the variability in CDT performance.

However, some authors [21] have assessed performance

on many randomly located clusters, which is a way to take

into account the effect of spatial location without assessing

it. It enabled them to assess the effect of factors such as

relative risk or spatial resolution without the potential con-

founding effect of the spatial location. Still, this approach,

while accounting for this effect, cannot quantify it.

Our systematic evaluation allows us to assess exactly

when heterogeneity is most important, and thus within

what population size range we can expect any other po-

tential factor to have a maximum effect. In this work, we

used predefined values for incidence and clustering

characteristics (relative risk, shape, size and number) to

generate performance maps. Epidemiologists should use

reasonable values if a priori knowledge is available for

some factors. However, the proper effect of any factor

on CDT performance can be studied with this systematic

evaluation, provided it uses suitable measure such as the

AUCEP.

Conclusion
Given that CDT performance depends on geographical

and epidemiological context, the performance of these

methods should be explored prior to monitoring a par-

ticular phenomenon in a given region. This work enables

epidemiologists to study global CDT performance over

an entire region. Furthermore, from a research view-

point, our method seems beneficial for unraveling the

proper effect of many factors, particularly geographical

ones, on CDT performance.

Additional files

Additional file 1: Script: This file is an r script (script.r) containing a

complete procedure to define the collection of clusters, simulate

the datasets, perform the test and plot the corresponding

performance map.

Additional file 2: Data: This is a zip file (Data.zip) containing the

population data in an r format (Pop.rda) and a folder with the

shapefiles for the Auvergne region.

Additional file 3: EP curve: This file is an Excel spreadsheet

(EP curve.xls) containing two worksheets. Sheets “03160” and “63112”

describe step-by-step construction of EP curves for clusters centered on

SU “03160” and SU “63112”, respectively. In both constructions, the

relative risk is set to 6 and the baseline incidence of birth defects is

assumed to be 2.26%. To toggle between the corresponding procedures

for calculating EP, the user need only alter the value of q in cell D41.
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