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Abstract

Ultrasound is a non-invasive image modality which allows for real time ac-
quisition. Nevertheless, the low quality of the acquired images makes this
a difficult-to-interpret modality during surgical procedures. To overcome
this, the registration of ultrasound images with pre-operative CT or MR im-
ages has been routinely used to fuse complementary information. This work
presents the evaluation of eight similarity measures used in the registration
of ultrasound and CT images of the left atrium and the pulmonary veins.
Each intensity-based similarity measure was evaluated computing its accu-
racy, capture range, distinctiveness of the optimum, risk and non-convergence
and number of minima. The results show, that the Woods criterion presents
a globally better performance than the other similarity measures. This is es-
pecially true for the accuracy and distinctiveness of the optimum indicators.
Preprocessing US images does not improve the performance of all similarity
measures, except for Woods criterion that shows the optimal accuracy.

Keywords: Similarity measures, rigid registration, ultrasound registration,
multimodality registration, evaluation

1. Introduction

Atrial fibrillation is a cardiac arrhythmia caused by abnormal electrical
discharges in the atrium. Ablation procedures have proven to be some of the
most effective methods in treating atrial fibrillation [1]. These procedures aim
to establish a line of lesions around the pulmonary veins in order to block
trigger points of atrial fibrillation. Ultrasound-guided HIFU is a minimally-
invasive alternative to other ablation techniques[2]. In this procedure, the
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ablation path is defined in a preoperative stage using 3D cine CT scans. The
ablation itself is performed under 2D ultrasound (US) guidance. The 2D-3D
registration of intra-operative US images to the pre-operative CT images is
then needed in order to transfer and follow the ablation path in the pre-
operative context.

Beside feature-based registration methods which need a first image seg-
mentation step, an intensity-based cardiac US to cardiac CT image registra-
tion method has been described in [3]. The authors of this paper proposed
a spatio-temporal registration of the beating heart using mutual information
(MI) metric to drive the spatial alignment. This technique has been improved
by performing an intensity-based registration on only the relevant features of
the US image after median filtering and low intensity thresholding [4]. The
question of MI validity thus arises. In CT images, tissues are characterized
by intensity distribution. However, in US images, each tissue is inherently
characterized by a specific spatial distribution of speckle rather than a spe-
cific distribution of gray levels. Therefore, the use of an intensity-based SM
in a multimodality image registration problem involving US images is still
an open question. Beside MI, other intensity-based SMs have also been pro-
posed in the literature. Some of these metrics could be more adequate than
MI in driving the registration.

In this paper, we propose to validate and quantify the usability and im-
pact of such SMs for US to CT registration. The evaluation of five properties
of eight cited intensity-based SMs between US and CT images is performed.
This evaluation aims to find the best SM or optimal combination of SMs
to be included in our registration framework. The ability to improve the
behavior of SMs using the pre-processing procedure proposed in [4] is also
evaluated. The protocol used in this evaluation requires a gold standard reg-
istration. We thus propose to use synthetic CT and US images with a known
gold standard.

This document is structured as follows: in section 2, the synthetic images,
similarity measures and protocol used in the evaluation are presented. In
section 3, the experimental results are shown and discussed.

2. Materials and Methods

2.1. Images

Because the evaluation requires a registration gold standard, we choose
to use realistic synthetic data. Two sets of synthetic images were built for



use in the evaluation: 1) a geometrical form composed of an oval on a plain
background [Fig. A.1-(a) and (b)]; and 2) a set of four synthetic phantom
images of the left atrium and pulmonary veins (LAPVSs), more related to
our medical application. These four phantom images are composed of two
images with different fields of view (FOV) from a male cryosection of the
human thorax and two images with different FOV from a female criosection
of the human thorax. The criosections were taken from the Visible Human
Project !. As an example, Fig. A.1-(c) shows a slice from the male dataset.
In this section LAPVs images are segmented and labeled into six types of
tissues: air, fat, bone, muscle, water and blood (A.1-(d)). Synthetic CT
images were obtained by applying the Hounsfield value corresponding to the
type of tissue modulated by Gaussian noise (Fig. A.l-(e)). In simulating
US images, each tissue is first characterized by an acoustical impedance and
a spatial distribution of speckle. This information is set as an input to the
US image simulator [5] (Fig. A.1-(f)). More details can be found in the
appendix.

2.2. Registration procedure and similarity measures

The registration procedure of two images of the same scene acquired at
different times, from different points of view and/or by different sensors,
aims to align them into a common referential. Usually, one image is fixed
as a reference and the other is moved and compared with it. The regis-
tration procedure consists of 1) applying a geometric transformation to the
moving image, 2) comparing similarities between the two images by using
a SM and 3) optimizing the geometric transformation in order to maximize
similarity between the two images. Ideally, the SM has an optimum at the
set of parameters that best align the moving image, and values that decrease
monotonically with the distance to the optimum. In practice, local minima
may be present close to the optimum. So the good choice of a SM adapted
to our medical application is crucial.

In this paper, eight intensity-based SMs are evaluated. Six of these SMs
use the information from the histogram of images while two of them use the
spatial information and intensity values. They are: mutual information (MI)
6], normalized mutual information (NMI) [7], entropy correlation coefficient
(ECC) [6], joint entropy (H) [6], point similarity measure based on MI (PSMI)
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8], histogram energy (E) [9], correlation ratio (CoR) [10] and Woods criterion
(WC)[11].

2.3. Evaluation protocol

The protocol consists of a statistical and systematic evaluation of the SM
behavior around the registration gold standard. This protocol proposed by
Skerl [12] carries out a thorough performance evaluation of the SMs inde-
pendently of the optimization method used to find the optimal alignment.
The protocol needs to know the gold standard i.e., the underlying transfor-
mation between the fixed and moving images. Three steps are then needed
to perform an evaluation:

1. The definition of statistical significant sample points within the para-
metric space around the gold standard. The parametric space is de-
fined according to the dimensions, normalization values and amount of
points used in the computation of the SM. The dimension is defined by
the amount of parameters used in the transformation (two translations
and one rotation angle, in the context of 2D rigid transformation). The
parametric space is normalized in such a way that a change along each
axis, produces almost the same impact on the transformation magni-
tude. After normalization, Euclidean metrics may be used to measure
the distance between the values of the SM. The protocol generates a
number (M) of sampling points equally distributed on (N) lines ran-
domly localized. All these lines intersect at the origin of the parametric
space, the gold standard. Sampling points lie inside of a hypersphere
of radius R in the parametric space.

2. SM values around the gold standard are computed using geometrical
parameters corresponding to specific sample points, as defined at Step
1.

3. SM behavior analysis around the gold standard. For this, five proper-
ties are measured from the SM values obtained for each line during the
second step (Fig. A.2). The accuracy (ACC) of the registration corre-
sponds to the root-mean-square of the difference between the position
of the optimal value (Pyr4x) and the gold standard (Pgg), for all lines

(1).
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The distinctiveness of the optimum (DO) measures the visibility of the
maximum value against the values around it. It is calculated as the
average of the difference between twice the maximum value and the
sum of the two values symmetrically located at their two sides at a
given distance, as is defined in (2).

N
DO<T) ! Z 25M<Xn,ma:1:) - SM(Xn,maxfk) - SM<Xn,max+k)a
n=1

TN &
(2)

with » = k %, 0 the distance between two sampling points in a line
(0 =2R/M), and k is the number of steps (k = 1,2,..). The number
of minima (NOM) is the amount of local minima of the SM around the
gold standard. The capture range (CR) of the similarity measure is
the distance from the nearest local minima (Pyyys) to the maximum
value of the SM (Ppax). The risk of non-convergence (RON) of the
registration is the average of the positive differences between the SMs
at consecutive sampling points, as is defined in (3).

N Pyax+k

RON(T):ﬁZ Y dum, (3)

n=1 PMAX_k

SM(Xpm-1) — SM(Xpm), ifm < Pyax and SM(Xpm_1) > SM(Xpm)

) ) )

dpm = § SM(Xp mt1) — SM(Xym), ifm > Pyax and SM( Xy mi1) > SM (X m)

) )

0, if otherwise.

These five properties are good indicators in predicting SM behavior for a
good registration ( when ACC, RON and NOM values are as low as possible
and CR and DO values as high as possible).

3. Results

The evaluation was carried out on the Oval and four LAPVs images. In
each of these cases, we performed the registration of the CT image with the
corresponding raw US images and also with the US images preprocessed as
in [4]. The values used to define sampling points were set as is suggested in
2; N=7, M=100 and R=0.3. Using these values, the distance between two
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consecutive points along a line was much smaller than the smallest pixel size.
Table A.3 shows image sizes, normalization values, and distances between two
consecutive points along a line, for each of images used in the test. The unit
for rotation was chosen in such a way that a rotation around one corner
of the image causes the mean shift of all pixels equal to a translation unit.
For rotation and translation, we used a rigid transformation and a linear
interpolation method. We used 256 bins in the computation of different
SMs.

The results of the Oval will be noted as Ov (US raw data) and Ovl
(preprocessed US data) in the rest of the paper. The LAPVs images had
relatively similar results. We then chose to present the mean values of these
LAPYV images measures and noted them as L (US raw data) and L1 (prepro-
cessed US data). Tables A.1 and A.2 give the ACC, RON, NOM, CR and
DO indicator properties of the eight SMs for the Oval and LAPV images
respectively.

It can be observed in Tables A.1 and A.2 that WC presents a globally
better performance than the other SMs, for both LAPV and Oval images.
This is especially true for the ACC and DO indicators. MI and CoR equally
give globally high performances, regardless of image content. NMI has a high
ACC and the smallest NOM for Oval. Results show that MI can be used in
the registration of CT to US images as has been done in [4]. However, results
also show that preprocessing the images does not improve the performance.
If we compare the behavior between the raw and preprocessed images, it can
be concluded that the performance is almost the same for all SMs except for
WC. WC has a optimal ACC for both Oval and LAPV preprocessed images.
All SMs have a small CR, as was expected for these modalities. This result
is consistent with that reported in [12].

4. Conclusion

ACC, RON, NOM, CR and DO properties were evaluated on eight SMs
based on gray level, for the registration of CT images with US images. It
can be concluded that WC has the best performance, especially concerning
Oval images. MI, NMI and CoR also have a globally high performance for
both Oval and LAPV. Overall, the performance does not improve for pre-
processed images. However, WC has an optimal ACC using preprocessed US
images, and seems to be the most optimal SM in the case of US to CT rigid
registration. Because our evaluation was independent to the optimization



process, we believe that this behavior would still be true in the case of elastic
registration.

This work is part of the French CardioUSgHIFU project supported by an
ANR-2011-TecSan-004.

Appendix A. Image simulation parameters

The LAPVs images were first segmented and labeled into six different tis-
sue classes: air, fat, bone, muscle (including myocardium), water and blood
with contrast medium.

The CT images were simulated by assigning the corresponding Hounsfield
value to each tissue (see Table A.4). We then applied an additive Gaussian
noise with a standard deviation of 400 to each value.

The US images were obtained using the simulator described in [5]. In this
simulator, each tissue is characterized by its acoustical impedance (see Table
A.4) and a specific spatial distribution of speckle. In this speckle model, the
inter-scatterer distances are independent and randomly distributed from a
gamma distribution tuned by two parameters: d represents the mean inter-
scatterer distances and « a regularity parameter (see Table A.4).
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Table A.1: Value of the ACC (mm), RON (107 /mm), NOM, CR(mm) and DO
(1/mm) properties for the eight similarity measures evaluated on the raw Oval
image (Ov) and the preprocessed Oval image (Ovl). Sampling step along a line
= 0.0588 mm (N=7, M=100, R=0.3). Best values are bolded.

ACC RON NOM CR DO

Ov Ovli| Ov Ovl|Ov Ovl| Ov Ovl Ov Ovl
MI 0.14 0.14 | 2.8 2.8 | 177 177 | 0.059 0.059 14 15
NMI |0.14 0.16 | 2.7 2.8 20 21 | 0.059 0.059 11 11
ECC | 0.17 0.17 ] 2.8 2.8 | 100 100 | 0.059 0.059 11 11
H 021 0211]31 31 |38 38 |0.059 0.059 | 0.87 0.85
PSMI | 0.21 0.21 | 3.1 3.1 | 41 40 | 0.059 0.059 |-0.74 -0.87
E 021 02 |31 31 |39 40 |0.059 0.059 | 1.0 1.3
CoR | 016 0.16 |27 27 | 68 75 |0.059 0.059 11 12
WC 0.19 0 (2.6 0.79| 77 100 | 0.059 0.118 | 15 60

Table A.2: Value of the ACC(mm), RON (10°/mm), NOM, CR(mm) and DO
(1/mm) properties for the eight similarity measures evaluated on: the raw LAPV
image (L) and the preprocessed LAPV image (L1). Sampling step along a line:
0.0444 mm for female images and 0.0468 mm for male images (N=7, M=100,
R=0.3). Best values are bolded.

ACC RON NOM CR DO

L L1 L L1 L L1 L L1 L L1
MI 0.17 0.17 | 5.4 6.4 | 100 93 | 0.046 0.046 | 6.7 8.8
NMI | 0.21 0.19 127 13.0| 72 58 | 0.046 0.046 | 7.5 9.5
ECC | 026 024122 126 | 8 86 | 0.057 0.057 | 7.1 9.3
H 029 029|342 347 | 38 34 | 0046 0.046 | 4.8 4.3
PSMI | 0.22 0.29 | 341 343 | 50 40 | 0.046 0.046 | 1.8 1.6
B 029 029|332 340 46 37 | 0.046 0.046 | 5.9 5.2
CoR | 014 0.14| 6.2 74 | 92 84 | 0.046 0.057 |88 11
WC 0.12 O 77 104 | 111 100 | 0.046 0.079 | 14 4.4
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Table A.3: Moving image sizes, field of view (FOV), translation and rotation
units of normalized parametric space and distance between two consecutive points
along a line, for the five images (N = 7 lines, M = 100 sampling points and
R = 0.3 mm).

Pixel | Trans. | Rot. 5
Image | FOV Image size (mm) | size | unit unit

(mm) | (mm) | (rad) (mm)
Oval 1 98.23 | 141.13 0.11 |98 0.10694 | 0.0588
LAPV, | Malel | 78.14 | 112.26 0.0875] 7.8 0.10729 | 0.0468
LAPV; | Male2 | 78.14 | 112.26 0.0875] 7.8 0.10729 | 0.0468
LAPV;5 | Femalel| 74.12 | 106.49 0.083 | 7.4 0.10751 | 0.0444
LAPV, | Female2| 74.12 | 106.49 0.083 | 7.4 0.10751 | 0.0444

Table A.4: Values of parameters used in the simulation of CT and US images.

Acoustical

) Density Regularity | Houndsfield
impedance 3
(kg.m—2.5~1) (gmm™) | («) value
Air 4x1074 2x1073 0.1 -1000
Water 1 2x1073 0.1 0
Blood (contrast) | 1.63 4x107° 0.4 400
Muscle 1.65 0.03 0.4 -20
Fat 1.35 0.1 20 -80
Bone 7.8 x 10° 0.02 20 30
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(e)

Figure A.1: Images used for evaluation. Oval geometrical form: simulated CT (a)
and US (b) images. Left atrium and pulmonary veins phantom images: cryosection
of male human thorax (c); segmented and labeled into six different types of tissues:
air, fat, bone, muscle(including myocardium), water and blood (d); corresponding
simulated CT (e) and US (f) images for a US beam depth = 7 cm.
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Figure A.2: Profile of a SM along one line with M sampling points, gold standard
at Pgg, maximum value at Py;4x and nearest local minimum at Pnpps.
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