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Abstract 14 

Docosahexaenoic acid (DHA) is an abundant nutrient from marine lipids: its specific 15 

biological effects have been investigated in human volunteers, taking into consideration the 16 

dose effects. We report herein that, at dosages below one g/day, DHA proved to be effective 17 

in lowering blood platelet function and exhibited an “antioxidant” effect. However, this was 18 

not anymore the case following 1.6g/day, showing then a U-shape response. The antioxidant 19 

effect has been observed in platelets as well as low-density lipoproteins, of which the redox 20 

status is assumed to be crucial in their relationship with atherosclerosis. Secondly, the 21 

oxygenated products of DHA, especially protectins produced by lipoxygenases, have been 22 

considered for their potential to affect blood platelets and leukocytes. It is concluded that 23 

DHA is an interesting nutrient to reduce athero-thrombogenesis, possibly through 24 

complementary mechanisms involving lipoxygenase products of DHA. 25 
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 29 

Introduction 30 

Docosahexaenoic acid (DHA, 22:6n-3) is an abundant long-chain polyunsaturated fatty acid 31 

(PUFA) of marine origin
(1)

. In addition to be a major PUFA of the brain and retina in 32 

animals
(2)

, DHA is well-known as a relevant nutrient which prevents adverse cardiovascular 33 

events
(3)

. Together with its precursor eicosapentaenoic acid (EPA, 20:5n-3), another major 34 

component of marine lipids
(4)

, DHA is one of the two main omega-3 long-chain PUFA 35 

believed to be responsible for protection against cardiovascular events
(5)

. However, it is worth 36 

mentioning the possible involvement in these biological events the third most abundant 37 

component in marine lipids 
(6)

, the intermediate between EPA and DHA, docosapentaenoic 38 

acid (DPA, 22:5n-3), and that of the omega-3 family precursor alpha-linolenic acid (ALA, 39 

18:3n-3)
(7)

. 40 

During the last decade, a series of oxygenated derivatives of DHA have been described with 41 

activities against inflammation, some speeding the resolution phase of inflammation, then 42 

playing an interesting role in the prevention of atherogenesis. The oxygenated metabolites 43 

have been named protectins and resolvins
(8,9)

. One protectin made by macrophages has been 44 

named maresin
(10)

. Lipoxygenases (LOX) are key enzymes in the generation of these 45 

derivatives, which makes the action of DHA quite specific and different from that of EPA that 46 
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is active through some of its cyclooxygenase (COX) products as well. In the eighties, DHA 47 

had already been reported as a fairly good substrate of blood platelet 12-LOX
(11)

. Also, its 48 

mono-hydroxylated metabolites produced through LOX have been found to be inhibitors of 49 

the thromboxane-induced platelet aggregation as well as blood vessel constriction
(12)

. 50 

This short review will consider the ex vivo effect of dietary DHA used at low dosage, and the 51 

in vitro biological effects of a double lipoxygenase product of DHA called protectin DX, in 52 

the frame of the cardiovascular risk. 53 

 54 

DHA supplementation in humans 55 

A large number of trials have been conducted with long-chain n-3 PUFA with various 56 

proportions of EPA and DHA, and also DPAn-3 when more or less crude fish oil or fish meat 57 

were used for supplementing the diet. It is generally assumed that those supplementations 58 

have preventive effects against cardiovascular events. However, depending on the status of 59 

volunteers (age, dietary habits, possible usage of drugs, etc) the benefits of such 60 

supplementations may be controversial. Indeed, a recent meta-analysis which did not take into 61 

account the different situations of the people participating in the trials concluded that “omega-62 

3 PUFA supplementation was not associated with a lower risk of all-cause mortality” 
(13)

. A 63 

post-review further indicates that “Subgroup analyses suggested that this could be because of 64 

a low absolute risk as a consequence of the state-of-the-art drug treatment”
(14)

. 65 

Earlier, we have considered that the dosage in EPA-DHA supplementation could be an issue 66 

as their high level of unsaturation makes them highly susceptible to peroxidation that could be 67 

detrimental to their potential benefit. Relating to blood platelets that play a crucial role in the 68 

initiation of atherothrombogenesis, we first considered that the increased oxidative stress 69 

associated with aging
(15)

 could negatively affect the expected benefit of the intake of long-70 

chain n-3 PUFA. So, we conducted an assay with a small dosage of those (150mg DHA + 30 71 

mg EPA esterified in triglycerides), each day for six weeks. The main results at the platelet 72 

level were a significant accumulation of DHA in membrane ethanolamine phospholipids and 73 

an increase in platelet vitamin E, the latter being of interest because platelet vitamin E is 74 

lower in this population of elderly people compared to young adults, associated with a 75 

decrease in malondialdehyde (MDA) concentration
(16)

. Also, a trend in decreased platelet 76 

aggregation and basal thromboxane formation could be observed, but the most striking fact 77 

was a significant lowering of the diastolic blood pressure. In contrast, no differences could be 78 
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observed in a placebo group receiving the same amount of sunflower oil, which of course 79 

contained high proportion of linoleate and no n-3 PUFA
(16)

. 80 

More recently we have conducted another investigation with increasing intakes of pure DHA 81 

esterified in triglycerides (algal oil) in a population of middle-aged men (53-65 year-old) with 82 

each of them following the supplementation program (two weeks of successively 200, 400, 83 

800 and 1600 mg DHA per day), making each volunteer his own control. A significant dose-84 

dependent accumulation of DHA could be observed in platelet phospholipids, but platelet 85 

aggregation was only significantly lowered after the intermediate dosages (400 and 800 86 

mg/d). In terms of redox status, only the 200 mg/d dosage was able to increase platelet 87 

vitamin E. Most interesting was to find that urinary isoprostanes, a recognized marker of 88 

oxidative stress, were significantly decreased after 200mg/d and significantly increased after 89 

1600 mg/d
(17)

. It must be noticed that the other markers of the oxidative stress, taken into 90 

consideration in this study, were not significantly altered following the highest dosage. 91 

Regarding the plasma low-density lipoproteins (LDL), their phospholipids and cholesteryl 92 

esters dose-dependently accumulated DHA, but significant improvements of the redox status 93 

were observed after 200, 400 and 800 mg/d DHA intake only. This concerned vitamin E with 94 

the highest increase after 200 mg/d, and reciprocal U-shape curves for MDA, a global marker 95 

of oxidative stress, and the oxidizability of LDL to copper ions, with a decreased MDA and 96 

increased lag phase of oxidation in response to copper
(18)

. These results clearly indicate that 97 

low daily intake of DHA (lower than 1 g/d) allows expression of an “antioxidant” profile 98 

based on several blood markers. This beneficial profile was not any more observed following 99 

the highest dosage, with even a global increased oxidative stress as stated above with urinary 100 

isoprostanes. 101 

Overall, and although the two latter intervention studies in healthy humans have not been 102 

conducted on a long term basis, they clearly indicate that the amount of long-chain n-3 PUFA 103 

intake is an issue that must be taken into consideration. 104 

 105 

Oxygenated metabolism of DHA and biological effects 106 

Contrary to EPA, that has the structural feature of arachidonic acid (ARA) with an additional 107 

cis/Z double bond at carbon 17, DHA is not oxygenated into prostanoid-like products by 108 

cyclooxygenases (COX) although it may inhibit the enzymes by competition, especially 109 

against ARA
(19)

. DHA may however be hydroxylated into 13-hydroxylated derivative by 110 

COX-2 or into 17(R)-hydroxylated derivative if COX-2 is treated by aspirin, the latter 111 
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derivative being a substrate of the neutrophil 5-LOX to produce resolvins D1 and D2
(20)

. This 112 

production is likely to be very low as the rate conversion of DHA into its 17(R)-hydroxylated 113 

derivative has been found to be less than 1-5 % of the rate conversion of ARA into PGH2
(21)

. 114 

In contrast, DHA is a fairly good substrate of LOX to produce various hydroxylated end-115 

products after reduction of the hydroperoxide intermediates by glutathione peroxidase. They 116 

are 4- and 7-OH through 5-LOX, 11- and 14-OH through 12-/n-9-LOX and 17-OH through 117 

15-/n-6-LOX
(22)

. The oxygenation of DHA through the latter LOX has been studied in details 118 

for the production of protectin/neuroprotectin D1
(8)

. In this case the biosynthetic route seems 119 

to mimic leukotriene B4 production by 5-LOX from ARA, then leading to 10(R),17(S)diOH-120 

4Z,7Z,11E,13E,15Z,19Z-22:6
(23,24)

. 121 

A double 15-/n-6-LOX end-product can also be produced, which is a geometric and 122 

stereoisomer of PD1. It is 10(S),17(S)diOH-4Z,7Z,11E,13Z,15E,19Z-22:6 and has been 123 

named protectin DX (PDX)
(25)

. As mono-hydroxylated derivatives have been shown to inhibit 124 

the thromboxane-induced aggregation of human blood platelets
(12)

, we have investigated the 125 

inhibition of that function by PDX and some isomers. In summary, PDX inhibits dose-126 

dependently platelet aggregation induced by collagen, ARA and the stable thromboxane A2 127 

mimetic U-46619 (a stable analog of prostaglandin H2). The inhibition power of PDX towards 128 

the aggregation induced by collagen or ARA was the same, but the inhibition of the U-46619-129 

induced aggregation was around half, suggesting that PDX did not affect the release of ARA 130 

from phospholipids in response to collagen but equally inhibits platelet COX-1 and 131 

thromboxane A2 response
(26)

. The inhibition of COX-1 was confirmed by studying the 132 

oxygenation of radiolabelled ARA, which proved the specific inhibition of COX-1 as the 12-133 

/n-9-LOX activity was not affected. Interestingly, a stereoisomer of PDX (10(R) instead of 134 

10(S)), other double 15-/n-6-LOX end-products from ARA and 22:3n-6 were as inhibitory as 135 

PDX, providing they have the E,Z,E conjugated triene geometry. In contrast, isomers having 136 

an E,E,Z or E,E,E (all-trans) conjugated triene geometry were inactive. The E,Z,E conjugated 137 

trienes oxygenated PUFA have been collectively named “poxytrins”
(26)

. It is worth noting that 138 

PD1, which has an E,E,Z conjugated triene motif, is described as an anti-inflammatory 139 

molecule but as a weak inhibitor of ADP-induced aggregation, without being further 140 

potentiated by aspirin treatment
(27)

. 141 

More recently, we have extended our investigations regarding PDX activities. First we found 142 

that it inhibits purified COX-1 and COX-2 with a slightly stronger inhibition of COX-2 143 

(submitted). Second, we addressed the possibility of inhibiting the reactive oxygen species 144 
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(ROS) generation in human neutrophils, as a previous work has shown that punicic acid, 145 

which exhibits a Z,E,Z conjugated triene motif, inhibits NADPH oxidase-induced ROS 146 

production
(28)

. Indeed, we found such an inhibition with a dose-dependent effect 
(29 & submitted)

. 147 

However, whereas PDX is active against platelet aggregation and COX activities in the sub-148 

micromolar range, the inhibition of ROS generation requires micromolar concentrations. 149 

Leukotriene production from ARA being an important feature in neutrophils, we also tested 150 

the effect of PDX upon the formation of 5-LOX products in these cells. No inhibition can be 151 

found while the endogenous COX-2 activity was inhibited at similar range concentrations as 152 

those inhibiting ROS production (submitted). This indicates that in addition to its potential for 153 

inhibiting platelet function, PDX may also exhibit some anti-inflammatory activity, likely 154 

through the inhibition of COX-2. 155 

 156 

Conclusion 157 

DHA is a nutrient with several beneficial effects in preventing athero-thrombogenesis if it is 158 

consumed in moderate amounts. In this respect, several international recommendations 159 

agreeing with half-a-gram per day seem reasonable to avoid some possible side-effects in 160 

terms of oxidative stress. Several mechanisms could contribute to the beneficial effects. 161 

Among them, the inhibition of COX activities and the DHA oxygenated products, mainly 162 

through LOX activities, may act by complementary effects such as inhibition of platelet 163 

aggregation and immune-competent cell function (Figure 1). Altogether the athero-164 

thrombogenesis could be reduced. However, it remains to prove that enough oxygenated 165 

products are generated in situ to account for the effects observed in vitro. 166 
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 176 

Figure: Summary of the DHA effect on blood platelets. 177 

DHA from the blood flow is partly taken up by platelets and mainly esterified into 178 

ethanolamine plasmalogens. This may be accompanied with an "antioxidant" effect as shown 179 

by in vitro enrichment
(30)

. DHA may be released by calcium-independent phospholipase A2 180 

(iPLA2)
(31)

, and be converted into 14-HDoHE by 12-/n-9-LOX to inhibit thromboxane action. 181 

Some non-esterified DHA entering platelets may directly be converted into 14-HDoHE. Non-182 

esterified DHA may also inhibit thromboxane A2 (TxA2) formation, in cPLA2-dependent 183 

activated platelets, through inhibition of COX-1. Besides platelets, DHA may be converted 184 

into PD1 and PDX by other cells doted of 15-/n-6-LOX such as endothelial cells and 185 

leukocytes, and PDX may inhibit platelet aggregation. 186 

PL-ARA & PL-DHA: ARA & DHA-containing phospholipids, respectively. TxS: 187 

thromboxane synthase. 188 
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