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Abstract

Background: Globozoospermia is a male infertility phenotype characterized by the presence in the ejaculate of

near 100% acrosomeless round-headed spermatozoa with normal chromosomal content. Following

intracytoplasmic sperm injection (ICSI) these spermatozoa give a poor fertilization rate and embryonic development.

We showed previously that most patients have a 200 kb homozygous deletion, which includes DPY19L2 whole

coding sequence. Furthermore we showed that the DPY19L2 protein is located in the inner nuclear membrane of

spermatids during spermiogenesis and that it is necessary to anchor the acrosome to the nucleus thus performing

a function similar to that realized by Sun proteins within the LINC-complex (Linker of Nucleoskeleton and

Cytoskeleton). SUN1 was described to be necessary for gametogenesis and was shown to interact with the

telomeres. It is therefore possible that Dpy19l2 could also interact, directly or indirectly, with the DNA and modulate

gene expression during spermatogenesis.

In this study, we compared the transcriptome of testes from Dpy19l2 knock out and wild type mice in order to

identify a potential deregulation of transcripts that could explain the poor fertilization potential of Dpy19l2 mutated

spermatozoa.

Methods: RNA was extracted from testes from DPY19L2 knock out and wild type mice. The transcriptome was

carried out using GeneChip® Mouse Exon 1.0 ST Arrays. The biological processes and molecular functions of the

differentially regulated genes were analyzed with the PANTHER software.

Results: A total of 76 genes were deregulated, 70 were up-regulated and 6 (including Dpy19l2) were

down-regulated. These genes were found to be involved in DNA/RNA binding, structural organization,

transport and catalytic activity.

Conclusions: We describe that an important number of genes are differentially expressed in Dpy19l2 mice.

This work could help improving our understanding of Dpy19l2 functions and lead to a better comprehension

of the molecular mechanism involved in spermatogenesis.
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Résumé

Contexte: La globozoospermie est caractérisée par la présence dans l’éjaculat de près de 100% de spermatozoïdes

ronds et dépourvus d’acrosome qui présentent un contenu chromosomique normal. L’injection intracytoplasmique (ICSI)

de ces spermatozoïdes donne cependant un taux de fécondation et de développement embryonnaire particulièrement

bas. Nous avons montré précédemment que la plupart des patients globozoospermes présentent une délétion

homozygote de 200 Kb qui inclue la totalité de la séquence codante du gène DPY19L2. De plus nous avons montré que

la protéine DPY19L2 était localisée dans la membrane interne des noyaux des spermatides pendant la spermatogénèse

et qu’elle est nécessaire pour fixer l’acrosome au noyau, réalisant ainsi une fonction similaire à celle des protéines Sun au

sein du complexe LINC (Linker of Nucleoskeleton and Cytoskeleton). Il a par ailleurs été montré que SUN1 était

nécessaire à la spermatogénèse et que cette protéine interagit avec les télomères chromosomiques. Il est donc possible

que Dpy19l2 interagisse également, directement ou indirectement avec l’ADN et module l’expression génique lors de la

spermatogénèse. Dans cette étude nous avons donc comparé le transcriptome de testicules de souris invalidées (KO)

pour le gène Dpy19l2 à celui de souris sauvage afin d’identifier une éventuelle dérégulation génique qui pourrait

expliquer le faible potentiel reproductif des spermatozoïdes globozoocéphales.

Méthode: L’ARN a été extrait de testicules de souris KO pour Dpy19l2 et de souris sauvages. Le transcriptome a été

réalisé en utilisant des puces d’expression ® Mouse Exon 1.0 ST Arrays. Les processus biologiques et les fonctions des

gènes dérégulés ont été analysés en utilisant le logiciel PANTHER.

Résultats: Un total de 76 gènes a été identifié comme étant dérégulés, 70 gènes étaient surexprimés et 6 (incluant

Dpy19l2) étaient sous-exprimés. Il s’agit de gènes principalement impliqués dans des interactions avec des acides

nucléiques (ADN/ARN), ou ayant un rôle structural, dans le transport, ou présentant une activité catalytique.

Conclusions: Cette étude nous a permis d’identifier et de décrire un nombre important de gènes exprimés de manière

différentielle chez les souris KO pour Dpy19l2. Ce travail peut permettre d’améliorer notre compréhension des fonctions

de Dpy19l2 et peut contribuer à obtenir une meilleure compréhension des mécanismes moléculaires nécessaire à la

spermatogénèse.
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Background

A recent study supported by the World Health Organi-

zation indicates than in 2010, an estimated 48.5 million

couples worldwide were unable to have a child after five

years [1]. Male factors are believed to be responsible for

30-50% of all infertility cases, but micro deletions of the

Y chromosome are the only genetic defects altering hu-

man spermatogenesis, which are diagnosed routinely.

To be able to fertilize the oocyte, the spermatozoon

needs to cross the zona pellucida (ZP), which is a glycopro-

tein layer surrounding the oocyte. The acrosomal reaction

(AR), during which the acrosome (a giant vesicle of secre-

tion) releases its content, plays an important role in the

fertilization process. Enzymes released from the acrosome

locally digest and soften the ZP so that the spermatozoon

can penetrate deeper and fertilize the oocyte. The acro-

some, a highly specialized organelle found only in sperm, is

tightly bound to the nucleus via the acroplaxome (a net-

work of proteins including keratin 5 and β-actin) [2].

Globozoospermia is a severe teratozoospermia character-

ized by the presence of 100% of round-headed spermato-

zoa devoid of acrosome. Men with globozoospermia have a

primary infertility due to this absence of acrosome, which

prevents their sperm from fertilizing the oocytes in vivo

[3]. Spermatozoa from globozoospermic patients have near

normal levels of aneuploidy but give a poor fertilization

rate and embryonic development even when performing

Intra Cytoplasmic Sperm Injection (ICSI) [3]. Studies by

immunocytochemistry showed that most round headed

sperm lacked the phospholipase zeta protein (PLCzeta), a

protein normally located around a the sperm’s head [4-7]

and required to induce oocyte intracellular calcium oscilla-

tion and oocyte activation [8,9]. It has therefore been pos-

tulated that it is the absence of PLCzeta which might be

responsible for the poor fertilization potential of round-

headed spermatozoa [10]. In the course of this work we

wanted to assess if the absence of PLCzeta in round-

headed spermatozoa results from a transcriptional repres-

sion of the gene and if other transcriptional deregulations

could also contribute to the poor fertilization potential of

these gametes.

The syndrome of globozoospermia was first described in

the seventies [7,11] and cases have been described regularly

since [12-20]. Familial cases rapidly pointed to a genetic

cause for this syndrome. In the recent years, SPATA16 has

been described to be involved in globozoospermia [21].

We demonstrated recently that DPY19L2 was in fact the

main locus associated with globozoospermia as 15 out of

20 analysed patients presented a 200 Kb homozygous dele-

tion removing the entire gene [22]. We then identified
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DPY19L2 point mutations and heterozygous deletions and

demonstrated that 84% of the 31 globozoospermic patients

analysed had a molecular alteration of DPY19L2 [23]. We

finally confirmed that the recurrent deletion observed in a

majority of men with globozoospermia was caused by non-

allelic homologous recombination (NAHR), between two

highly homologous sequences, or low-copy repeats (LCR),

located on each side of DPY19L2 [24].

We previously characterized Dpy19l2 Knockout mice

(Dpy19l2−/−) and showed that these mice present the same

phenotype than men carrying mutations in DPY19L2,

ie round-head spermatozoa without acrosome. It also

permitted us to determine that i.) DPY19L2 is located

in the inner nuclear membrane of wild type mouse

spermatids, ii.) DPY19L2 is required for acrosome attach-

ment to the nucleus and iii.) the detachment of the acro-

some in Dpy19l2−/− mice prevents correct anchoring of

the manchette. Moreover we described that SUN5 and

DPY19L2 partially colocalized in transfected HEK cells

[25]. SUN-domain proteins are known to interact with

chromosome-binding proteins and various KASH-domain

partners to form SUN-domain-dependent ‘bridges’ across

the inner and outer nuclear membranes. These bridges

physically connect the nucleus to every major component

of the cytoskeleton [26]. SUN1, one of the members of the

family, was described to be necessary for gametogenesis

and was shown to interact with the telomeres [27]. We can

hypothesize that Dpy19l2 could interact directly or indir-

ectly with the DNA and thus have an effect on the regula-

tion of transcription. It is thus possible that the absence of

Dpy19l2 could cause some modification in the germ cell

transcription pattern.

The goal of this study was to determinate if Dpy19l2

knock out mice present significant testis transcriptional

modifications compared to wild type and in particu-

lar modifications that may explain the poor success

rate encountered by globozoospemic patients following

ICSI- IVF.

Methods
Ethical statement

Animal housing and sacrificing was in accordance with

French guidelines on the use of animals in scientific inves-

tigations with the approval of the local Ethical Committee.

Animals

Dpy19l2 knock out mice were obtained from Mutant

Mouse Regional Resource Center, University of California,

Davis, CA. The mouse colony used in this study was initi-

ated from two couples. The first one consisted of an het-

erozygous female and a wild type male. The second was

composed of two heterozygous mice for the Dpy19l2 dele-

tion. Reproduction of these two couples achieved wild type,

heterozygous and homozygous Dpy19l2 deleted mice. Mice

were sacrificed at 2 months old, which means that they

were pubescent and that their reproductive organs were

fully established. A total of four animals were sacrificed.

RNA was extracted from two homozygous WT and two

homozygous KO animals.

Genotyping PCRs

Genotyping was done on DNA isolated from tail biopsies.

Tail biopsies (ca. 2 mm in length) were digested in 200 μl

lysis Direct PCR LYsis Reagent (Tail) (Viagen Biotech inc,

CA, USA) and 0,2 mg of proteinase K for 12–15 hours

at 55°C and 1 hour at 85°C. The DNA was directly used

for PCRs.

PCR was done for 35 cycles, with an annealing temp-

erature of 57°C, and an elongation time of 60 seconds at

72°C. The primers used are described in Figure 1. PCRs

products were separated on agarose gel electrophoresis.

Genotypes were determined according to the migration

pattern (Figure 1).

Tissue collection

Mice were sacrificed and testes were collected. Tissues

were snap frozen in liquid nitrogen prior storage at −80°C.

Two mice in each group were used for the micro-array

analysis.

B

A

1 - 2
1 - 3

Dpy19l2

Htz

(+/-)

KO

(-/-)

WT

(+/+)
T0

Figure 1 Strategy for Dpy19l2 KO mice genotyping. A) Scheme

of the Dpy19l2 alleles and primers (red arrows) used for their

detection. Primer sequence is as follow: 1:GAAGGCTACACCTCTTGCA,

2:GCTGCAGCAACGACCACTTC; 3:CCTAGGAATGCTCGTCAAGA.

B) Examples of PCRs with (from left to right) Dpy19l2+/− mouse,

Dpy19l2−/− mouse, Dpy19l2+/+ mouse and water (control).
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RNA extraction

Total RNA was extracted from tissues using mirVana

isolation kit™ (Ambion, Applied Biosystems, Foster City,

CA) as per the manufacturer’s instructions. RNA purity

and quantity was assessed using the NanoDrop c1000

(ThermoFisher Scientific, Waltham, USA). Quality was de-

termined by both evaluation of the integrity of rRNA bands

using RNA Nano 6000 kit (Bio-Analyser, Agilent Tech-

nologies, Palo Alto, CA) and absorbtion readings ant 260

and 280 nm. For detail see Additional file 1: Table S1.

Array hybridization

For each group, two biological replicates were used. The

replicates came from four separate RNA extractions: two

from homozygous WTand two from homozygous KO ani-

mals. cDNA synthesis, amplification, enzymatic fragmenta-

tion and biotinylation were performed using the Ambion

WT Expression Kit (Ambion, Austin, TX, USA). Samples

were hybridized to Affymetrix GeneChip® Mouse Exon 1.0

ST Arrays as per the manufacturer’s instructions. The

Affimetrix Mouse Exon 1.0 ST array, contains probe sets

for 35,557 genes. Briefly, 5 μg of fragmented biotinylated

ssDNA was hybridised for 16 hrs at 45°C, 60 rpm to the

array chip on a GeneChip® Hybridization Oven 640. After

16 hrs, GeneChips® were washed on a GeneChip® Fluidics

station 450 using the washing script Prime 450 with buffers

and stains supplied with the GeneChip Hybridisation

Wash and Stain Kit from Affymetrix.

Data acquisition and analysis

Data was acquired on a GeneChip® Scanner 3000 7G and

.CEL file generation performed using AGCC. Expression

Console with Robust Multi-chip Average (RMA) was used

initially to extract probe intensity data. RMA background

correction was applied including pre-background adjust-

ment for GC content and quantile normalization across all

chips in the experiment. Probe data was log2 transformed.

Gene level expression analysis

Two separate experiments (experiment 1 and 2) were car-

ried out, each time with one testis from homozygous wild

type and homozygous KO mice. Hence for each gene a

total of two values were obtained in WT (Dpy +/+ (1) and

(2)) and KO mice (Dpy −/− (1) and (2)).

For each gene transcripts we calculated 4 ratios corre-

sponding to the 4 possible combinations

R1 ¼
Dpy−=− 1ð Þ

Dpyþ =þ 1ð Þ
R3 ¼

Dpy−=− 2ð Þ

Dpyþ =þ 1ð Þ

R2 ¼
Dpy−=− 1ð Þ

Dpyþ =þ 2ð Þ
R4 ¼

Dpy−=− 2ð Þ

Dpyþ =þ 2ð Þ

For each gene, if at least three of these ratios ap-

peared > = 1.7 fold up or down, the transcript was

considered to be significantly differentially expressed.

These values and the log2 ratio for all deregulated genes

are shown in Additional file 2: Table S2. The histogram

of the log2 ratio of each deregulated gene is shown in

Figure 2.

Gene ontology analysis

The lists of genes expressed differently in Dpy19l2−/− mice

were imported into PANTHER (http://www.pantherdb.

org/) to identify the biological process, molecular functions

and gene networks significantly deregulated in Dpy19l2−/−

testis compared to WTcontrols.

Results

Gene expression profile

Array hybridization was performed with the Affimetrix

Mouse Exon 1.0 ST array, which contains probe sets for

35,557 genes. Of these, we identified that 76 genes had a

level of testicular expression that was different between

WT and Dpy19l2−/− mice (transcripts with an expression

ratio > = 1.7 fold up- or down regulated). Among them,

6 genes were underexpressed and 70 genes were over-

expressed (Figure 2 and Additional file 2: Table S2). As

expected Dpy19l2 was found part of the down-regulated

genes, thus validating the experimental approach we

used. Interestingly, we did not observe any difference in

the expression level of PLCzeta in the testes from KO

and WT mice.

Panther gene ontology analysis

The 76 genes that were differentially regulated were up-

loaded into the PANTHER software (Gene List Analysis).

Among them 64 were recognized by the PANTHER soft-

ware. The molecular functions and biological process pre-

dictions that are generated from PANTHER are based on

the direction of expression of a number of downstream

genes which have been previously shown to be associated

with these functions. The list of each function associated

to all deregulated genes is provided in Additional file 3:

Table S3. Several molecular functions were found to be

enriched in the testis of Dpy19l2−/− mice (Figure 3). Genes

encoding proteins witch are able to bind nucleic acids or

proteins were most frequently deregulated (23 genes), es-

pecially those encoding for protein binding to the nucleic

acids (12 genes), confirming that Dpy19l2 could interact

with DNA. Other functions such as catalytic activity, tran-

scription regulator activity, structural functions were also

deregulated in the KO mice testes. Because of its lo-

cation in the inner nucleus membrane, DPY19L2 could

be a bridge between the nucleus and the cytoplasm. We

observed that 5 genes encoding for transporters are

deregulated in KO mice: among them, four are transmem-

brane transporters and one is a lipid transporter. Moreover

globozoospermia is characterized by structural deficiency
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of spermatozoon head and we see that 6 deregulated genes

encode for proteins with structural molecular function.

Numerous biological processes are also deregulated in

the testis of Dpy19l2−/− mice (Figure 4). Metabolic pro-

cesses and cellular processes are most often deregulated.

We see that 6 genes predicted to be involved in repro-

duction biological process separated deregulated. Among

those, no genes were described to be involved in the acro-

some formation but two genes encode for dyneins and one

for a protein predicted to be involved in sperm motility.

Discussion

Spermiogenesis is the final stage of spermatogenesis. Dur-

ing this step, the nucleus condenses, acquires its specific

shape, and the flagellum and the acrosome are formed.

The acrosome is essential for the spermatozoa to cross of

the ZP and is thus necessary for in vivo fertilization.

Globozoospermia is a teratozoospermia characterised by

the formation of round-head spermatozoa without acro-

some. This pathology has been described to be associated

with the absence of the protein PLCzeta which is also

known to be essential for fertilization and oocyte activation

[4-7]. We previously demonstrated that this pathology is

mostly due to a homozygous deletion of the testis-specific

gene DPY19L2 [22,23] and that DPY19L2 is expressed in

spermatids and it is located only in a restricted zone of the

nuclear membrane facing the acrosome.

This study revealed that 76 genes were deregulated in

the testis of Dpy19l2 KO mice. This result could be con-

cordant with a very specific regulatory role of Dpy19l2 at

the transcription level. On the other hand we note that the

micro-array contains 35,557 probe-set for almost as many

genes. It is therefore a small minority (0.2%) of genes that

is deregulated in DPy19l2 KO mice. It is interesting to note

that almost all of these genes appeared as up-regulated and

that only 5 of them were down- regulated. If Dpy19l2 has a

direct influence on gene regulation we can therefore say

that it mainly act as a repressor of gene expression. We

note that apart from Dpy19l2, which is obviously absent

from the KO and is found (due to background fluorescence

levels) to have a 4 fold decrease in expression compared to

controls, the most down-regulated gene, ATP6, has a 2.6

fold decreased expression and the most up-regulated gene,

Cepp, has a 2.2 fold increased expression. The observed

level of transcription modifications is therefore moderate.

Dpy19l2 co-localises with SUN5 [28] and we hypothe-

sized that SUN5 is a likely partner of Dpy19l2 [25]. In

mouse, Sun1, another Sun protein, was also described to
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Figure 2 Histogram of the log2 ratio of all deregulated

transcripts. Genes that are upregulated in Dpy19l2 KO mice have
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values. Values can be seen in Additional file 2: Table S2.
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of PANTHER biological process. Up-regulated genes are in bold and underlined.

Karaouzène et al. Basic and Clinical Andrology 2013, 23:7 Page 7 of 10

http://www.bacandrology.com/content/23/1/7



be necessary for gametogenesis and was shown to inter-

act in the nucleus with the telomeres [27]. We observed

that most of the deregulated genes (70/76) were up reg-

ulated in KO animal. We can hypothesize that Dpy19l2

could also interact, directly or indirectly, potentially via

Sun5, with germ cell DNA and thus could have an effect

on the regulation of transcription in spermatogenic cells.

Heterochromatin is constituted by highly compact trans-

criptionaly repressed DNA. It regroups down-regulated

genes and is particularly abundant at the periphery

of the nucleus where it interacts with factors located

in the nuclear lamina. We can thus speculate that Dpy19l2

could intervene during spermiogenesis to include selected

genes in heterochromatin repressive domains. In the ab-

sence of Dpy19l2, these genes would not be repressed and

appear as up regulated. This regulations could be a limited

to selected loci as electron microscopic observations of

round spermatids nuclei from Dpy19l2 KO animals do not

show any obvious difference in the abundance of hetero-

chromatin [25].

The PANTHER software allows a classification of genes

according to their predicted molecular functions (Figure 3).

We see that the most represented gene function that is

deregulated in Dpy19L2 mice is “binding” (23 genes). This

group is divided in three sub categories: nucleic acid, pro-

tein and calcium ion (Additional file 2: Table S2). [Ca2+]I is

known to play an important role in male fertility. [Ca2+]I
signaling is the primary regulator of sperm flagellum beat-

ing and calcium intracellular rise is known to be essential

for the acrosome reaction [29]. Indeed, solubilisation of the

zona pelucida stimulates generation of IP3 in mouse sperm

[30] which is known to mobilize the acrosomal Ca2+

stored to permit acrosomal reaction [31,32]. The bio-

chemical nature of the Ca2 + −binding sites are globally

unknown but recently a calcium-binding protein has been

isolated from the acrosomal membrane of bovine sperm-

atozoa [33]. We observe that in Dpy19l2 KO mice two cal-

cium binding proteins are up-regulated : Caps2 and Sgk3

(Figure 2 and 3). Ten of the deregulated genes are de-

scribed to encode proteins with DNA binding abilities. Al-

though we did not find direct evidence that these encoded

proteins have transcriptional regulation activities, they

might be involved in the regulation of gene expression and

play a role in the up- and -down regulation of some of the

other genes we found to be deregulated in this transcrip-

tome analysis.

We did not observe a down-regulation of PLCzeta that

could account for its absence from round-headed sperms.

This suggests that in Dpy19l2−/− mice PLCzeta is nor-

mally expressed but that the absence of Dpy19l2 and the

abnormalities it induces on sperm morphology likely pre-

vents the correct positioning of PLCzeta, which is likely

to be eliminated in the residual body. This hypothesis is

consolidated by the fact that several studies show that

treatment with a calcium ionophore improves ICSI suc-

cess rates? results for men with globozoospermia [5]. We

note however that fertilization and pregnancies can be

achieved by ICSI on DPY19L2 deleted men [34]. This

can probably be explained by the fact that remains of

misplaced PLCzeta often position near the manchette

can be observed on a small proportion of round-headed

sperm [6].

This study also reveals that several genes encoding

for transporters were deregulated in Dpy19l2 KO mice.

Among them four are transmembrane transporters and

one is a lipid transporter. We note the deregulation of the

gene Abca1, which is expressed in mouse spermatozoa

within the seminiferous tubules and the epididymis, and is

a key regulator of cholesterol efflux. Depletion of the chol-

esterol from the cytoplasmic plasma membrane and modi-

fication of its lipid composition is one of the key events in

the process of spermatozoa capacitation, which ultimately

leads to the acrosome reaction and egg fertilization. Trans-

porters and in particular those mediating cholesterol efflux,

are thus particularly important. The deregulation of Abca1

could therefore alter the physiological composition of ma-

ture sperm and contribute to the poor fertilization poten-

tial of Dpy19l2 mutant sperm.

The analyze of biological process regulated in Dpy19l2−/−

mice reveals 6 genes predicted to be involved in reproduct-

ive functions and particularly in gamete generation and

fertilization. Surprisingly half of these genes code for dy-

neins, which are important constituents of the microtu-

bules. The others are involved in the processes of sperm

motility and cytoskeleton structure. These results can be

linked to our previous observation that the absence of

Dpy19l2 leads to the destabilization of both the nuclear

dense lamina and the junction between the acroplaxome

and the nuclear envelope. This destabilization causes a fail-

ure of the linkage of the acrosome and the manchette to

the acroplaxome, a cytoskeletal plate anchored to the nu-

clear envelope. The manchette is a transient microtubular

structure necessary during spermatid elongation. Moreover,

the manchette is necessary for protein trafficking and its

defects could disturb the overall distribution of proteins in

spermatids [35].

Conclusions

We showed that Dpy19l2−/− induced globozoospermia

altered gene expression in mice testis but the overall

modifications at the transcript level remained modest.

We showed that PLCzeta was not down-regulated in KO

mice indicating that the absence of the protein observed

in the sperm of globozoospermic patient is not due

to a transcriptional deregulation. This likely indicates

that PLCzeta cannot reach its physiological localization

on round-headed spermatozoa and that it is probably lost

with the cytoplasmic elimination (residual body) during
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spermiogenesis. We also observed that several genes en-

coding proteins involved in transports, and in particular

Abca1, involved in the cholesterol efflux, were deregulated.

This could also contribute to the poor fertilization poten-

tial of the round-headed spermatozoa. Secondary anomal-

ies stemming from the morphological abnormalities of the

sperm could also lead to a wide range of protein deregula-

tion as exemplified by the absence of PLCzeta. A prote-

omic analysis of these deregulations could permit to have

a functional view of the extent of the molecular anomal-

ies present in Dpy19l2 KO mice. Further work will per-

mit a better comprehension of molecular mechanism

involved in spermatogenesis and in the physiopathology of

globozoospermia.

Additional files

Additional file 1: Table S1. RNA quantification.

Additional file 2: Table S2. Ratios of transcripts values measured in

Dpy19l2 WT and KO mice.

Additional file 3: Table S3. PANTHER output of all deregulated genes

in Dpy19l2 KO mice.
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